// Copyright (C) 2019 The Qt Company Ltd. // SPDX-License-Identifier: LicenseRef-Qt-Commercial OR GPL-3.0-only #include "qquick3dmodel_p.h" #include "qquick3dobject_p.h" #include "qquick3dscenemanager_p.h" #include "qquick3dnode_p_p.h" #include "qquick3dinstancing_p.h" #include #include #include #include #include #include QT_BEGIN_NAMESPACE /*! \qmltype Model \inherits Node \inqmlmodule QtQuick3D \brief Lets you load a 3D model data. The Model item makes it possible to load a mesh and modify how its shaded, by adding materials to it. For a model to be renderable, it needs at least a mesh and a material. \section1 Mesh format and built-in primitives The model can load static meshes from storage or one of the built-in primitive types. The mesh format used is a run-time format that's native to the engine, but additional formats are supported through the asset import tool \l {Balsam Asset Import Tool}{Balsam}. The built-in primitives can be loaded by setting the \c source property to one of these values: \c {#Rectangle, #Sphere, #Cube, #Cylinder or #Cone}. \qml Model { source: "#Sphere" } \endqml The table below describes the built-in meshes in more detail. \table \header \li Name \li Description \li No. faces \row \li #Cone \li A cone with a height and diameter of \c{100}. The base is at the origin and the cone is pointing upwards in the y direction. \li \c{78} \row \li #Cube \li A cube centered at the origin with \c{100} long sides along x, y and z. \li \c{12} \row \li #Cylinder \li A cylinder with \c{100} height and diameter centered at the origin expanding along the y direction. \li \c{316} \row \li #Rectangle \li A rectangle with \c{100} width and height centered at the origin lying in the xy plane. \li \c{2} \row \li #Sphere \li A sphere with \c{100} diameter centered at the origin. \li \c{4900} \endtable \section2 Custom geometry In addition to using static meshes, you can implement a \l {QQuick3DGeometry}{custom geometry} provider that provides the model with custom vertex data at run-time. See the \l {Qt Quick 3D - Custom Geometry Example}{Custom Geometry Example} for an example on how to create and use a custom material with your model. \section1 Materials A model can consist of several sub-meshes, each of which can have its own material. The sub-mesh uses a material from the \l{materials} list, corresponding to its index. If the number of materials is less than the sub-meshes, the last material in the list is used for subsequent sub-meshes. This is demonstrated in the \l {Qt Quick 3D - Sub-mesh Example}{Sub-mesh example}. You can use the following materials with the model item: \l {PrincipledMaterial}, \l {DefaultMaterial}, and \l {CustomMaterial}. \section1 Picking \e Picking is the process of sending a ray through the scene from some starting position to find which models intersect with the ray. In Qt Quick 3D, the ray is normally sent from the view using 2D coordinates resulting from a touch or mouse event. If a model was hit by the ray, \l {pickResult} will be returned with a handle to the model and information about where the ray hit the model. For models that use \l {QQuick3DGeometry}{custom geometry}, the picking is less accurate than for static mesh data, as picking is only done against the model's \l {bounds}{bounding volume}. If the ray goes through more than one model, the closest \l {Model::pickable}{pickable} model is selected. Note that for models to be \l {Model::pickable}{pickable}, their \l {Model::pickable}{pickable} property must be set to \c true. For more information, see \l {Qt Quick 3D - Picking example}. */ /*! \qmlvaluetype bounds \inqmlmodule QtQuick3D \since 5.15 \brief Specifies the bounds of a model. bounds specify a bounding box with minimum and maximum points. bounds is a readonly property of the model. */ /*! \qmlproperty vector3d bounds::minimum Specifies the minimum point of the model bounds. \sa maximum */ /*! \qmlproperty vector3d bounds::maximum Specifies the maximum point of the model bounds. \sa minimum */ QQuick3DModel::QQuick3DModel(QQuick3DNode *parent) : QQuick3DNode(*(new QQuick3DNodePrivate(QQuick3DNodePrivate::Type::Model)), parent) {} QQuick3DModel::~QQuick3DModel() { disconnect(m_geometryConnection); auto matList = materials(); qmlClearMaterials(&matList); auto morphList = morphTargets(); qmlClearMorphTargets(&morphList); } /*! \qmlproperty url