// Copyright (C) 2016 The Qt Company Ltd. // SPDX-License-Identifier: LicenseRef-Qt-Commercial OR LGPL-3.0-only OR GPL-2.0-only OR GPL-3.0-only #include "qquickimage_p.h" #include "qquickimage_p_p.h" #include #include #include #include #include #include #include QT_BEGIN_NAMESPACE QQuickImageTextureProvider::QQuickImageTextureProvider() : m_texture(nullptr) , m_smooth(false) { } void QQuickImageTextureProvider::updateTexture(QSGTexture *texture) { if (m_texture == texture) return; if (m_texture) disconnect(m_texture, &QSGTexture::destroyed, this, nullptr); m_texture = texture; if (m_texture) connect(m_texture, &QSGTexture::destroyed, this, [this]() { updateTexture(nullptr); }); emit textureChanged(); } QSGTexture *QQuickImageTextureProvider::texture() const { if (m_texture) { m_texture->setFiltering(m_smooth ? QSGTexture::Linear : QSGTexture::Nearest); m_texture->setMipmapFiltering(m_mipmap ? QSGTexture::Linear : QSGTexture::None); m_texture->setHorizontalWrapMode(QSGTexture::ClampToEdge); m_texture->setVerticalWrapMode(QSGTexture::ClampToEdge); } return m_texture; } QQuickImagePrivate::QQuickImagePrivate() : pixmapChanged(false) , mipmap(false) { } /*! \qmltype Image \nativetype QQuickImage \inqmlmodule QtQuick \ingroup qtquick-visual \inherits Item \brief Displays an image. The Image type displays an image. The source of the image is specified as a URL using the \l source property. Images can be supplied in any of the standard image formats supported by Qt, including bitmap formats such as PNG and JPEG, and vector graphics formats such as SVG. If you need to display animated images, use \l AnimatedSprite or \l AnimatedImage. If the \l{Item::width}{width} and \l{Item::height}{height} properties are not specified, the Image automatically uses the size of the loaded image. By default, specifying the width and height of the item causes the image to be scaled to that size. This behavior can be changed by setting the \l fillMode property, allowing the image to be stretched and tiled instead. It is possible to provide \l {High Resolution Versions of Images}{"@nx" high DPI syntax}. \section1 Example Usage The following example shows the simplest usage of the Image type. \snippet qml/image.qml document \beginfloatleft \image declarative-qtlogo.png \endfloat \clearfloat \section1 Compressed Texture Files When supported by the implementation of the underlying graphics API at run time, images can also be supplied in compressed texture files. The content must be a simple RGB(A) format 2D texture. Supported compression schemes are only limited by the underlying driver and GPU. The following container file formats are supported: \list \li \c PKM (since Qt 5.10) \li \c KTX (since Qt 5.11) \li \c ASTC (since Qt 5.13) \endlist \note The intended vertical orientation of an image in a texture file is not generally well defined. Different texture compression tools have different defaults and options of when to perform vertical flipping of the input image. If an image from a texture file appears upside down, flipping may need to be toggled in the asset conditioning process. Alternatively, the Image element itself can be flipped by either applying a suitable transformation via the transform property or, more conveniently, by setting the mirrorVertically property: \badcode transform: [ Translate { y: -myImage.height }, Scale { yScale: -1 } ] \endcode or \badcode mirrorVertically: true \endcode \note Semi-transparent original images require alpha pre-multiplication prior to texture compression in order to be correctly displayed in Qt Quick. This can be done with the following ImageMagick command line: \badcode convert foo.png \( +clone -alpha Extract \) -channel RGB -compose Multiply -composite foo_pm.png \endcode Do not confuse container formats, such as, \c KTX, and the format of the actual texture data stored in the container file. For example, reading a \c KTX file is supported on all platforms, independently of what GPU driver is used at run time. However, this does not guarantee that the compressed texture format, used by the data in the file, is supported at run time. For example, if the KTX file contains compressed data with the format \c{ETC2 RGBA8}, and the 3D graphics API implementation used at run time does not support \c ETC2 compressed textures, the Image item will