// Copyright (C) 2023 The Qt Company Ltd. // SPDX-License-Identifier: LicenseRef-Qt-Commercial OR GPL-3.0-only #include "texturesample.glsllib" vec3 tonemap_filmic(vec3 color, float white) { // exposure bias: input scale (color *= bias, white *= bias) to make the brightness consistent with other tonemappers // also useful to scale the input to the range that the tonemapper is designed for (some require very high input values) // has no effect on the curve's general shape or visual properties const float exposure_bias = 2.0; const float A = 0.22 * exposure_bias * exposure_bias; // bias baked into constants for performance const float B = 0.30 * exposure_bias; const float C = 0.10; const float D = 0.20; const float E = 0.01; const float F = 0.30; vec3 color_tonemapped = ((color * (A * color + C * B) + D * E) / (color * (A * color + B) + D * F)) - E / F; float white_tonemapped = ((white * (A * white + C * B) + D * E) / (white * (A * white + B) + D * F)) - E / F; return clamp(color_tonemapped / white_tonemapped, vec3(0.0), vec3(1.0)); } vec3 tonemap_aces(vec3 color, float white) { const float exposure_bias = 0.85; const float A = 2.51 * exposure_bias * exposure_bias; const float B = 0.03 * exposure_bias; const float C = 2.43 * exposure_bias * exposure_bias; const float D = 0.59 * exposure_bias; const float E = 0.14; vec3 color_tonemapped = (color * (A * color + B)) / (color * (C * color + D) + E); float white_tonemapped = (white * (A * white + B)) / (white * (C * white + D) + E); return clamp(color_tonemapped / white_tonemapped, vec3(0.0), vec3(1.0)); } vec3 tonemap_reinhard(vec3 color, float white) { return clamp((white * color + color) / (color * white + white), vec3(0.0), vec3(1.0)); } vec3 linear_to_srgb(vec3 color) { // convert linear rgb to srgb, assumes clamped input in range [0;1] const vec3 a = vec3(0.055); return mix((vec3(1.0) + a) * pow(color.rgb, vec3(1.0 / 2.4)) - a, 12.92 * color.rgb, lessThan(color.rgb, vec3(0.0031308))); } vec3 apply_fxaa(vec3 color, float exposure, vec2 pixelSize) { const float FXAA_REDUCE_MIN = (1.0 / 128.0); const float FXAA_REDUCE_MUL = (1.0 / 8.0); const float FXAA_SPAN_MAX = 8.0; vec3 rgbNW = SAMPLE_LOD(INPUT, INPUT_UV + vec2(-1.0, -1.0) * pixelSize, 0.0).xyz * exposure; vec3 rgbNE = SAMPLE_LOD(INPUT, INPUT_UV + vec2(1.0, -1.0) * pixelSize, 0.0).xyz * exposure; vec3 rgbSW = SAMPLE_LOD(INPUT, INPUT_UV + vec2(-1.0, 1.0) * pixelSize, 0.0).xyz * exposure; vec3 rgbSE = SAMPLE_LOD(INPUT, INPUT_UV + vec2(1.0, 1.0) * pixelSize, 0.0).xyz * exposure; vec3 rgbM = color; vec3 luma = vec3(0.299, 0.587, 0.114); float lumaNW = dot(rgbNW, luma); float lumaNE = dot(rgbNE, luma); float lumaSW = dot(rgbSW, luma); float lumaSE = dot(rgbSE, luma); float lumaM = dot(rgbM, luma); float lumaMin = min(lumaM, min(min(lumaNW, lumaNE), min(lumaSW, lumaSE))); float lumaMax = max(lumaM, max(max(lumaNW, lumaNE), max(lumaSW, lumaSE))); vec2 dir; dir.x = -((lumaNW + lumaNE) - (lumaSW + lumaSE)); dir.y = ((lumaNW + lumaSW) - (lumaNE + lumaSE)); float dirReduce = max((lumaNW + lumaNE + lumaSW + lumaSE) * (0.25 * FXAA_REDUCE_MUL), FXAA_REDUCE_MIN); float rcpDirMin = 1.0 / (min(abs(dir.x), abs(dir.y)) + dirReduce); dir = min(vec2(FXAA_SPAN_MAX, FXAA_SPAN_MAX), max(vec2(-FXAA_SPAN_MAX, -FXAA_SPAN_MAX), dir * rcpDirMin)) * pixelSize; vec3 rgbA = 0.5 * exposure * (SAMPLE_LOD(INPUT, INPUT_UV + dir * (1.0 / 3.0 - 0.5), 0.0).xyz + SAMPLE_LOD(INPUT, INPUT_UV + dir * (2.0 / 3.0 - 0.5), 0.0).xyz); vec3 rgbB = rgbA * 0.5 + 0.25 * exposure * (SAMPLE_LOD(INPUT, INPUT_UV + dir * -0.5, 0.0).xyz + SAMPLE_LOD(INPUT, INPUT_UV + dir * 0.5, 0.0).xyz); float lumaB = dot(rgbB, luma); if ((lumaB < lumaMin) || (lumaB > lumaMax)) { return rgbA; } else { return rgbB; } } // From http://alex.vlachos.com/graphics/Alex_Vlachos_Advanced_VR_Rendering_GDC2015.pdf // and https://www.shadertoy.com/view/MslGR8 (5th one starting from the bottom) // NOTE: `frag_coord` is in pixels (i.e. not normalized UV). vec3 screen_space_dither(vec2 frag_coord) { // Iestyn's RGB dither (7 asm instructions) from Portal 2 X360, slightly modified for VR. vec3 dither = vec3(dot(vec2(171.0, 231.0), frag_coord)); dither.rgb = fract(dither.rgb / vec3(103.0, 71.0, 97.0)); // Subtract 0.5 to avoid slightly brightening the whole viewport. return (dither.rgb - 0.5) / 255.0; } // Adapted from https://github.com/DadSchoorse/vkBasalt/blob/b929505ba71dea21d6c32a5a59f2d241592b30c4/src/shader/cas.frag.glsl // (MIT license). vec3 apply_cas(vec3 color, float exposure, float sharpen_intensity) { // Fetch a 3x3 neighborhood around the pixel 'e', // a b c // d(e)f // g h i vec3 a = SAMPLE_LOD_OFFSET(INPUT, INPUT_UV, 0.0, ivec2(-1, -1)).rgb * exposure; vec3 b = SAMPLE_LOD_OFFSET(INPUT, INPUT_UV, 0.0, ivec2(0, -1)).rgb * exposure; vec3 c = SAMPLE_LOD_OFFSET(INPUT, INPUT_UV, 0.0, ivec2(1, -1)).rgb * exposure; vec3 d = SAMPLE_LOD_OFFSET(INPUT, INPUT_UV, 0.0, ivec2(-1, 0)).rgb * exposure; vec3 e = color.rgb; vec3 f = SAMPLE_LOD_OFFSET(INPUT, INPUT_UV, 0.0, ivec2(1, 0)).rgb * exposure; vec3 g = SAMPLE_LOD_OFFSET(INPUT, INPUT_UV, 0.0, ivec2(-1, 1)).rgb * exposure; vec3 h = SAMPLE_LOD_OFFSET(INPUT, INPUT_UV, 0.0, ivec2(0, 1)).rgb * exposure; vec3 i = SAMPLE_LOD_OFFSET(INPUT, INPUT_UV, 0.0, ivec2(1, 1)).rgb * exposure; // Soft min and max. // a b c b // d e f * 0.5 + d e f * 0.5 // g h i h // These are 2.0x bigger (factored out the extra multiply). vec3 min_rgb = min(min(min(d, e), min(f, b)), h); vec3 min_rgb2 = min(min(min(min_rgb, a), min(g, c)), i); min_rgb += min_rgb2; vec3 max_rgb = max(max(max(d, e), max(f, b)), h); vec3 max_rgb2 = max(max(max(max_rgb, a), max(g, c)), i); max_rgb += max_rgb2; // Smooth minimum distance to signal limit divided by smooth max. vec3 rcp_max_rgb = vec3(1.0) / max_rgb; vec3 amp_rgb = clamp((min(min_rgb, 2.0 - max_rgb) * rcp_max_rgb), 0.0, 1.0); // Shaping amount of sharpening. amp_rgb = inversesqrt(amp_rgb); float peak = 8.0 - 3.0 * sharpen_intensity; vec3 