Model::source This property defines the location of the mesh file containing the geometry of this Model or one of the built-in primitive meshes listed below as described in \l {Mesh format and built-in primitives}. \list \li "#Rectangle" \li "#Sphere" \li "#Cube" \li "#Cone" \li "#Cylinder" \endlist */ QUrl QQuick3DModel::source() const { return m_source; } /*! \qmlproperty List Model::materials This property contains a list of materials used to render the provided geometry. To render anything, there must be at least one material. Normally there should be one material for each sub-mesh included in the source geometry. \sa {Qt Quick 3D - Sub-mesh Example} */ QQmlListProperty QQuick3DModel::materials() { return QQmlListProperty(this, nullptr, QQuick3DModel::qmlAppendMaterial, QQuick3DModel::qmlMaterialsCount, QQuick3DModel::qmlMaterialAt, QQuick3DModel::qmlClearMaterials); } /*! \qmlproperty List Model::morphTargets This property contains a list of \l [QtQuick3D QML] {MorphTarget}{MorphTarget}s used to render the provided geometry. Meshes should have at least one attribute among positions, normals, tangents, binormals, texture coordinates, and vertex colors for the morph targets. \sa {MorphTarget} */ QQmlListProperty QQuick3DModel::morphTargets() { return QQmlListProperty(this, nullptr, QQuick3DModel::qmlAppendMorphTarget, QQuick3DModel::qmlMorphTargetsCount, QQuick3DModel::qmlMorphTargetAt, QQuick3DModel::qmlClearMorphTargets); } /*! \qmlproperty QtQuick3D::Instancing Model::instancing If this property is set, the model will not be rendered normally. Instead, a number of instances of the model will be rendered, as defined by the instance table. \sa Instancing */ QQuick3DInstancing *QQuick3DModel::instancing() const { return m_instancing; } /*! \qmlproperty QtQuick3D::Node Model::instanceRoot This property defines the origin of the instance’s coordinate system. See the \l{Transforms and instancing}{overview documentation} for a detailed explanation. \sa instancing, Instancing */ QQuick3DNode *QQuick3DModel::instanceRoot() const { return m_instanceRoot; } // Source URL's need a bit of translation for the engine because of the // use of fragment syntax for specifiying primitives and sub-meshes // So we need to check for the fragment before translating to a qmlfile QString QQuick3DModel::translateMeshSource(const QUrl &source, QObject *contextObject) { QString fragment; if (source.hasFragment()) { // Check if this is an index, or primitive bool isNumber = false; source.fragment().toInt(&isNumber); fragment = QStringLiteral("#") + source.fragment(); // If it wasn't an index, then it was a primitive if (!isNumber) return fragment; } const QQmlContext *context = qmlContext(contextObject); const auto resolvedUrl = context ? context->resolvedUrl(source) : source; const auto qmlSource = QQmlFile::urlToLocalFileOrQrc(resolvedUrl); return (qmlSource.isEmpty() ? source.path() : qmlSource) + fragment; } void QQuick3DModel::markAllDirty() { m_dirtyAttributes = 0xffffffff; QQuick3DNode::markAllDirty(); } /*! \qmlproperty bool Model::castsShadows When this property is \c true, the geometry of this model is used when rendering to the shadow maps, and is also generating shadows in baked lighting. The default value is \c true. */ bool QQuick3DModel::castsShadows() const { return m_castsShadows; } /*! \qmlproperty bool Model::receivesShadows When this property is set to \c true, the model's materials take shadow contribution from shadow casting lights into account. \note When lightmapping is enabled for this model, fully baked lights with Light::bakeMode set to Light.BakeModeAll will always generate (baked) shadows on the model, regardless of the value of this property. The default value is \c true. */ bool QQuick3DModel::receivesShadows() const { return m_receivesShadows; } /*! \qmlproperty bool Model::pickable This property controls whether the model is pickable or not. Set this property to \c true to make the model pickable. Models are not pickable by default. \sa {View3D::pick} */ bool QQuick3DModel::pickable() const { return m_pickable; } /*! \qmlproperty Geometry Model::geometry Specify a custom geometry for the model. The Model::source must be empty when custom geometry is used. */ QQuick3DGeometry *QQuick3DModel::geometry() const { return m_geometry; } /*! \qmlproperty Skeleton Model::skeleton Contains the skeleton for