not display anything. \note Compressed texture format support is not under Qt's control, and it is up to the application or device developer to ensure the compressed texture data is provided in the appropriate format for the target environment(s). Do not assume that compressed format support is specific to a platform. It may also be specific to the driver and 3D API implementation in use on that particular platform. In practice, implementations of different 3D graphics APIs (e.g., Vulkan and OpenGL) on the same platform (e.g., Windows) from the same vendor for the same hardware may offer a different set of compressed texture formats. When targeting desktop environments (Windows, macOS, Linux) only, a general recommendation is to consider using the \c{DXTn}/\c{BCn} formats since these tend to have the widest support amongst the implementations of Direct 3D, Vulkan, OpenGL, and Metal on these platforms. In contrast, when targeting mobile or embedded devices, the \c ETC2 or \c ASTC formats are likely to be a better choice since these are typically the formats supported by the OpenGL ES implementations on such hardware. An application that intends to run across desktop, mobile, and embedded hardware should plan and design its use of compressed textures carefully. It is highly likely that relying on a single format is not going to be sufficient, and therefore the application will likely need to branch based on the platform to use compressed textures in a format appropriate there, or perhaps to skip using compressed textures in some cases. \section1 Automatic Detection of File Extension If the \l source URL indicates a non-existing local file or resource, the Image element attempts to auto-detect the file extension. If an existing file can be found by appending any of the supported image file extensions to the \l source URL, then that file will be loaded. The file search attempts to look for compressed texture container file extensions first. If the search is unsuccessful, it attempts to search with the file extensions for the \l{QImageReader::supportedImageFormats()}{conventional image file types}. For example: \snippet qml/image-ext.qml ext This functionality facilitates deploying different image asset file types on different target platforms. This can be useful in order to tune application performance and adapt to different graphics hardware. This functionality was introduced in Qt 5.11. \section1 Performance By default, locally available images are loaded immediately, and the user interface is blocked until loading is complete. If a large image is to be loaded, it may be preferable to load the image in a low priority thread, by enabling the \l asynchronous property. If the image is obtained from a network rather than a local resource, it is automatically loaded asynchronously, and the \l progress and \l status properties are updated as appropriate. Images are cached and shared internally, so if several Image items have the same \l source, only one copy of the image will be loaded. \b Note: Images are often the greatest user of memory in QML user interfaces. It is recommended that images which do not form part of the user interface have their size bounded via the \l sourceSize property. This is especially important for content that is loaded from external sources or provided by the user. \sa {Qt Quick Examples - Image Elements}, QQuickImageProvider, QImageReader::setAutoDetectImageFormat() */ QQuickImage::QQuickImage(QQuickItem *parent) : QQuickImageBase(*(new QQuickImagePrivate), parent) { } QQuickImage::QQuickImage(QQuickImagePrivate &dd, QQuickItem *parent) : QQuickImageBase(dd, parent) { } QQuickImage::~QQuickImage() { Q_D(QQuickImage); if (d->provider) { // We're guaranteed to have a window() here because the provider would have // been released in releaseResources() if we were gone from a window. QQuickWindowQObjectCleanupJob::schedule(window(), d->provider); } } void QQuickImagePrivate::setImage(const QImage &image) { Q_Q(QQuickImage); currentPix->setImage(image); q->pixmapChange(); q->update(); } void QQuickImagePrivate::setPixmap(const QQuickPixmap &pixmap) { Q_Q(QQuickImage); currentPix->setPixmap(pixmap); q->pixmapChange(); q->update(); } /*! \qmlproperty enumeration QtQuick::Image::fillMode Set this property to define what happens when the source