
Temporal features in SQL:2011
Krishna Kulkarni, Jan-Eike Michels (IBM Corporation)

{krishnak, janeike}@us.ibm.com

ABSTRACT
SQL:2011 was published in December of 2011,

replacing SQL:2008 as the most recent revision of the
SQL standard. This paper covers the most important
new functionality that is part of SQL:2011: the ability to
create and manipulate temporal tables.

1. Introduction
SQL is the predominant database query language stan-

dard published jointly by ISO (the International Organi-
zation for Standardization) and IEC (the International
Electrotechnical Commission). In December 2011, ISO/
IEC published the latest edition of the SQL standard,
SQL:2011. A recent article in SIGMOD Record pro-
vides a brief survey of the new features in SQL:2011
[1]. Because of space constraints, it did not cover the
most important new feature in SQL:2011: the ability to
create and manipulate temporal tables, i.e., tables whose
rows are associated with one or more temporal periods.
This is the subject of the current article.

2. Temporal data support
 Extensions to support temporal data1 in SQL have

long been desired. There is a large body of research
papers, conference publications, and books on this topic,
some dating back to the early 1980s. For more details,
we refer the readers to an extensive (but outdated) bibli-
ography [2] and to books such as [3] and [4].

Though the previous academic research produced a
large number of solutions, the commercial adoption has
been rather slow. It is only recently that commercial
database management systems (DBMSs) have begun to
offer SQL extensions for managing temporal data [5, 6,
7]. Prior to this development, users were forced to

implement temporal support as part of the application
logic, which often resulted in expensive development
cycles and complex, hard-to-maintain code.

In 1995, the ISO SQL committee initiated a project to
create a new part of SQL standard devoted to the lan-
guage extensions for the temporal data support. A set of
language extensions based on (but not identical to)
TSQL2 [8] were submitted for standardization at that
time. Unfortunately, these proposals generated consider-
able controversy (see [9] for more details), and failed to
get adequate support from the ISO SQL committee’s
membership. In addition, there was no indication that
key DBMS vendors were planning to implement these
extensions in their products. Eventually, the work on
this new part was cancelled in 2001.

Recently, a new set of language extensions for tempo-
ral data support were submitted to and accepted by the
ISO SQL committee. These language extensions are
now part of SQL:2011 Part 2, SQL/Foundation [10],
instead of appearing as a new part. There is currently at
least one commercial implementation [5] based on these
extensions that the authors are aware of.

2.1 Periods
The cornerstone of temporal data support in SQL:2011

is the ability to define and associate time periods with
the rows of a table. Essentially, a time period is a mathe-
matical interval on the timeline, demarcated by a start
time and an end time.

Many treatments of temporal databases introduce a
period data type, defined as an ordered pair of two
datetime values, for the purpose of associating time
periods with the rows of a table. SQL:2011 has not
taken this route. Adding a new data type to the SQL
standard (or to an SQL product) is a costly venture
because of the need to support the new data type in the
tools and other software packages that form the ecosys-
tem surrounding SQL. For example, if a period type
were added to SQL, then it would have to also be added
to the stored procedure language, to all database APIs
such as JDBC, ODBC, and .NET, as well as to the sur-
rounding technology such as ETL products, replication
solutions, and others. There must also be some means of
communicating period values to host languages that do
not support period as a native data type, such as C or
Java. These factors can potentially slow down the adop-
tion of new type for a long time.

1. Note that there is no single, commonly
accepted definition of the term “temporal
data”. For the purposes of this article, we
define “temporal data” to mean any data
with one or more associated time periods
during which that data is deemed to be
effective or valid along some time dimen-
sion.

34 SIGMOD Record, September 2012 (Vol. 41, No. 3)

Instead of adding a period type, SQL:2011 adds
period definitions as metadata to tables. A period defini-
tion is a named table component, identifying a pair of
columns that capture the period start and the period end
time. CREATE TABLE and ALTER TABLE statements
are enhanced with syntax to create or destroy period
definitions. The period start and end columns are con-
ventional columns, with separate names. The period
name occupies the same name space as column names,
i.e., a period cannot have the same name as a column.

