.. --------------------------------------------------------------------------- Copyright (C) 2012 Digia Plc and/or its subsidiary(-ies). All rights reserved. This work, unless otherwise expressly stated, is licensed under a Creative Commons Attribution-ShareAlike 2.5. The full license document is available from http://creativecommons.org/licenses/by-sa/2.5/legalcode . --------------------------------------------------------------------------- How to convert a html5 canvas into qml canvas ============================================= We can almost simply copy the HTML5 code’s drawing function into the canvas element’s `onPaint` handler. We only need to change the line in which we acquire the drawing context: instead of using a DOM API, call (document.getElementById('canvas')), we access the canvas element directly. The JavaScript function used can be inserted as a member function of the element. The HTML5 code looks like this: .. code-block:: js function draw() { var ctx = document.getElementById('canvas').getContext('2d'); ctx.fillRect(0,0,300,300); for (var i=0;i<3;i++) { for (var j=0;j<3;j++) { ctx.save(); ctx.strokeStyle = "#9CFF00"; ctx.translate(50+j*100,50+i*100); drawSpirograph(ctx,20*(j+2)/(j+1),-8*(i+3)/(i+1),10); ctx.restore(); } } } function drawSpirograph(ctx,R,r,O){ var x1 = R-O; var y1 = 0; var i = 1; ctx.beginPath(); ctx.moveTo(x1,y1); do { if (i>20000) break; var x2 = (R+r)*Math.cos(i*Math.PI/72) - (r+O)*Math.cos(((R+r)/r)*(i*Math.PI/72)) var y2 = (R+r)*Math.sin(i*Math.PI/72) - (r+O)*Math.sin(((R+r)/r)*(i*Math.PI/72)) ctx.lineTo(x2,y2); x1 = x2; y1 = y2; i++; } while (x2 != R-O && y2 != 0 ); ctx.stroke(); } Porting it to the `Canvas` item in Qt Quick 2 will look like this: .. code-block:: js import QtQuick 2.0 Canvas { id: canvas width: 300 height: 300 // the function "draw()" can be put into the "onPaint" handler onPaint: { // the acquisition of the rendering context needs to be adapted var ctx = canvas.getContext('2d'); ctx.fillRect(0,0,300,300); for (var i=0;i<3;i++) { for (var j=0;j<3;j++) { ctx.save(); ctx.strokeStyle = "#9CFF00"; ctx.translate(50+j*100,50+i*100); drawSpirograph(ctx,20*(j+2)/(j+1),-8*(i+3)/(i+1),10); ctx.restore(); } } } // the utility function "drawSpirograph()" can remain unchanged function drawSpirograph(ctx,R,r,O) { var x1 = R-O; var y1 = 0; var i = 1; ctx.beginPath(); ctx.moveTo(x1,y1); do { if (i>20000) break; var x2 = (R+r)*Math.cos(i*Math.PI/72) - (r+O)*Math.cos(((R+r)/r)*(i*Math.PI/72)) var y2 = (R+r)*Math.sin(i*Math.PI/72) - (r+O)*Math.sin(((R+r)/r)*(i*Math.PI/72)) ctx.lineTo(x2,y2); x1 = x2; y1 = y2; i++; } while (x2 != R-O && y2 != 0 ); ctx.stroke(); } }