image has a different size than the item. \value Image.Stretch the image is scaled to fit \value Image.PreserveAspectFit the image is scaled uniformly to fit without cropping \value Image.PreserveAspectCrop the image is scaled uniformly to fill, cropping if necessary \value Image.Tile the image is duplicated horizontally and vertically \value Image.TileVertically the image is stretched horizontally and tiled vertically \value Image.TileHorizontally the image is stretched vertically and tiled horizontally \value Image.Pad the image is not transformed \br \table \row \li \image declarative-qtlogo-stretch.png \li Stretch (default) \qml Image { width: 130; height: 100 source: "qtlogo.png" } \endqml \row \li \image declarative-qtlogo-preserveaspectfit.png \li PreserveAspectFit \qml Image { width: 130; height: 100 fillMode: Image.PreserveAspectFit source: "qtlogo.png" } \endqml \row \li \image declarative-qtlogo-preserveaspectcrop.png \li PreserveAspectCrop \qml Image { width: 130; height: 100 fillMode: Image.PreserveAspectCrop source: "qtlogo.png" clip: true } \endqml \row \li \image declarative-qtlogo-tile.png \li Tile \qml Image { width: 120; height: 120 fillMode: Image.Tile horizontalAlignment: Image.AlignLeft verticalAlignment: Image.AlignTop source: "qtlogo.png" } \endqml \row \li \image declarative-qtlogo-tilevertically.png \li TileVertically \qml Image { width: 120; height: 120 fillMode: Image.TileVertically verticalAlignment: Image.AlignTop source: "qtlogo.png" } \endqml \row \li \image declarative-qtlogo-tilehorizontally.png \li TileHorizontally \qml Image { width: 120; height: 120 fillMode: Image.TileHorizontally verticalAlignment: Image.AlignLeft source: "qtlogo.png" } \endqml \endtable Note that \c clip is \c false by default which means that the item might paint outside its bounding rectangle even if the fillMode is set to \c PreserveAspectCrop. \sa {Qt Quick Examples - Image Elements} */ QQuickImage::FillMode QQuickImage::fillMode() const { Q_D(const QQuickImage); return d->fillMode; } void QQuickImage::setFillMode(FillMode mode) { Q_D(QQuickImage); if (d->fillMode == mode) return; d->fillMode = mode; if ((mode == PreserveAspectCrop) != d->providerOptions.preserveAspectRatioCrop()) { d->providerOptions.setPreserveAspectRatioCrop(mode == PreserveAspectCrop); if (isComponentComplete()) load(); } else if ((mode == PreserveAspectFit) != d->providerOptions.preserveAspectRatioFit()) { d->providerOptions.setPreserveAspectRatioFit(mode == PreserveAspectFit); if (isComponentComplete()) load(); } update(); updatePaintedGeometry(); emit fillModeChanged(); } /*! \qmlproperty real QtQuick::Image::paintedWidth \qmlproperty real QtQuick::Image::paintedHeight \readonly These properties hold the size of the image that is actually painted. In most cases it is the same as \c width and \c height, but when using an \l {fillMode}{Image.PreserveAspectFit} or an \l {fillMode}{Image.PreserveAspectCrop} \c paintedWidth or \c paintedHeight can be smaller or larger than \c width and \c height of the Image item. */ qreal QQuickImage::paintedWidth() const { Q_D(const QQuickImage); return d->paintedWidth; } qreal QQuickImage::paintedHeight() const { Q_D(const QQuickImage); return d->paintedHeight; } /*! \qmlproperty enumeration QtQuick::Image::status \readonly This property holds the status of image loading. It can be one of: \value Image.Null No image has been set \value Image.Ready The image has been loaded \value Image.Loading The image is currently being loaded \value Image.Error An error occurred while loading the image Use this status to provide an update or respond to the status change in some way. For example, you could: \list \li Trigger a state change: \qml State { name: 'loaded'; when: image.status == Image.Ready } \endqml \li Implement an \c onStatusChanged signal handler: \qml Image { id: image onStatusChanged: if (image.status == Image.Ready) console.log('Loaded') } \endqml \li Bind to the status value: \qml Text { text: image.status == Image.Ready ? 