SQL:2011 has adopted a closed-open period model,
i.e., a period represents all times starting from and
including the start time, continuing to but excluding the
end time. For a given row, the period end time must be
greater than its period start time; in fact, declaring a
period definition in a table implies a table constraint that
enforces this property.

The literature on temporal databases recognizes two
dimensions of time for temporal data support, e.g., see
[3]:
• valid time, the time period during which a row is
regarded as correctly reflecting reality by the user of the
database.
• transaction time, the time period during which a
row is committed to or recorded in the database.

For any given row, its transaction time may arbitrarily
differ from its valid time. For example, in an insurance
database, information about a policy may get inserted
much before that policy comes into effect.

In SQL:2011, transaction time support is provided by
system-versioned tables, which in turn contain the sys-
tem-time period, and valid time support is provided by
tables containing an application-time period2. The name
of the system-time period is specified by the standard as
SYSTEM_TIME.The name of an application-time
period can be any user-defined name. Users are allowed
to define at most one application-time period and at
most one system-time period per table.

One of the advantages of the SQL:2011 approach over
an approach based on the period data type is that it
allows existing databases that capture period informa-
tion in a pair of datetime columns to take advantage of
the SQL:2011 extensions more easily. Ever since
DBMSs have been on the scene, users have been build-
ing their own solutions for handling temporal data as
part of their application logic. Since most DBMSs do
not support a period type, applications dealing with tem-
poral data have tended to capture the period information

using a pair of columns of datetime data type. It would
be very expensive for users invested in such solutions to
replace them with a solution that uses a single column of
period type.

2.2 Application-time period tables
Application-time period tables are intended for meet-

ing the requirements of applications that are interested
in capturing time periods during which the data is
believed to be valid in the real world. A typical example
of such applications is an insurance application, where it
is necessary to keep track of the specific policy details
of a given customer that are in effect at any given point
in time.

A primary requirement of such applications is that the
user be put in charge of setting the start and end times of
the validity period of rows, and the user be free to assign
any time values, either in the past, current or in the
future, for the start and end times. Another requirement
of such applications is that the user be permitted to
update the validity periods of the rows as errors are dis-
covered or new information is made available.

 Any table that contains a period definition with a
user-defined name is an application-time period table.
For example:

CREATE TABLE Emp(
ENo INTEGER,
EStart DATE,
EEnd DATE,
EDept INTEGER,
PERIOD FOR EPeriod (EStart, EEnd)
)

 Users can pick any name they want for the name of
the period as well as for the names of columns that act
as the start and end columns of the period. The data
types of the period start and end columns must be either
DATE or a timestamp type, and data types of both col-
umns must be the same.

 The conventional INSERT statement provides suffi-
cient support for setting the initial values of application-
time period start and end columns. For example, the fol-
lowing INSERT statement inserts one row into the Emp
table:

INSERT INTO Emp
VALUES (22217,

DATE ‘2010-01-01’,
DATE '2011-11-12', 3)

The resulting table looks as shown below (assuming it
was empty before):

2. Interestingly, SQL:2011 manages to pro-
vide this support without actually defining
or using the terms “temporal data” or “tem-
poral table”.

Eno EStart EEnd EDept

22217 2010-01-01 2011-11-12 3

SIGMOD Record, September 2012 (Vol. 41, No. 3) 35

The conventional UPDATE statement can be used to
modify the rows of application-time period tables
(including the application-time period start and end
times). Similarly, the conventional DELETE statement
can be used to delete rows of application-time period
tables.