the model. The Skeleton is used together with \l {inverseBindPoses} for \l {Vertex Skinning}{skinning}. \note Meshes of the model must have both joints and weights attributes. \note If this property is set, skinning animation is enabled. It means that \l {Model} is transformed based on \l {Skeleton} ignoring Model's global transformation. \sa {Model::inverseBindPoses}, {Qt Quick 3D - Simple Skinning Example} */ QQuick3DSkeleton *QQuick3DModel::skeleton() const { return m_skeleton; } /*! \qmlproperty Skin Model::skin Contains the skeleton for the model. The Skeleton is used for \l {Vertex Skinning}{skinning}. \note Meshes of the model must have both joints and weights attributes. \note If this property is set, skinning animation is enabled. This means the \l {Model} will be transformed based on \l {Skin::joints} and the Model's global transformation will be ignored. \note If a model has both a skeleton and a skin, then the skin will be used. \sa {Model::skeleton} {Qt Quick 3D - Simple Skinning Example} */ QQuick3DSkin *QQuick3DModel::skin() const { return m_skin; } /*! \qmlproperty List Model::inverseBindPoses This property contains a list of Inverse Bind Pose matrixes used for the skeletal animation. Each inverseBindPose matrix means the inverse of the global transform of the repective \l {Joint::index} in \l {skeleton}, which will be used initially. \note This property is only used if the Model::skeleton is valid. \note If some of the matrices are not set, identity values will be used. \sa {skeleton} {Joint::index} */ QList QQuick3DModel::inverseBindPoses() const { return m_inverseBindPoses; } /*! \qmlproperty Bounds Model::bounds The bounds of the model descibes the extents of the bounding volume around the model. \note The bounds might not be immediately available if the model needs to be loaded first. \readonly */ QQuick3DBounds3 QQuick3DModel::bounds() const { return m_bounds; } /*! \qmlproperty real Model::depthBias Holds the depth bias of the model. Depth bias is added to the object distance from camera when sorting objects. This can be used to force rendering order between objects close to each other, that might otherwise be rendered in different order in different frames. Negative values cause the sorting value to move closer to the camera while positive values move it further from the camera. */ float QQuick3DModel::depthBias() const { return m_depthBias; } /*! \qmlproperty bool Model::receivesReflections When this property is set to \c true, the model's materials take reflections contribution from a reflection probe. If the model is inside more than one reflection probe at the same time, the nearest reflection probe is taken into account. */ bool QQuick3DModel::receivesReflections() const { return m_receivesReflections; } /*! \qmlproperty bool Model::castsReflections \since 6.4 When this property is set to \c true, the model is rendered by reflection probes and can be seen in the reflections. */ bool QQuick3DModel::castsReflections() const { return m_castsReflections; } /*! \qmlproperty bool Model::usedInBakedLighting When this property is set to \c true, the model contributes to baked lighting, such as lightmaps, for example in form of casting shadows or indirect light. This setting is independent of controlling lightmap generation for the model, use \l bakedLightmap for that. The default value is \c false. \note The default value is false, because designers and developers must always evaluate on a per-model basis if the object is suitable to take part in baked lighting. \warning Models with dynamically changing properties, for example, animated position, rotation, or other properties, are not suitable for participating in baked lighting. For more information on how to bake lightmaps, see the \l Lightmapper documentation. This property is relevant only when baking lightmaps. It has no effect afterwards, when using the generated lightmaps during rendering. \sa Light::bakeMode, bakedLightmap, Lightmapper, {Lightmaps and Global Illumination} */ bool QQuick3DModel::isUsedInBakedLighting() const { return m_usedInBakedLighting; } /*! \qmlproperty int Model::lightmapBaseResolution Defines the approximate size of the lightmap for this model. The default value is 1024, indicating 1024x1024 as the base size. The actual size of the lightmap texture is likely to be different, often bigger, depending on