w_rgb = -vec3(1) / (amp_rgb * peak); vec3 rcp_weight_rgb = vec3(1.0) / (1.0 + 4.0 * w_rgb); // 0 w 0 // Filter shape: w 1 w // 0 w 0 vec3 window = b + d + f + h; return max(vec3(0.0), (window * w_rgb + e) * rcp_weight_rgb); } vec3 apply_bcs(vec3 color, vec3 bcs) { color = mix(vec3(0.0), color, bcs.x); color = mix(vec3(0.5), color, bcs.y); color = mix(vec3(dot(vec3(1.0), color) * 0.33333), color, bcs.z); return color; } vec3 apply_tonemapping(vec3 color, float white) { if (tonemapMode == 0) { // None } else if (tonemapMode == 1) { // Linear color = clamp(color, vec3(0.0f), vec3(1.0f)); color = linear_to_srgb(color); } else if (tonemapMode == 2) { // ACES color = max(vec3(0.0), color); color = tonemap_aces(color, white); color = linear_to_srgb(color); } else if (tonemapMode == 3) { // HejlDawson/Reinhard color = max(vec3(0.0), color); color = tonemap_reinhard(color, white); color = linear_to_srgb(color); } else { // Filmic color = max(vec3(0.0), color); color = tonemap_filmic(color, white); color = linear_to_srgb(color); } return color; } // w0, w1, w2, and w3 are the four cubic B-spline basis functions float w0(float a) { return (1.0f / 6.0f) * (a * (a * (-a + 3.0f) - 3.0f) + 1.0f); } float w1(float a) { return (1.0f / 6.0f) * (a * a * (3.0f * a - 6.0f) + 4.0f); } float w2(float a) { return (1.0f / 6.0f) * (a * (a * (-3.0f * a + 3.0f) + 3.0f) + 1.0f); } float w3(float a) { return (1.0f / 6.0f) * (a * a * a); } // g0 and g1 are the two amplitude functions float g0(float a) { return w0(a) + w1(a); } float g1(float a) { return w2(a) + w3(a); } // h0 and h1 are the two offset functions float h0(float a) { return -1.0f + w1(a) / (w0(a) + w1(a)); } float h1(float a) { return 1.0f + w3(a) / (w2(a) + w3(a)); } #if QSHADER_VIEW_COUNT >= 2 vec3 sampleGlowBuffer(sampler2DArray glowBuffer, int level) #else vec3 sampleGlowBuffer(sampler2D glowBuffer, int level) #endif { if (glowUseBicubicUpscale) { vec2 tex_size = vec2(ivec2(INPUT_SIZE) >> level); vec2 texel_size = vec2(1.0f) / tex_size; vec2 uv = INPUT_UV * tex_size + vec2(0.5f); vec2 iuv = floor(uv); vec2 fuv = fract(uv); float g0x = g0(fuv.x); float g1x = g1(fuv.x); float h0x = h0(fuv.x); float h1x = h1(fuv.x); float h0y = h0(fuv.y); float h1y = h1(fuv.y); vec2 p0 = (vec2(iuv.x + h0x, iuv.y + h0y) - vec2(0.5f)) * texel_size; vec2 p1 = (vec2(iuv.x + h1x, iuv.y + h0y) - vec2(0.5f)) * texel_size; vec2 p2 = (vec2(iuv.x + h0x, iuv.y + h1y) - vec2(0.5f)) * texel_size; vec2 p3 = (vec2(iuv.x + h1x, iuv.y + h1y) - vec2(0.5f)) * texel_size; return ((g0(fuv.y) * (g0x * SAMPLE_LOD(glowBuffer, p0, 0) + g1x * SAMPLE_LOD(glowBuffer, p1, 0))) + (g1(fuv.y) * (g0x * SAMPLE_LOD(glowBuffer, p2, 0) + g1x * SAMPLE_LOD(glowBuffer, p3, 0)))).rgb; } else { return SAMPLE_LOD(glowBuffer, INPUT_UV, 0.0).rgb; } } float fixY(float y) { if (qt_normalAdjustViewportFactor > 0.0) return y; const float lut_div = lutSize - 1.0; return lut_div - y; } // Gets interpolation percentage for color