A new feature in SQL:2011 is the ability to specify
changes that are effective within a specified period. This
is provided by a syntactic extension to both UPDATE
and DELETE statements that lets users specify the
period of interest. For example, the following UPDATE
statement changes the department of the employee
whose number is 22217 to 4 for the period from Feb. 3,
2011 to Sept. 10, 2011:

UPDATE Emp
FOR PORTION OF EPeriod
FROM DATE '2011-02-03'
TO DATE '2011-09-10'

SET EDept = 4
WHERE ENo = 22217

To execute this statement, the DBMS locates all rows
whose application-time period overlaps the period P
from Feb. 3, 2011 to Sept. 10, 2011. Recall that periods
follow closed-open semantics in SQL:2011, so P
includes Feb. 3, 2011 but excludes Sept. 10, 2011. Any
overlapping row whose application-time period is con-
tained in P is simply updated. If an overlapping row
whose application-time period has a portion either
strictly before or strictly after P, then that row gets split
into two or three contiguous rows depending on the
extent of overlap, and of these, the row whose applica-
tion-time period is contained in P is updated. For exam-
ple, suppose the following is the only overlapping row:

Note that the application-time period of the above row
extends beyond P at both ends. The result of the
UPDATE statement will be these three rows:

In this example, the row whose EDept value is
updated to 4 is regarded as the original row and hence,
UPDATE triggers fire for this row. The other two rows

are regarded as newly inserted rows, so INSERT trig-
gers fire for them.

The DELETE statement is similarly enhanced with
FOR PORTION OF syntax to facilitate deletes that are
only effective within a specified period. For example,
the following DELETE statement removes the employee
whose number is 22217 for the period from Feb. 3, 2011
to Sept. 10, 2011:

DELETE Emp
FOR PORTION OF EPeriod
FROM DATE '2011-02-03'
TO DATE '2011-09-10'

WHERE ENo = 22217
Similar to the UPDATE example, any row whose

application-time period is contained in P from Feb. 3,
2011 to Sept. 10, 2011 is simply deleted. If an overlap-
ping row whose application-time period has a portion
either strictly before or strictly after P, then that row gets
split into two or three contiguous rows, and of these, the
row whose application-time period is contained in P is
deleted. For example, suppose the following is the only
overlapping row:

 The result of the statement will be these two rows:

In this example, the result is the deletion of the origi-
nal row and the insertion of two new rows; DELETE
triggers fire for the deleted row and INSERT triggers
fire for the newly inserted rows.

2.2.1 Primary keys on application-time
period tables

The last section gave an example of an Emp table in
which one might expect that ENo is the primary key.
However, looking at the sample result of the UPDATE
statement, there are three rows all with ENo 22217. This
example shows that the primary key must also include
the application-time period columns EStart and
EEnd.

ENo EStart EEnd EDept

22217 2010-01-01 2011-11-12 3

ENo EStart EEnd EDept

22217 2010-01-01 2011-02-03 3

22217 2011-02-03 2011-09-10 4

22217 2011-09-10 2011-11-12 3

ENo EStart EEnd EDept

22217 2010-01-01 2011-11-12 3

ENo EStart EEnd EDept

22217 2010-01-01 2011-02-03 3

22217 2011-09-10 2011-11-12 3

36 SIGMOD Record, September 2012 (Vol. 41, No. 3)

Simply adding EStart and EEnd to the primary key
will not be sufficient though. Consider the following
data:

The triples (22217, 2010-01-01, 2011-09-10) and
(22217, 2010-02-03, 2011-11-12) are not duplicates so
they would be acceptable values for a conventional pri-
mary key on these three columns. But note that the
application-time periods of these rows overlap. Seman-
tically, this says that the employee with ENo 22217
belongs to two departments, 3 and 4, during the period
from Feb. 3, 2010 through Sept. 10, 2011. Perhaps the
user wishes to allow an employee to belong to two
departments; however, the more typical requirement is
that an employee belongs to exactly one department at
any given time. To achieve that, it must be possible to
forbid overlapping application-time periods, which can
be specified with this syntax:

ALTER TABLE Emp
ADD PRIMARY KEY (ENo,
 EPeriod WITHOUT OVERLAPS)

With this primary key definition, the sample data is
prohibited as a constraint violation.