the mesh. For simpler, smaller meshes, or when it is known that using a bigger lightmap is unnecessary, the value can be set to something smaller, for example, 512 or 256. The minimum value is 128. This setting applies both to persistently stored and for intermediate, partial lightmaps. When baking lightmaps, all models that have \l usedInBakedLighting enabled are part of the path-traced scene. Thus all of them need to have lightmap UV unwrapping performed and the rasterization steps necessary to compute direct lighting which then can be taken into account for indirect light bounces in the scene. However, for models that just contribute to, but do not store a lightmap the default value is often sufficient. Fine-tuning is more relevant for models that store and then use the generated lightmaps. This property is relevant only when baking lightmaps. It has no effect afterwards, when using the generated lightmaps during rendering. Models that have lightmap UV data pre-generated during asset import time (e.g. via the balsam tool) will ignore this property because the lightmap UV unwrapping and the lightmap size hint evaluation have already been done, and will not be performed again during lightmap baking. */ int QQuick3DModel::lightmapBaseResolution() const { return m_lightmapBaseResolution; } /*! \qmlproperty BakedLightmap Model::bakedLightmap When this property is set to a valid, enabled BakedLightmap object, the model will get a lightmap generated when baking lighting, the lightmap is then stored persistently. When rendering, the model will load and use the associated lightmap. The default value is null. \note When the intention is to generate a persistently stored lightmap for a Model, both bakedLightmap and \l usedInBakedLighting must be set on it, in order to indicate that the Model not only participates in the lightmapped scene, but also wants a full lightmap to be baked and stored. For more information on how to bake lightmaps, see the \l Lightmapper documentation. This property is relevant both when baking and when using lightmaps. A consistent state between the baking run and the subsequent runs that use the generated data is essential. For example, changing the lightmap key will make it impossible to load the previously generated data. An exception is \l {BakedLightmap::}{enabled}, which can be used to dynamically toggle the usage of lightmaps (outside of the baking run), but be aware that the rendered results will depend on the Lights' \l{Light::bakeMode}{bakeMode} settings in the scene. \sa usedInBakedLighting, Lightmapper */ QQuick3DBakedLightmap *QQuick3DModel::bakedLightmap() const { return m_bakedLightmap; } /*! \qmlproperty real Model::instancingLodMin Defines the minimum distance from camera that an instance of this model is shown. Used for a level of detail implementation. */ float QQuick3DModel::instancingLodMin() const { return m_instancingLodMin; } /*! \qmlproperty real Model::instancingLodMax Defines the maximum distance from camera that an instance of this model is shown. Used for a level of detail implementation. */ float QQuick3DModel::instancingLodMax() const { return m_instancingLodMax; } void QQuick3DModel::setSource(const QUrl &source) { if (m_source == source) return; m_source = source; emit sourceChanged(); markDirty(SourceDirty); if (QQuick3DObjectPrivate::get(this)->sceneManager) QQuick3DObjectPrivate::get(this)->sceneManager->dirtyBoundingBoxList.append(this); } void QQuick3DModel::setCastsShadows(bool castsShadows) { if (m_castsShadows == castsShadows) return; m_castsShadows = castsShadows; emit castsShadowsChanged(); markDirty(ShadowsDirty); } void QQuick3DModel::setReceivesShadows(bool receivesShadows) { if (m_receivesShadows == receivesShadows) return; m_receivesShadows = receivesShadows; emit receivesShadowsChanged(); markDirty(ShadowsDirty); } void QQuick3DModel::setPickable(bool isPickable) { if (m_pickable == isPickable) return; m_pickable = isPickable; emit pickableChanged(); markDirty(PickingDirty); } void QQuick3DModel::setGeometry(QQuick3DGeometry *geometry) { if (geometry == m_geometry) return; // Make sure to disconnect if the geometry gets deleted out from under us QQuick3DObjectPrivate::attachWatcher(this, &QQuick3DModel::setGeometry, geometry, m_geometry); if (m_geometry) QObject::disconnect(m_geometryConnection); m_geometry = geometry; if (m_geometry) { m_geometryConnection = QObject::connect(m_geometry, &QQuick3DGeometry::geometryNodeDirty, this, [this]() { markDirty(GeometryDirty); }); } emit geometryChanged(); markDirty(GeometryDirty); } void QQuick3DModel::setSkeleton(QQuick3DSkeleton *skeleton) { if (skeleton == m_skeleton) return; // Make sure to disconnect if the skeleton gets deleted out from under us QQuick3DObjectPrivate::attachWatcher(this, &QQuick3DModel::setSkeleton, skeleton, m_skeleton); m_skeleton = skeleton; emit skeletonChanged(); markDirty(SkeletonDirty); } void QQuick3DModel::setSkin(QQuick3DSkin *skin) { if (skin == m_skin) return; // Make sure to disconnect if the skin gets deleted out from under us QQuick3DObjectPrivate::attachWatcher(this, &QQuick3DModel::setSkin, skin, m_skin); m_skin = skin; emit skinChanged(); markDirty(SkinDirty); } void QQuick3DModel::setInverseBindPoses(const QList &poses) { if (m_inverseBindPoses == poses) return; m_inverseBindPoses = poses; emit inverseBindPosesChanged(); markDirty(PoseDirty); } void QQuick3DModel::setBounds(const QVector3D &min, const QVector3D &max) { if (!qFuzzyCompare(m_bounds.maximum(), max) || !qFuzzyCompare(m_bounds.minimum(), min)) { m_bounds.bounds = QSSGBounds3 { min, max }; emit boundsChanged(); } } void QQuick3DModel::setInstancing(QQuick3DInstancing *instancing) { if (m_instancing == instancing) return; // Make sure to disconnect if the instance table gets deleted out from under us QQuick3DObjectPrivate::attachWatcher(this, &QQuick3DModel::setInstancing, instancing, m_instancing); if (m_instancing) QObject::disconnect(m_instancingConnection); m_instancing = instancing; if (m_instancing) { m_instancingConnection = QObject::connect (m_instancing, &QQuick3DInstancing::instanceNodeDirty, this, [this]{ markDirty(InstancesDirty);}); } markDirty(InstancesDirty); emit instancingChanged(); } void QQuick3DModel::setInstanceRoot(QQuick3DNode *instanceRoot) { if (m_instanceRoot == instanceRoot) return; QQuick3DObjectPrivate::attachWatcher(this, &QQuick3DModel::setInstanceRoot, instanceRoot, m_instanceRoot); m_instanceRoot = instanceRoot; markDirty(InstanceRootDirty); emit instanceRootChanged(); } void QQuick3DModel::setDepthBias(float bias) { if (qFuzzyCompare(bias, m_depthBias)) return; m_depthBias = bias; markDirty(PropertyDirty); emit depthBiasChanged(); } void QQuick3DModel::setReceivesReflections(bool receivesReflections) { if (m_receivesReflections == receivesReflections) return; m_receivesReflections = receivesReflections; emit receivesReflectionsChanged(); markDirty(ReflectionDirty); } void QQuick3DModel::setCastsReflections(bool castsReflections) { if (m_castsReflections == castsReflections) return; m_castsReflections = castsReflections; emit castsReflectionsChanged(); markDirty(ReflectionDirty); } void QQuick3DModel::setUsedInBakedLighting(bool enable) { if (m_usedInBakedLighting == enable) return; m_usedInBakedLighting = enable; emit usedInBakedLightingChanged(); markDirty(PropertyDirty); } void QQuick3DModel::setLightmapBaseResolution(int resolution) { resolution = qMax(128, resolution); if (m_lightmapBaseResolution == resolution) return; m_lightmapBaseResolution = resolution; emit lightmapBaseResolutionChanged(); markDirty(PropertyDirty); } void QQuick3DModel::setBakedLightmap(QQuick3DBakedLightmap *bakedLightmap) { if (m_bakedLightmap == bakedLightmap) return; if (m_bakedLightmap) m_bakedLightmap->disconnect(m_bakedLightmapSignalConnection); m_bakedLightmap = bakedLightmap; m_bakedLightmapSignalConnection = QObject::connect(m_bakedLightmap, &QQuick3DBakedLightmap::changed, this, [this] { markDirty(PropertyDirty); }); QObject::connect(m_bakedLightmap, &QObject::destroyed, this, [this] { m_bakedLightmap = nullptr; markDirty(PropertyDirty); }); emit bakedLightmapChanged(); markDirty(PropertyDirty); } void QQuick3DModel::itemChange(ItemChange change, const ItemChangeData &value) { if (change == QQuick3DObject::ItemSceneChange) updateSceneManager(value.sceneManager); } QSSGRenderGraphObject *QQuick3DModel::updateSpatialNode(QSSGRenderGraphObject *node) { if (!node) { markAllDirty(); node = new QSSGRenderModel(); } QQuick3DNode::updateSpatialNode(node); int dirtyAttribute = 0; auto modelNode = static_cast(node); if (m_dirtyAttributes & SourceDirty) modelNode->meshPath = QSSGRenderPath(translateMeshSource(m_source, this)); if (m_dirtyAttributes & PickingDirty) modelNode->setState(QSSGRenderModel::LocalState::Pickable, m_pickable); if (m_dirtyAttributes & ShadowsDirty) { modelNode->castsShadows = m_castsShadows; modelNode->receivesShadows = m_receivesShadows; } if (m_dirtyAttributes & MaterialsDirty) { if (!m_materials.isEmpty()) { if (modelNode->materials.isEmpty()) { // Easy mode, just add each material for (const Material &material : m_materials) { QSSGRenderGraphObject *graphObject = QQuick3DObjectPrivate::get(material.material)->spatialNode; if (graphObject) modelNode->materials.append(graphObject); else dirtyAttribute |= MaterialsDirty; // We still got dirty materials } } else { // Hard mode, go through each material and see if they match if (modelNode->materials.size() != m_materials.size()) modelNode->materials.resize(m_materials.size()); for (int i = 0; i < m_materials.size(); ++i) { QSSGRenderGraphObject *graphObject = QQuick3DObjectPrivate::get(m_materials[i].material)->spatialNode; if (modelNode->materials[i] != graphObject) modelNode->materials[i] = graphObject; } } } else { // No materials modelNode->materials.clear(); } } if (m_dirtyAttributes & MorphTargetsDirty) { if (!m_morphTargets.isEmpty()) { const int numMorphTarget = m_morphTargets.size(); if (modelNode->morphTargets.isEmpty()) { // Easy mode, just add each morphTarget for (const auto morphTarget : std::as_const(m_morphTargets)) { QSSGRenderGraphObject *graphObject = QQuick3DObjectPrivate::get(morphTarget)->spatialNode; if (graphObject) modelNode->morphTargets.append(graphObject); else dirtyAttribute |= MorphTargetsDirty; // We still got dirty morphTargets } modelNode->morphWeights.resize(numMorphTarget); modelNode->morphAttributes.resize(numMorphTarget); } else { // Hard mode, go through each morphTarget and see if they match if (modelNode->morphTargets.size() != numMorphTarget) { modelNode->morphTargets.resize(numMorphTarget); modelNode->morphWeights.resize(numMorphTarget); modelNode->morphAttributes.resize(numMorphTarget); } for (int i = 0; i < numMorphTarget; ++i) modelNode->morphTargets[i] = QQuick3DObjectPrivate::get(m_morphTargets.at(i))->spatialNode; } } else { // No morphTargets modelNode->morphTargets.clear(); } } if (m_dirtyAttributes & quint32(InstancesDirty | InstanceRootDirty)) { // If we have an instance root set we have lower priority and the instance root node should already // have been created. QSSGRenderNode *instanceRootNode = nullptr; if (m_instanceRoot) { if (m_instanceRoot == this) instanceRootNode = modelNode; else instanceRootNode = static_cast(QQuick3DObjectPrivate::get(m_instanceRoot)->spatialNode); } if (instanceRootNode != modelNode->instanceRoot) { modelNode->instanceRoot = instanceRootNode; modelNode->markDirty(QSSGRenderNode::DirtyFlag::TransformDirty); } if (m_instancing) { modelNode->instanceTable = static_cast(QQuick3DObjectPrivate::get(m_instancing)->spatialNode); } else { modelNode->instanceTable = nullptr; } } if (m_dirtyAttributes & GeometryDirty) { if (m_geometry) { modelNode->geometry = static_cast(QQuick3DObjectPrivate::get(m_geometry)->spatialNode); setBounds(m_geometry->boundsMin(), m_geometry->boundsMax()); } else { modelNode->geometry = nullptr; setBounds(QVector3D(), QVector3D()); } } if (m_dirtyAttributes & SkeletonDirty) { if (m_skeleton) { modelNode->skeleton = static_cast(QQuick3DObjectPrivate::get(m_skeleton)->spatialNode); if (modelNode->skeleton) modelNode->skeleton->skinningDirty = true; } else { modelNode->skeleton = nullptr; } } if (m_dirtyAttributes & SkinDirty) { if (m_skin) modelNode->skin = static_cast(QQuick3DObjectPrivate::get(m_skin)->spatialNode); else modelNode->skin = nullptr; } if (m_dirtyAttributes & LodDirty) { modelNode->instancingLodMin = m_instancingLodMin; modelNode->instancingLodMax = m_instancingLodMax; } if (m_dirtyAttributes & PoseDirty) { modelNode->inverseBindPoses = m_inverseBindPoses.toVector(); if (modelNode->skeleton) modelNode->skeleton->skinningDirty = true; } if (m_dirtyAttributes & PropertyDirty) { modelNode->m_depthBiasSq = QSSGRenderModel::signedSquared(m_depthBias); modelNode->usedInBakedLighting = m_usedInBakedLighting; modelNode->lightmapBaseResolution = uint(m_lightmapBaseResolution); if (m_bakedLightmap && m_bakedLightmap->isEnabled()) { modelNode->lightmapKey = m_bakedLightmap->key(); const QString srcPrefix = m_bakedLightmap->loadPrefix(); const QString srcPath = srcPrefix.isEmpty() ? QStringLiteral(".") : srcPrefix; const