'Loaded' : 'Not loaded' } \endqml \endlist \sa progress */ /*! \qmlproperty real QtQuick::Image::progress \readonly This property holds the progress of image loading, from 0.0 (nothing loaded) to 1.0 (finished). \sa status */ /*! \qmlproperty bool QtQuick::Image::smooth This property holds whether the image is smoothly filtered when scaled or transformed. Smooth filtering gives better visual quality, but it may be slower on some hardware. If the image is displayed at its natural size, this property has no visual or performance effect. By default, this property is set to true. \sa mipmap */ /*! \qmlproperty size QtQuick::Image::sourceSize This property holds the scaled width and height of the full-frame image. Unlike the \l {Item::}{width} and \l {Item::}{height} properties, which scale the painting of the image, this property sets the maximum number of pixels stored for the loaded image so that large images do not use more memory than necessary. For example, this ensures the image in memory is no larger than 1024x1024 pixels, regardless of the Image's \l {Item::}{width} and \l {Item::}{height} values: \code Rectangle { width: ... height: ... Image { anchors.fill: parent source: "reallyBigImage.jpg" sourceSize.width: 1024 sourceSize.height: 1024 } } \endcode If the image's actual size is larger than the sourceSize, the image is scaled down. If only one dimension of the size is set to greater than 0, the other dimension is set in proportion to preserve the source image's aspect ratio. (The \l fillMode is independent of this.) If both the sourceSize.width and sourceSize.height are set, the image will be scaled down to fit within the specified size (unless PreserveAspectCrop or PreserveAspectFit are used, then it will be scaled to match the optimal size for cropping/fitting), maintaining the image's aspect ratio. The actual size of the image after scaling is available via \l Item::implicitWidth and \l Item::implicitHeight. If the source is an intrinsically scalable image (eg. SVG), this property determines the size of the loaded image regardless of intrinsic size. Avoid changing this property dynamically; rendering an SVG is \e slow compared to an image. If the source is a non-scalable image (eg. JPEG), the loaded image will be no greater than this property specifies. For some formats (currently only JPEG), the whole image will never actually be loaded into memory. If the \l sourceClipRect property is also set, \c sourceSize determines the scale, but it will be clipped to the size of the clip rectangle. sourceSize can be cleared to the natural size of the image by setting sourceSize to \c undefined. \note \e {Changing this property dynamically causes the image source to be reloaded, potentially even from the network, if it is not in the disk cache.} \sa {Qt Quick Examples - Pointer Handlers} */ /*! \qmlproperty rect QtQuick::Image::sourceClipRect \since 5.15 This property, if set, holds the rectangular region of the source image to be loaded. The \c sourceClipRect works together with the \l sourceSize property to conserve system resources when only a portion of an image needs to be loaded. \code Rectangle { width: ... height: ... Image { anchors.fill: parent source: "reallyBigImage.svg" sourceSize.width: 1024 sourceSize.height: 1024 sourceClipRect: Qt.rect(100, 100, 512, 512) } } \endcode In the above example, we conceptually scale the SVG graphic to 1024x1024 first, and then cut out a region of interest that is 512x512 pixels from a location 100 pixels from the top and left edges. Thus \c sourceSize determines the scale, but the actual output image is 512x512 pixels. Some image formats are able to conserve CPU time by rendering only the specified region. Others will need to load the entire image first and then clip it to the specified region. This property can be cleared to reload the entire image by setting \c sourceClipRect to \c undefined. \note \e {Changing this property dynamically causes the image source to be reloaded, potentially even from the network, if it is not in the disk cache.