2.2.2 Referential constraints on applica-
tion-time period tables

Continuing the preceding example, suppose there is
another table with the following definition:

CREATE TABLE Dept(
DNo INTEGER,
DStart DATE,
DEnd DATE,
DName VARCHAR(30),
PERIOD FOR DPeriod (DStart, DEnd),
PRIMARY KEY (DNo,
DPeriod WITHOUT OVERLAPS)

)
 Assume also that we want to make sure that at every
point in time, every value in EDept column
corresponds to some value of DNo column in Dept
table, i.e., every employee at every point in time during
her employment belongs to a department that actually
exists at that point in time. How should this work? Let’s

look at some sample data. Assume the Emp table
contains the following rows:

Assume the Dept table contains the following rows:

Looking strictly at the values of EDept column of the
Emp table and the DNo column of the Dept table, we
may conclude that the conventional referential integrity
constraint involving the two tables is satisfied. But note
that the employee with ENo 22218 is assigned to the
department with DNo 4 from Feb. 3, 2011 to Nov. 12,
2011, but there is no department with DNo 4 for the
period from Feb. 3, 2011 to June 1, 2011. Clearly, this
violates our requirement that every value of EDept col-
umn in Emp table corresponds to some value of DNo
column in Dept table at every point in time. To disal-
low such a situation, it must be possible to forbid a row
in a child table whose application-time period is not
contained in the application-time period of a matching
row in the parent table, which can be specified with this
syntax:

ALTER TABLE Emp
ADD FOREIGN KEY

(Edept, PERIOD EPeriod)
REFERENCES Dept
(DNo, PERIOD DPeriod)

With this referential constraint definition, the sample
data is prohibited as a constraint violation.

More generally, for a given child row, it is not neces-
sary that there exists exactly one matching row in the
parent table whose application-time period contains the
application-time period of the child row. As long as the
application-time period of a row in the child table is
contained in the union of application-time periods of
two or more contiguous matching rows in the parent
table, the referential constraint is considered satisfied.

2.2.3 Querying application-time period
tables

In SQL:2011, application-time period tables can be
queried using the regular query syntax. For example, to

ENo EStart EEnd EDept

22217 2010-01-01 2011-09-10 3

22217 2010-02-03 2011-11-12 4

ENo EStart EEnd EDept

22218 2010-01-01 2011-02-03 3

22218 2011-02-03 2011-11-12 4

DNo DStart DEnd DName

3 2009-01-01 2011-12-31 Test

4 2011-06-01 2011-12-31 QA

SIGMOD Record, September 2012 (Vol. 41, No. 3) 37

retrieve the department where the employee 22217
worked as of January 2, 2011, one can express the query
as:
SELECT Name, Edept
FROM Emp
WHERE ENo = 22217
AND EStart <= DATE '2011-01-02'
AND EEnd > DATE '2011-01-02'

A simpler way to formulate the above query would be
to employ one of the period predicates provided in
SQL:2011 for expressing conditions involving periods:
CONTAINS, OVERLAPS, EQUALS, PRECEDES,
SUCCEEDS, IMMEDIATELY PRECEDES, and
IMMEDIATELY SUCCEEDS. For example, the above
query could also be expressed using the CONTAINS
predicate, as shown below:
SELECT Ename, Edept
FROM Emp
WHERE ENo = 22217 AND

EPeriod CONTAINS DATE '2011-01-02'
If one wanted to know all the departments where the

employee whose number is 22217 worked during the
period from January 1, 2010 to January 1, 2011, one
could formulate the query as:
SELECT Ename, Edept
FROM Emp
WHERE ENo = 22217
AND EStart < DATE '2011-01-01'
AND EEnd > DATE '2010-01-01'

Note that the period specified in the above query uses
the closed-open model, i.e., the period includes January
1, 2010 but excludes January 1, 2011. Alternatively, the
same query could be expressed using the OVERLAPS
predicate as:
SELECT Ename, Edept
FROM Emp
WHERE ENo = 22217 AND
EPeriod OVERLAPS

PERIOD (DATE '2010-01-01',
DATE '2011-01-01')

Period predicates are functionally similar to (but not
identical to) the well-known Allen’s interval operators
[11]. The correspondence between SQL’s period predi-
cates and Allen’s operators is as follows:
• The predicate “X OVERLAPS Y” in SQL:2011 is
equivalent to the Boolean expression using Allen’s
operators “(X overlaps Y) OR (X
overlapped_by Y) OR (X during Y) OR (X
contains Y) OR (X starts Y) OR (X
started_by Y) OR (X finishes Y) OR (X
finished_by Y) OR (X equal Y)”. Note that
Allen’s overlaps operator is not a true test of period
overlap. Intuitively, two periods are considered overlap-
ping if they have at least one time point in common.