channel using floor and diff values. float get_interp_percent_channel(float channel_value, float floor_value, float diff_value){ // Workaround to avoid division by zero and return zero float div_sign = abs(sign(diff_value)); return (channel_value-floor_value)*div_sign/(diff_value + (div_sign-1.0)); } // Gets interpolation percentage for color using floor and diff values. vec3 get_interp_percent_color(vec3 color, vec3 floorc, vec3 diff){ vec3 res = vec3(0.0); res.r = get_interp_percent_channel(color.r, floorc.r, diff.r); res.g = get_interp_percent_channel(color.g, floorc.g, diff.g); res.b = get_interp_percent_channel(color.b, floorc.b, diff.b); return res; } // Get interpolated color using color floor, diff and channel percentage. vec3 get_interpolated_color(vec3 floorc, vec3 diff, float perc){ return floorc.rgb + diff.rgb * perc; } // Gets LUT mapped color using trilinear interpolation. vec3 get_lut_mapping_trilinear(vec3 old_color){ float lut_div = lutSize - 1.0; // Get floor and ceil colors and diff from identity lut vec3 old_color_lut_base = lut_div * old_color; vec3 old_color_floor_vec = floor(old_color_lut_base); vec3 old_color_ceil_vec = ceil(old_color_lut_base); vec3 old_color_diff = (old_color_floor_vec - old_color_ceil_vec)/lut_div; vec3 old_color_percentages = get_interp_percent_color(old_color, old_color_floor_vec/lut_div, old_color_diff); // Get the surrounding 8 samples positions vec3 lut_color_fff_vec = vec3(old_color_floor_vec.r, old_color_floor_vec.g, old_color_floor_vec.b); vec3 lut_color_ffc_vec = vec3(old_color_floor_vec.r, old_color_floor_vec.g, old_color_ceil_vec.b); vec3 lut_color_fcf_vec = vec3(old_color_floor_vec.r, old_color_ceil_vec.g, old_color_floor_vec.b); vec3 lut_color_fcc_vec = vec3(old_color_floor_vec.r, old_color_ceil_vec.g, old_color_ceil_vec.b); vec3 lut_color_cff_vec = vec3(old_color_ceil_vec.r, old_color_floor_vec.g, old_color_floor_vec.b); vec3 lut_color_cfc_vec = vec3(old_color_ceil_vec.r, old_color_floor_vec.g, old_color_ceil_vec.b); vec3 lut_color_ccf_vec = vec3(old_color_ceil_vec.r, old_color_ceil_vec.g, old_color_floor_vec.b); vec3 lut_color_ccc_vec = vec3(old_color_ceil_vec.r, old_color_ceil_vec.g, old_color_ceil_vec.b); ivec2 lut_color_fff_pos = ivec2(int(lutSize*lut_color_fff_vec.b + lut_color_fff_vec.r), int(fixY(lut_color_fff_vec.g))); ivec2 lut_color_ffc_pos = ivec2(int(lutSize*lut_color_ffc_vec.b + lut_color_ffc_vec.r), int(fixY(lut_color_ffc_vec.g))); ivec2 lut_color_fcf_pos = ivec2(int(lutSize*lut_color_fcf_vec.b + lut_color_fcf_vec.r), int(fixY(lut_color_fcf_vec.g))); ivec2 lut_color_fcc_pos = ivec2(int(lutSize*lut_color_fcc_vec.b + lut_color_fcc_vec.r), int(fixY(lut_color_fcc_vec.g))); ivec2 lut_color_cff_pos = ivec2(int(lutSize*lut_color_cff_vec.b + lut_color_cff_vec.r), int(fixY(lut_color_cff_vec.g))); ivec2 lut_color_cfc_pos = ivec2(int(lutSize*lut_color_cfc_vec.b + lut_color_cfc_vec.r), int(fixY(lut_color_cfc_vec.g))); ivec2 lut_color_ccf_pos = ivec2(int(lutSize*lut_color_ccf_vec.b + lut_color_ccf_vec.r), int(fixY(lut_color_ccf_vec.g))); ivec2 lut_color_ccc_pos = ivec2(int(lutSize*lut_color_ccc_vec.b + lut_color_ccc_vec.r), int(fixY(lut_color_ccc_vec.g))); // Get gamma corrected color from LUT. vec3 lut_color_fff = texelFetch(lut, lut_color_fff_pos, 0).rgb; vec3 lut_color_ffc = texelFetch(lut, lut_color_ffc_pos, 0).rgb; vec3 lut_color_fcf = texelFetch(lut, lut_color_fcf_pos, 0).rgb; vec3 lut_color_fcc = texelFetch(lut, lut_color_fcc_pos, 0).rgb; vec3 lut_color_cff = texelFetch(lut, lut_color_cff_pos, 0).rgb; vec3 lut_color_cfc = texelFetch(lut, lut_color_cfc_pos, 0).rgb; vec3 lut_color_ccf = texelFetch(lut, lut_color_ccf_pos, 0).rgb; vec3 lut_color_ccc = texelFetch(lut, lut_color_ccc_pos, 0).rgb; // Calculate first level interpolations. vec3 lut_color_iff = get_interpolated_color(lut_color_fff, lut_color_fff - lut_color_cff , old_color_percentages.r); vec3 lut_color_ifc = get_interpolated_color(lut_color_ffc, lut_color_ffc - lut_color_cfc, old_color_percentages.r); vec3 lut_color_icf = get_interpolated_color(lut_color_fcf, lut_color_fcf - lut_color_ccf, old_color_percentages.r); vec3 lut_color_icc = get_interpolated_color(lut_color_fcc, lut_color_fcc - lut_color_ccc, old_color_percentages.r); // Calculate second level interpolations. vec3 lut_color_iif = get_interpolated_color(lut_color_iff, lut_color_iff - lut_color_icf, old_color_percentages.g); vec3 lut_color_iic = get_interpolated_color(lut_color_ifc, lut_color_ifc - lut_color_icc, old_color_percentages.g); // Calculate third and final interpolation. vec3 lut_color_iii = get_interpolated_color(lut_color_iif, lut_color_iif - lut_color_iic, old_color_percentages.b); return lut_color_iii; } void MAIN() { vec4 sourceColor = SAMPLE(INPUT, INPUT_UV); vec3 color = sourceColor.rgb; // Exposure float fullExposure = exposure; color *= fullExposure; // FXAA if (applyFXAA) color = apply_fxaa(color, fullExposure, vec2(1.0 / OUTPUT_SIZE.x, 1.0 / OUTPUT_SIZE.y)); // Sharpening if (sharpnessAmount >= 0.001) color = apply_cas(color, fullExposure, sharpnessAmount); // Debanding if (ditheringEnabled) color += screen_space_dither(gl_FragCoord.xy); // Lens Flare if (lensFlareEnabled) { vec3 lensMod = vec3(1.0); if (lensFlareApplyDirtTexture) { lensMod = texture(lensDirtTexture, INPUT_UV).rgb; } vec3 lensFlare = SAMPLE(lensFlareTexture, INPUT_UV).rgb * lensMod; if (lensFlareApplyStarburstTexture) { vec2 centerVec = INPUT_UV - vec2(0.5); float d = length(centerVec); float radial = acos(centerVec.x / d); float starOffset = dot(lensFlareCameraDirection, vec3(1.0)) * 10.0; float star = texture(starburstTexture, vec2(radial + starOffset)).r * texture(starburstTexture, vec2(radial + starOffset * 0.5)).r; star = clamp(star + (1.0 - smoothstep(0.0, 0.3, d)), 0.0, 1.0); lensFlare *= star; } if (!lensFlareDebug) color += lensFlare; else { FRAGCOLOR = vec4(apply_tonemapping(lensFlare, white), 1.0); return; } } // Tonemapping color = apply_tonemapping(color, white); // Glow if (isGlowEnabled) { // Read glow from the glowBuffers const int GLOW_LEVEL_1 = 0x1; const int GLOW_LEVEL_2 = 0x2; const int GLOW_LEVEL_3 = 0x4; const int GLOW_LEVEL_4 = 0x8; const int GLOW_LEVEL_5 = 0x10; const int GLOW_LEVEL_6 = 0x20; const int GLOW_LEVEL_7 = 0x40; vec3 glow = vec3(0.0); if ((glowLevel & GLOW_LEVEL_1) != 0) glow += sampleGlowBuffer(glowBuffer1, 0); if ((glowLevel & GLOW_LEVEL_2) != 0) glow += sampleGlowBuffer(glowBuffer2, 1); if ((glowLevel & GLOW_LEVEL_3) != 0) glow += sampleGlowBuffer(glowBuffer3, 2); if ((glowLevel & GLOW_LEVEL_4) != 0) glow += sampleGlowBuffer(glowBuffer4, 3); if ((glowLevel & GLOW_LEVEL_5) != 0) glow += sampleGlowBuffer(glowBuffer5, 4); if ((glowLevel & GLOW_LEVEL_6) != 0) glow += sampleGlowBuffer(glowBuffer6, 5); if ((glowLevel & GLOW_LEVEL_7) != 0) glow += sampleGlowBuffer(glowBuffer7, 6); glow *= glowIntensity; // Tonemap the resulting glow glow = apply_tonemapping(glow, white); // Blend in the Glow if (glowBlendMode == 0) { // Additive color += glow; } else if (glowBlendMode == 1) { // Screen color = clamp(color, vec3(0.0), vec3(1.0)); color = max((color + glow) - (color * glow), vec3(0.0)); } else if (glowBlendMode == 2) { // Softlight color = clamp(color, vec3(0.0), vec3(1.0)); glow = glow * vec3(0.5) + vec3(0.5); color.r = (glow.r <= 0.5) ? (color.r - (1.0 - 2.0 * glow.r) * color.r * (1.0 - color.r)) : (((glow.r > 0.5) && (color.r <= 0.25)) ? (color.r + (2.0 * glow.r - 1.0) * (4.0 * color.r * (4.0 * color.r + 1.0) * (color.r - 1.0) + 7.0 * color.r)) : (color.r + (2.0 * glow.r - 1.0) * (sqrt(color.r) - color.r))); color.g = (glow.g <= 0.5) ? (color.g - (1.0 - 2.0 * glow.g) * color.g * (1.0 - color.g)) : (((glow.g > 0.5) && (color.g <= 0.25)) ? (color.g + (2.0 * glow.g - 1.0) * (4.0 * color.g * (4.0 * color.g + 1.0) * (color.g - 1.0) + 7.0 * color.g)) : (color.g + (2.0 * glow.g - 1.0) * (sqrt(color.g) - color.g))); color.b = (glow.b <= 0.5) ? (color.b - (1.0 - 2.0 * glow.b) * color.b * (1.0 - color.b)) : (((glow.b > 0.5) && (color.b <= 0.25)) ? (color.b + (2.0 * glow.b - 1.0) * (4.0 * color.b * (4.0 * color.b + 1.0) * (color.b - 1.0) + 7.0 * color.b)) : (color.b + (2.0 * glow.b - 1.0) * (sqrt(color.b) - color.b))); } else { // Replace color = glow; } } // Brightness, Contrast, Saturation Adjustments if (colorAdjustmentsEnabled) color = apply_bcs(color, bcsAdjustments); // Color Grading (LUT) if (enableLut) { vec3 filteredColor = get_lut_mapping_trilinear(color); // Calculate filter alpha. vec3 diffColor = filteredColor - color; color = get_interpolated_color(color, diffColor, lutFilterAlpha); } // Vignette if (vignetteEnabled) { vec2 uv = INPUT_UV; vec3 bg = color; uv *= 1.0 - uv.yx; float vig = uv.x * uv.y * vignetteStrength; vig = pow(vig, vignetteRadius); vec4 vigColor = vec4(vignetteColor.rgb, vig) * vig; color = mix(vigColor, vec4(color, 1.0), vig).rgb; } // Final Output FRAGCOLOR = vec4(color, sourceColor.a); }