} \note Sub-pixel clipping is not supported: the given rectangle will be passed to \l QImageReader::setScaledClipRect(). */ /*! \qmlproperty url QtQuick::Image::source Image can handle any image format supported by Qt, loaded from any URL scheme supported by Qt. The URL may be absolute, or relative to the URL of the component. \sa QQuickImageProvider, {Compressed Texture Files}, {Automatic Detection of File Extension} */ /*! \qmlproperty bool QtQuick::Image::asynchronous Specifies that images on the local filesystem should be loaded asynchronously in a separate thread. The default value is false, causing the user interface thread to block while the image is loaded. Setting \a asynchronous to true is useful where maintaining a responsive user interface is more desirable than having images immediately visible. Note that this property is only valid for images read from the local filesystem. Images loaded via a network resource (e.g. HTTP) are always loaded asynchronously. */ /*! \qmlproperty bool QtQuick::Image::cache Specifies whether the image should be cached. The default value is true. Setting \a cache to false is useful when dealing with large images, to make sure that they aren't cached at the expense of small 'ui element' images. */ /*! \qmlproperty bool QtQuick::Image::mirror This property holds whether the image should be horizontally inverted (effectively displaying a mirrored image). The default value is false. */ /*! \qmlproperty bool QtQuick::Image::mirrorVertically This property holds whether the image should be vertically inverted (effectively displaying a mirrored image). The default value is false. \since 6.2 */ /*! \qmlproperty enumeration QtQuick::Image::horizontalAlignment \qmlproperty enumeration QtQuick::Image::verticalAlignment Sets the horizontal and vertical alignment of the image. By default, the image is center aligned. The valid values for \c horizontalAlignment are \c Image.AlignLeft, \c Image.AlignRight and \c Image.AlignHCenter. The valid values for \c verticalAlignment are \c Image.AlignTop, \c Image.AlignBottom and \c Image.AlignVCenter. */ void QQuickImage::updatePaintedGeometry() { Q_D(QQuickImage); if (d->fillMode == PreserveAspectFit) { if (!d->currentPix->width() || !d->currentPix->height()) { setImplicitSize(0, 0); return; } const qreal pixWidth = d->currentPix->width() / d->devicePixelRatio; const qreal pixHeight = d->currentPix->height() / d->devicePixelRatio; const qreal w = widthValid() ? width() : pixWidth; const qreal widthScale = w / pixWidth; const qreal h = heightValid() ? height() : pixHeight; const qreal heightScale = h / pixHeight; if (widthScale <= heightScale) { d->paintedWidth = w; d->paintedHeight = widthScale * pixHeight; } else if (heightScale < widthScale) { d->paintedWidth = heightScale * pixWidth; d->paintedHeight = h; } const qreal iHeight = (widthValid() && !heightValid()) ? d->paintedHeight : pixHeight; const qreal iWidth = (heightValid() && !widthValid()) ? d->paintedWidth : pixWidth; setImplicitSize(iWidth, iHeight); } else if (d->fillMode == PreserveAspectCrop) { if (!d->currentPix->width() || !d->currentPix->height()) return; const qreal pixWidth = d->currentPix->width() / d->devicePixelRatio; const qreal pixHeight = d->currentPix->height() / d->devicePixelRatio; qreal widthScale = width() / pixWidth; qreal heightScale = height() / pixHeight; if (widthScale < heightScale) { widthScale = heightScale; } else if (heightScale < widthScale) { heightScale = widthScale; } d->paintedHeight = heightScale * pixHeight; d->paintedWidth = widthScale * pixWidth; } else if (d->fillMode == Pad) { d->paintedWidth = d->currentPix->width() / d->devicePixelRatio; d->paintedHeight = d->currentPix->height() / d->devicePixelRatio; } else { d->paintedWidth = width(); d->paintedHeight = height(); } emit paintedGeometryChanged(); } void QQuickImage::geometryChange(const QRectF &newGeometry, const QRectF &oldGeometry) { QQuickImageBase::geometryChange(newGeometry, oldGeometry); if (newGeometry.size() != oldGeometry.size()) updatePaintedGeometry(); } QRectF QQuickImage::boundingRect() const { Q_D(const QQuickImage); return QRectF(0, 0, qMax(width(), d->paintedWidth), qMax(height(), d->paintedHeight)); } QSGTextureProvider *QQuickImage::textureProvider() const { Q_D(const QQuickImage); // When Item::layer::enabled == true, QQuickItem will be a texture // provider. In this case we should prefer to return the layer rather // than the image itself. The layer will include any children and any // the image's wrap and fill mode. if (QQuickItem::isTextureProvider()) return QQuickItem::textureProvider(); if (!d->window || !d->sceneGraphRenderContext() || QThread::currentThread() != d->sceneGraphRenderContext()->thread()) { qWarning("QQuickImage::textureProvider: can only be queried on the rendering thread of an exposed window"); return nullptr; } if (!d->provider) { QQuickImagePrivate *dd = const_cast(d); dd->provider = new QQuickImageTextureProvider; dd->provider->m_smooth = d->smooth; dd->provider->m_mipmap = d->mipmap; dd->provider->updateTexture(d->sceneGraphRenderContext()->textureForFactory(d->currentPix->textureFactory(), window())); } return d->provider; } void QQuickImage::invalidateSceneGraph() { Q_D(QQuickImage); delete d->provider; d->provider = nullptr; } void QQuickImage::releaseResources() { Q_D(QQuickImage); if (d->provider) { QQuickWindowQObjectCleanupJob::schedule(window(), d->provider); d->provider = nullptr; } } QSGNode *QQuickImage::updatePaintNode(QSGNode *oldNode, UpdatePaintNodeData *) { Q_D(QQuickImage); QSGTexture *texture = d->sceneGraphRenderContext()->textureForFactory(d->currentPix->textureFactory(), window()); // Copy over the current texture state into the texture provider... if (d->provider) { d->provider->m_smooth = d->smooth; d->provider->m_mipmap = d->mipmap; d->provider->updateTexture(texture); } if (!texture || width() <= 0 || height() <= 0) { delete oldNode; return nullptr; } QSGInternalImageNode *node = static_cast(oldNode); if (!node) { d->pixmapChanged = true; node = d->sceneGraphContext()->createInternalImageNode(d->sceneGraphRenderContext()); } QRectF targetRect; QRectF sourceRect; QSGTexture::WrapMode hWrap = QSGTexture::ClampToEdge; QSGTexture::WrapMode vWrap = QSGTexture::ClampToEdge; qreal pixWidth = (d->fillMode == PreserveAspectFit) ? d->paintedWidth : d->currentPix->width() / d->devicePixelRatio; qreal pixHeight = (d->fillMode == PreserveAspectFit) ? d->paintedHeight : d->currentPix->height() / d->devicePixelRatio; int xOffset = 0; if (d->hAlign == QQuickImage::AlignHCenter) xOffset = (width() - pixWidth) / 2; else if (d->hAlign == QQuickImage::AlignRight) xOffset = qCeil(width() - pixWidth); int yOffset = 0; if (d->vAlign == QQuickImage::AlignVCenter) yOffset = (height() - pixHeight) / 2; else if (d->vAlign == QQuickImage::AlignBottom) yOffset = qCeil(height() - pixHeight); switch (d->fillMode) { case Stretch: targetRect = QRectF(0, 0, width(), height()); sourceRect = d->currentPix->rect(); break; case PreserveAspectFit: targetRect = QRectF(xOffset, yOffset, d->paintedWidth, d->paintedHeight); sourceRect = d->currentPix->rect(); break; case PreserveAspectCrop: { targetRect = QRectF(0, 0, width(), height()); qreal wscale = width() / qreal(d->currentPix->width()); qreal hscale = height() / qreal(d->currentPix->height()); if (wscale > hscale) { int src = (hscale / wscale) * qreal(d->currentPix->height()); int y = 0; if (d->vAlign == QQuickImage::AlignVCenter) y = qCeil((d->currentPix->height() - src) / 2.); else if (d->vAlign == QQuickImage::AlignBottom) y = qCeil(d->currentPix->height() - src); sourceRect = QRectF(0, y, d->currentPix->width(), src); } else { int src = (wscale / hscale) * qreal(d->currentPix->width()); int x = 0; if (d->hAlign == QQuickImage::AlignHCenter) x = qCeil((d->currentPix->width() - src) / 2.); else if (d->hAlign == QQuickImage::AlignRight) x = qCeil(d->currentPix->width() - src); sourceRect = QRectF(x, 0, src, d->currentPix->height()); } } break; case Tile: targetRect = QRectF(0, 0, width(), height()); sourceRect = QRectF(-xOffset, -yOffset, width(), height()); hWrap = QSGTexture::Repeat; vWrap = QSGTexture::Repeat; break; case TileHorizontally: targetRect = QRectF(0, 0, width(), height()); sourceRect = QRectF(-xOffset, 0, width(), d->currentPix->height()); hWrap = QSGTexture::Repeat; break; case TileVertically: targetRect = QRectF(0, 0, width(), height()); sourceRect = QRectF(0, -yOffset, d->currentPix->width(), height()); vWrap = QSGTexture::Repeat; break; case Pad: qreal w = qMin(qreal(pixWidth), width()); qreal h = qMin(qreal(pixHeight), height()); qreal x = (pixWidth > width()) ? -xOffset : 0; qreal y = (pixHeight > height()) ? -yOffset : 0; targetRect = QRectF(x + xOffset, y + yOffset, w, h); sourceRect = QRectF(x, y, w, h); break; } qreal nsWidth = (hWrap == QSGTexture::Repeat || d->fillMode == Pad) ? d->currentPix->width() / d->devicePixelRatio : d->currentPix->width(); qreal nsHeight = (vWrap == QSGTexture::Repeat || d->fillMode == Pad) ? d->currentPix->height() / d->devicePixelRatio : d->currentPix->height(); QRectF nsrect(sourceRect.x() / nsWidth, sourceRect.y() / nsHeight, sourceRect.width() / nsWidth, sourceRect.height() / nsHeight); if (targetRect.isEmpty() || !qt_is_finite(targetRect.width()) || !qt_is_finite(targetRect.height()) || nsrect.isEmpty() || !qt_is_finite(nsrect.width()) || !qt_is_finite(nsrect.height())) { delete node; return nullptr; } if (d->pixmapChanged) { // force update the texture in the node to trigger reconstruction of // geometry and the likes when a atlas segment has changed. if (texture->isAtlasTexture() && (hWrap == QSGTexture::Repeat || vWrap == QSGTexture::Repeat || d->mipmap)) node->setTexture(texture->removedFromAtlas()); else node->setTexture(texture); d->pixmapChanged = false; } node->setMipmapFiltering(d->mipmap ? QSGTexture::Linear : QSGTexture::None); node->setHorizontalWrapMode(hWrap); node->setVerticalWrapMode(vWrap); node->setFiltering(d->smooth ? QSGTexture::Linear : QSGTexture::Nearest); node->setTargetRect(targetRect); node->setInnerTargetRect(targetRect); node->setSubSourceRect(nsrect); node->setMirror(d->mirrorHorizontally, d->mirrorVertically); node->setAntialiasing(d->antialiasing); node->update(); return node; } void QQuickImage::pixmapChange() { Q_D(QQuickImage); // PreserveAspectFit calculates the implicit size differently so we // don't call our superclass pixmapChange(), since that would // result in the implicit size being set incorrectly, then updated // in updatePaintedGeometry() if (d->fillMode != PreserveAspectFit) QQuickImageBase::pixmapChange(); updatePaintedGeometry(); d->pixmapChanged = true; // When the pixmap changes, such as being deleted, we need to update the textures update(); } QQuickImage::VAlignment QQuickImage::verticalAlignment() const { Q_D(const QQuickImage); return d->vAlign; } void QQuickImage::setVerticalAlignment(VAlignment align) { Q_D(QQuickImage); if (d->vAlign == align) return; d->vAlign = align; update(); updatePaintedGeometry(); emit verticalAlignmentChanged(align); } QQuickImage::HAlignment QQuickImage::horizontalAlignment() const { Q_D(const QQuickImage); return d->hAlign; } void QQuickImage::setHorizontalAlignment(HAlignment align) { Q_D(QQuickImage); if (d->hAlign == align) return; d->hAlign = align; update(); updatePaintedGeometry(); emit horizontalAlignmentChanged(align); } /*! \qmlproperty bool QtQuick::Image::mipmap \since 5.3 This property holds whether the image uses mipmap filtering when scaled or transformed. Mipmap filtering gives better visual quality when scaling down compared to smooth, but it may come at a performance cost (both when initializing the image and during rendering). By default, this property is set to false. \sa smooth */ bool QQuickImage::mipmap() const { Q_D(const QQuickImage); return d->mipmap; } void QQuickImage::setMipmap(bool use) { Q_D(QQuickImage); if (d->mipmap == use) return; d->mipmap = use; emit mipmapChanged(d->mipmap); d->pixmapChanged = true; if (isComponentComplete()) load(); update(); } /*! \qmlproperty bool QtQuick::Image::autoTransform \since 5.5 This property holds whether the image should automatically apply image transformation metadata such as EXIF orientation. By default, this property is set to false. */ /*! \qmlproperty int QtQuick::Image::currentFrame \qmlproperty int QtQuick::Image::frameCount \since 5.14 currentFrame is the frame that is currently visible. The default is \c 0. You can set it to a number between \c 0 and \c {frameCount - 1} to display a different frame, if the image contains multiple frames. frameCount is the number of frames in the image. Most images have only one frame. */ /*! \qmlproperty bool QtQuick::Image::retainWhileLoading \since 6.8 //! [qml-image-retainwhileloading] This property defines the behavior when the \l source property is changed and loading happens asynchronously. This is the case when the \l asynchronous property is set to \c true, or if the image is not on the local file system. If \c retainWhileLoading is \c false (the default), the old image is discarded immediately, and the component is cleared while the new image is being loaded. If set to \c true, the old image is retained and remains visible until the new one is ready. Enabling this property can avoid flickering in cases where loading the new image takes a long time. It comes at the cost of some extra memory use for double buffering while the new image is being loaded. //! [qml-image-retainwhileloading] */ QT_END_NAMESPACE #include "moc_qquickimage_p_p.cpp" #include "moc_qquickimage_p.cpp"