This is not true for Allen’s overlaps operator. In con-
trast, SQL:2011’s OVERLAPS predicate is a true test of
period overlap. Also, SQL:2011’s OVERLAPS predi-
cate is symmetric, i.e, if “X OVERLAPS Y” is true,
then “Y OVERLAPS X” is also true. This is again not
true for Allen’s overlaps operator.
• The predicate “X CONTAINS Y” in SQL:2011 is
equivalent to the Boolean expression using Allen’s
operators “(X contains Y) OR (X starts Y)
OR (X finishes Y) OR (X equal Y)”. Note
that Allen’s contains operator is not a true test of
period containment. Intuitively, period X is considered
containing period Y if every time point in Y is also in X.
This is not true for Allen’s contains operator. In con-
trast, SQL:2011’s CONTAINS predicate is a true test of
period containment.
• The predicate “X PRECEDES Y” in SQL:2011 is
equivalent to the Boolean expression using Allen’s
operators “(X before Y) OR (X meets Y)”.
• The predicate “X SUCCEEDS Y” in SQL:2011 is
equivalent to the Boolean expression using Allen’s
operators “(X after Y) OR (X met_by Y)”.
• The predicates “X EQUALS Y”, “X IMMEDI-
ATELY PRECEDES Y”, and “X IMMEDIATELY
SUCCEEDS Y” in SQL:2011 are equivalent to the
Allen’s operators “X equal Y”, “X meets Y”, and
“X met_by Y”, respectively.

2.3 System-versioned tables
System-versioned tables are intended for meeting the

requirements of applications that must maintain an
accurate history of data changes either for business rea-
sons, legal reasons, or both. A typical example of such
applications is a banking application, where it is neces-
sary to keep previous states of customer account infor-
mation so that customers can be provided with a
detailed history of their accounts. There are also plenty
of examples where certain institutions are required by
law to preserve historical data for a specified length of
time to meet regulatory and compliance requirements.

A key requirement of such applications is that any
update or delete of a row must automatically preserve
the old state of the row before performing the update or
delete. Another important requirement is that the sys-
tem, rather than the user, maintains the start and end
times of the periods of the rows, and that users be unable
to modify the content of historical rows or the periods
associated with any of the rows. Any updates to the peri-
ods of rows in a system-versioned table must be per-
formed only by the system as a result of updates to the
non-period columns of the table or as a result of row
deletions. This provides the guarantee that the recorded

38 SIGMOD Record, September 2012 (Vol. 41, No. 3)

history of data changes cannot be tampered with, which
is critical to meet auditing and compliance regulations.

Any table that contains a period definition with the
standard-specified name, SYSTEM_TIME, and includes
the keywords WITH SYSTEM VERSIONING in its
definition is a system-versioned table. Similar to appli-
cation-time period tables, users can pick any name they
want for the names of columns that act as the start and
end columns of the SYSTEM_TIME period. Though
SQL:2011 allows the data types of the period start and
end columns to be either DATE or a timestamp type (as
long as the data types of both columns are the same), in
practice, most implementations will provide the
TIMESTAMP type with the highest fractional seconds
precision as the data type for the system-time period
start and end columns. For example:
CREATE TABLE Emp
ENo INTEGER,
Sys_start TIMESTAMP(12) GENERATED
ALWAYS AS ROW START,

Sys_end TIMESTAMP(12) GENERATED
ALWAYS AS ROW END,

EName VARCHAR(30),
PERIOD FOR SYSTEM_TIME (Sys_start,
Sys_end)

) WITH SYSTEM VERSIONING
 Similar to application-time periods, system-time peri-

ods use closed-open period model. At any given point in
time, a row in a system-versioned table is regarded as
current system row if the system-time period of that row
contains the current time. A row that is not a current sys-
tem row is regarded as a historical system row.