QQmlContext *context = qmlContext(m_bakedLightmap); const QUrl resolvedUrl = context ? context->resolvedUrl(srcPath) : srcPath; modelNode->lightmapLoadPath = QQmlFile::urlToLocalFileOrQrc(resolvedUrl); } else { modelNode->lightmapKey.clear(); modelNode->lightmapLoadPath.clear(); } modelNode->levelOfDetailBias = m_levelOfDetailBias; } if (m_dirtyAttributes & ReflectionDirty) { modelNode->receivesReflections = m_receivesReflections; modelNode->castsReflections = m_castsReflections; } m_dirtyAttributes = dirtyAttribute; return modelNode; } void QQuick3DModel::markDirty(QQuick3DModel::QSSGModelDirtyType type) { if (InstanceRootDirty & quint32(type)) QQuick3DObjectPrivate::get(this)->dirty(QQuick3DObjectPrivate::InstanceRootChanged); if (!(m_dirtyAttributes & quint32(type))) { m_dirtyAttributes |= quint32(type); update(); } } void QQuick3DModel::updateSceneManager(QQuick3DSceneManager *sceneManager) { if (sceneManager) { sceneManager->dirtyBoundingBoxList.append(this); QQuick3DObjectPrivate::refSceneManager(m_skeleton, *sceneManager); QQuick3DObjectPrivate::refSceneManager(m_skin, *sceneManager); QQuick3DObjectPrivate::refSceneManager(m_geometry, *sceneManager); QQuick3DObjectPrivate::refSceneManager(m_instancing, *sceneManager); for (Material &mat : m_materials) { if (!mat.material->parentItem() && !QQuick3DObjectPrivate::get(mat.material)->sceneManager) { if (!mat.refed) { QQuick3DObjectPrivate::refSceneManager(mat.material, *sceneManager); mat.refed = true; } } } } else { QQuick3DObjectPrivate::derefSceneManager(m_skeleton); QQuick3DObjectPrivate::derefSceneManager(m_skin); QQuick3DObjectPrivate::derefSceneManager(m_geometry); QQuick3DObjectPrivate::derefSceneManager(m_instancing); for (Material &mat : m_materials) { if (mat.refed) { QQuick3DObjectPrivate::derefSceneManager(mat.material); mat.refed = false; } } } } void QQuick3DModel::onMaterialDestroyed(QObject *object) { bool found = false; for (int i = 0; i < m_materials.size(); ++i) { if (m_materials[i].material == object) { m_materials.removeAt(i--); found = true; } } if (found) markDirty(QQuick3DModel::MaterialsDirty); } void QQuick3DModel::qmlAppendMaterial(QQmlListProperty *list, QQuick3DMaterial *material) { if (material == nullptr) return; QQuick3DModel *self = static_cast(list->object); self->m_materials.push_back({ material, false }); self->markDirty(QQuick3DModel::MaterialsDirty); if (material->parentItem() == nullptr) { // If the material has no parent, check if it has a hierarchical parent that's a QQuick3DObject // and re-parent it to that, e.g., inline materials QQuick3DObject *parentItem = qobject_cast(material->parent()); if (parentItem) { material->setParentItem(parentItem); } else { // If no valid parent was found, make sure the material refs our scene manager const auto &sceneManager = QQuick3DObjectPrivate::get(self)->sceneManager; if (sceneManager) { QQuick3DObjectPrivate::get(material)->refSceneManager(*sceneManager); // Have to keep track if we called refSceneManager because we // can end up in double deref attempts when a model is going // away, due to updateSceneManager() being called on // ItemSceneChanged (and also doing deref). We must ensure that // is one deref for each ref. self->m_materials.last().refed = true; } // else: If there's no scene manager, defer until one is set, see itemChange() } } // Make sure materials are removed when destroyed connect(material, &QQuick3DMaterial::destroyed, self, &QQuick3DModel::onMaterialDestroyed); } QQuick3DMaterial *QQuick3DModel::qmlMaterialAt(QQmlListProperty *list, qsizetype index) { QQuick3DModel *self = static_cast(list->object); return self->m_materials.at(index).material; } qsizetype QQuick3DModel::qmlMaterialsCount(QQmlListProperty *list) { QQuick3DModel *self = static_cast(list->object); return self->m_materials.size(); } void QQuick3DModel::qmlClearMaterials(QQmlListProperty *list) { QQuick3DModel *self = static_cast(list->object); for (Material &mat : self->m_materials) { if (mat.material->parentItem() == nullptr) { if (mat.refed) { QQuick3DObjectPrivate::get(mat.material)->derefSceneManager(); mat.refed = false; } } disconnect(mat.material, &QQuick3DMaterial::destroyed, self, &QQuick3DModel::onMaterialDestroyed); } self->m_materials.clear(); self->markDirty(QQuick3DModel::MaterialsDirty); } void QQuick3DModel::onMorphTargetDestroyed(QObject *object) { bool