System-versioned tables differ from application-time
period tables in the following respects:
1) In contrast to the application-time period tables,

users are not allowed to assign or change the values
of Sys_start or Sys_end columns; they are
assigned (and changed) automatically by the database
system. This is the reason why the definitions of
Sys_start or Sys_end columns must include
the keywords GENERATED ALWAYS.

2) INSERT into a system-versioned table automatically
sets the value of Sys_start column to the transac-
tion timestamp, a special value associated with every
transaction3, and sets the value of Sys_end column
to the highest value of the column’s data type. For

example, assume that the following INSERT state-
ment executed in a transaction whose transaction
timestamp is 2012-01-01 09:00:004:
INSERT INTO Emp (ENo, EName)

VALUES (22217, 'Joe')
The resulting table looks as shown below (assuming it

was empty before):

3) UPDATE and DELETE on system-versioned tables
only operate on current system rows. Users are not
allowed to update or delete historical system rows.
Users are also not allowed to modify the system-time
period start or the end time of both current system
rows and historical system rows.

4) UPDATE and DELETE on system-versioned tables
result in the automatic insertion of a historical system
row for every current system row that is updated or
deleted.

An UPDATE statement on a system-versioned table
first inserts a copy of the old row with its system-time
period end time set to the transaction timestamp, indi-
cating that the row ceased to be current as of the transac-
tion timestamp. It then updates the row while changing
its system-period start time to the transaction timestamp,
indicating that the updated row to be the current system
row as of the transaction timestamp. For example, sup-
pose the current system row with ENo 22217 is as
shown below:

The following UPDATE statement changes the name
of the employee whose number is 22217 from Joe to
Tom effective from the transaction timestamp of the
transaction in which the UPDATE statement was exe-
cuted:

UPDATE Emp
SET EName = 'Tom'
WHERE ENo = 22217

A historical system row that corresponds to the state
of the row prior to the update is first inserted and then

3. SQL:2011 leaves it up to SQL-implementa-
tions to pick an appropriate value for the
transaction timestamp of a transaction, but it
does require the transaction timestamp of a
transaction to remain fixed during the entire
transaction.

4. Note that we are not showing the fractional
part of seconds in any of the examples in
this Section.

ENo Sys_Start Sys_End EName

22217 2012-01-01
09:00:00

9999-12-31
23:59:59

Joe

ENo Sys_Start Sys_End EName

22217 2012-01-01
09:00:00

9999-12-31
23:59:59

Joe

SIGMOD Record, September 2012 (Vol. 41, No. 3) 39

the update is performed. Assuming the above statement
is executed in a transaction with the transaction times-
tamp 2012-02-03 10:00:00, the final result will be these
two rows:

In this example, the row whose name is Tom is the
updated row; UPDATE triggers fire for this row. Note
that the insertion of historical system rows does not fire
any INSERT triggers for the inserted rows. Note also
that historical system rows created as a result of
sequence of updates for a given row form one contigu-
ous chain without any gap between their system-time
periods.

A DELETE statement on a system-versioned table
does not actually delete the qualifying rows; instead it
changes the system-time period end time of those row to
the transaction timestamp, indicating that those rows
ceased to be current as of the transaction timestamp. For
example, suppose that the current system row with ENo
22217 is as shown below:

The following DELETE statement simply changes the
system-time period end time of the current system row
for the employee 22217 to the transaction timestamp of
the transaction in which the DELETE statement was
executed:

DELETE FROM Emp
WHERE ENo = 22217

 Assuming the above statement is executed in a trans-
action with the transaction timestamp 2012-06-01
00:00:00, the final result will be the following row:

In this example, DELETE triggers fire for the row
selected for deletion.

Note that in contrast to the application-time period
tables, FOR PORTION OF SYSTEM_TIME is not
needed (and hence not allowed) for the UPDATE and
DELETE statements on system-versioned tables.

2.3.1 Primary key and referential con-
straints on system-versioned tables

The definition and enforcement of constraints on sys-
tem-versioned tables is considerably simpler than the
definition and enforcement of constraints on applica-
tion-time period tables. This is because constraints on
system-versioned tables need only be enforced on the
current system rows. Historical system rows in a sys-
tem-versioned table form immutable snapshots of the
past. Any constraints that were in effect when a histori-
cal system row was created would have already been
checked when that row was a current system row, so
there is never any need to enforce constraints on histori-
cal system rows. Consequently, there is no need to
include the system-period start and end columns or the
period name in the definition of primary key and refer-
ential constraints on system-versioned tables. For exam-
ple, the following ALTER TABLE statement specifies
ENo column as the primary key of Emp table:

ALTER TABLE Emp
 ADD PRIMARY KEY (ENo)
The above constraint ensures there exists exactly one

current system row with a given ENo value.
Similarly, the following ALTER TABLE statement

specifies a referential constraint between Emp and
Dept tables:

ALTER TABLE Emp
 ADD FOREIGN KEY (Edept)

REFERENCES Dept (DNo)
The above constraint is again enforced only on the

current system rows of Emp and Dept tables.

2.3.2 Querying system-versioned tables
Because system-versioned tables are intended prima-

rily for tracking historical data changes, queries on sys-
tem-versioned tables often tend to be concerned with
retrieving the table content as of a given point in time or
between any two given points in time. SQL:2011 pro-
vides three syntactic extensions for this specific pur-
pose. These are allowed only in queries on system-
versioned tables.

The first extension is the FOR SYSTEM_TIME AS
OF syntax that is useful for querying the table content
as of a specified point in time. For example, the follow-
ing query retrieves the rows of Emp that were current as
of Jan. 2, 2011:

ENo Sys_Start Sys_End EName

22217 2012-01-01
09:00:00

2012-02-03
10:00:00

Joe

22217 2012-02-03
10:00:00

9999-12-31
23:59:59

Tom

ENo Sys_Start Sys_End EName

22217 2012-01-01
09:00:00

9999-12-31
23:59:59

Joe

ENo EStart EEnd EName

22217 2012-01-01
09:00:00

2012-06-01
00:00:00

Joe

40 SIGMOD Record, September 2012 (Vol. 41, No. 3)

SELECT ENo,EName,Sys_Start,Sys_End
FROM Emp FOR SYSTEM_TIME AS OF
 TIMESTAMP '2011-01-02 00:00:00'

The above query returns all rows whose system-time
period start time is less than or equal to the specified
timestamp and whose system-time period end time is
greater than the specified timestamp.

The second and third extensions allow for retrieving
the content of a system-versioned table between any two
points in time. The following query returns all rows that
were current starting from TIMESTAMP '2011-01-
02 00:00:00’up to (but not including) TIMESTAMP
'2011-12-31 00:00:00':

SELECT ENo,EName,Sys_Start,Sys_End
FROM Emp FOR SYSTEM_TIME FROM
 TIMESTAMP '2011-01-02 00:00:00’TO
 TIMESTAMP '2011-12-31 00:00:00'

In contrast, the following query returns all rows that
were current starting from TIMESTAMP '2011-01-
02 00:00:00’up to (and including) TIMESTAMP
'2011-12-31 00:00:00':
SELECT ENo,EName,Sys_Start,Sys_End
FROM Emp FOR SYSTEM_TIME BETWEEN
 TIMESTAMP '2011-01-02 00:00:00'AND
 TIMESTAMP '2011-12-31 00:00:00'

Note that the period specified in the (FROM ... TO ...)
corresponds to a closed-open period model while the
period specified in the (BETWEEN ... AND ...) corre-
sponds to a closed-closed period model.

If a query on system-versioned tables does not specify
any of the above three syntactic options, then that query
is assumed to specify FOR SYSTEM_TIME AS OF
CURRENT_TIMESTAMP by default and the query
returns only the current system rows as the result. For
example, the following query returns only the current
system rows of Emp table:
SELECT ENo,EName,Sys_Start,Sys_End
FROM Emp

The choice of returning current systems rows as the
default is especially suited for those applications where
retrieval of current system rows is the most frequent
operation. In addition, it also helps with the database
migration in that applications running on non-system-
versioned tables would continue to work and produce
the same results when those tables are converted to sys-
tem-versioned tables.