found = false; for (int i = 0; i < m_morphTargets.size(); ++i) { if (m_morphTargets.at(i) == object) { m_morphTargets.removeAt(i--); found = true; } } if (found) { markDirty(QQuick3DModel::MorphTargetsDirty); m_numMorphAttribs = 0; } } void QQuick3DModel::qmlAppendMorphTarget(QQmlListProperty *list, QQuick3DMorphTarget *morphTarget) { if (morphTarget == nullptr) return; QQuick3DModel *self = static_cast(list->object); if (self->m_numMorphAttribs >= 8) { qWarning("The number of morph attributes exceeds 8. This morph target will be ignored."); return; } self->m_morphTargets.push_back(morphTarget); self->m_numMorphAttribs += morphTarget->numAttribs(); if (self->m_numMorphAttribs > 8) qWarning("The number of morph attributes exceeds 8. This morph target will be supported partially."); self->markDirty(QQuick3DModel::MorphTargetsDirty); if (morphTarget->parentItem() == nullptr) { // If the morphTarget has no parent, check if it has a hierarchical parent that's a QQuick3DObject // and re-parent it to that, e.g., inline morphTargets QQuick3DObject *parentItem = qobject_cast(morphTarget->parent()); if (parentItem) { morphTarget->setParentItem(parentItem); } else { // If no valid parent was found, make sure the morphTarget refs our scene manager const auto &scenManager = QQuick3DObjectPrivate::get(self)->sceneManager; if (scenManager) QQuick3DObjectPrivate::get(morphTarget)->refSceneManager(*scenManager); // else: If there's no scene manager, defer until one is set, see itemChange() } } // Make sure morphTargets are removed when destroyed connect(morphTarget, &QQuick3DMorphTarget::destroyed, self, &QQuick3DModel::onMorphTargetDestroyed); } QQuick3DMorphTarget *QQuick3DModel::qmlMorphTargetAt(QQmlListProperty *list, qsizetype index) { QQuick3DModel *self = static_cast(list->object); if (index >= self->m_morphTargets.size()) { qWarning("The index exceeds the range of valid morph targets."); return nullptr; } return self->m_morphTargets.at(index); } qsizetype QQuick3DModel::qmlMorphTargetsCount(QQmlListProperty *list) { QQuick3DModel *self = static_cast(list->object); return self->m_morphTargets.size(); } void QQuick3DModel::qmlClearMorphTargets(QQmlListProperty *list) { QQuick3DModel *self = static_cast(list->object); for (const auto &morph : std::as_const(self->m_morphTargets)) { if (morph->parentItem() == nullptr) QQuick3DObjectPrivate::get(morph)->derefSceneManager(); disconnect(morph, &QQuick3DMorphTarget::destroyed, self, &QQuick3DModel::onMorphTargetDestroyed); } self->m_morphTargets.clear(); self->m_numMorphAttribs = 0; self->markDirty(QQuick3DModel::MorphTargetsDirty); } void QQuick3DModel::setInstancingLodMin(float minDistance) { if (qFuzzyCompare(m_instancingLodMin, minDistance)) return; m_instancingLodMin = minDistance; emit instancingLodMinChanged(); markDirty(LodDirty); } void QQuick3DModel::setInstancingLodMax(float maxDistance) { if (qFuzzyCompare(m_instancingLodMax, maxDistance)) return; m_instancingLodMax = maxDistance; emit instancingLodMaxChanged(); markDirty(LodDirty); } /*! \qmlproperty real Model::levelOfDetailBias \since 6.5 This property changes the size the model needs to be when rendered before the automatic level of detail meshes are used. Each generated level of detail mesh contains an ideal size value that each level should be shown, which is a ratio of how much of the rendered scene will be that mesh. A model that represents only a few pixels on screen will not require the full geometry to look correct, so a lower level of detail mesh will be used instead in this case. This value is a bias to the ideal value such that a value smaller than \c 1.0 will require an even smaller rendered size before switching to a lesser level of detail. Values above \c 1.0 will lead to lower levels of detail being used sooner. A value of \c 0.0 will disable the usage of levels of detail completely. The default value is \c 1.0 \note This property will only have an effect when the Model's geometry contains levels of detail. \sa Camera::levelOfDetailBias */ float QQuick3DModel::levelOfDetailBias() const { return m_levelOfDetailBias; } void QQuick3DModel::setLevelOfDetailBias(float newLevelOfDetailBias) { if (qFuzzyCompare(m_levelOfDetailBias, newLevelOfDetailBias)) return; m_levelOfDetailBias = newLevelOfDetailBias; emit levelOfDetailBiasChanged(); markDirty(QQuick3DModel::PropertyDirty); } QT_END_NAMESPACE