Finally, to retrieve both current and historical system
rows of a system-versioned table, one can use a query of
the kind shown below:
SELECT ENo,EName,Sys_Start,Sys_End
FROM Emp FOR SYSTEM_TIME FROM
 TIMESTAMP '0001-01-01 00:00:00' TO
 TIMESTAMP '9999-12-31 23:59:59'

2.4 Bitemporal tables
A table may be both a system-versioned table and an

application-time period table5. For example:
CREATE TABLE Emp(
ENo INTEGER,
EStart DATE,
EEnd DATE,
EDept INTEGER,
PERIOD FOR EPeriod (EStart, EEnd),
Sys_start TIMESTAMP(12) GENERATED
 ALWAYS AS ROW START,
Sys_end TIMESTAMP(12) GENERATED
 ALWAYS AS ROW END,
EName VARCHAR(30),
PERIOD FOR SYSTEM_TIME
 (Sys_start, Sys_end),
PRIMARY KEY (ENo,

EPeriod WITHOUT OVERLAPS),
FOREIGN KEY
 (Edept, PERIOD EPeriod)
 REFERENCES Dept
 (DNo, PERIOD DPeriod)

) WITH SYSTEM VERSIONING
Rows in such tables are associated with both the sys-

tem-time period and the application-time period. Such
tables are very useful for capturing both the periods dur-
ing which facts were believed to be true in the real
world as well as the periods during which those facts
were recorded in the database. For example, while
employed, an employee may change names. Typically
the name changes legally at a specific time (for exam-
ple, a marriage) but the name is not changed in the data-
base concurrently with the legal change. In that case, the
system-time period automatically records when a partic-
ular name is known to the database, and the application-
time period records when the name was legally effec-
tive. Successive updates to bitemporal tables can journal
complex twists and turns in the state of knowledge cap-
tured by the database.

Bitemporal tables combine the capabilities of both
system-versioned and application-time period tables. As
in the case of application-time period tables, the user is
in charge of supplying values for the application-time
period start and end columns. As in the case of system-
versioned tables, INSERT into such a table automati-
cally sets the value of system-time period start column
to the transaction timestamp, and the value of system-

5. Though SQL:2011 does not define any spe-
cific term for such tables, we use the term
“bitemporal tables” in keeping with its use
in the literature as well as in some products.

SIGMOD Record, September 2012 (Vol. 41, No. 3) 41

time period end column to the highest value of the col-
umn’s data type.

As in the case of application-time period tables, both
the conventional UPDATE statement as well as UPDATE
with FOR PORTION OF app-period, where app-
period is the name of application-time period, can be
used to modify the rows of bitemporal tables. Similarly,
the conventional DELETE statement as well as DELETE
with FOR PORTION OF app-period can be used to
delete rows from bitemporal tables. As in the case of
system-versioned tables, only current rows in system-
time can be updated or deleted and a historical system
row is automatically inserted for every current system
row that is updated or deleted.

Queries on bitemporal tables can specify predicates on
both application-time periods as well as system-time
periods to qualify rows that will be returned as the query
result. For example, the following query returns the
department where the employee 22217 worked as of
December 1, 2010, recorded in the database as of July 1,
2011:
SELECT ENo, EDept
FROM Emp FOR SYSTEM_TIME AS OF
 TIMESTAMP '2011-07-01 00:00:00'
WHERE ENo = 22217 AND
 EPeriod CONTAINS DATE '2010-12-01'

2.5 Future directions
Though SQL:2011 has incorporated several signifi-

cant extensions for managing temporal data, there is cer-
tainly room for additional extensions. These are left as
Language Opportunities for future versions of the stan-
dard. Here is a partial list of such extensions:
• Support for period joins, i.e., joining a row from
one table with a row from another table such that their
application-time or system-time periods satisfy a condi-
tion such as overlap. Note that it is possible to do an
inner join of this kind using SQL:2011’s OVERLAPS
predicate, but outer joins require support for additional
syntax built into the language.
• Support for period aggregates and period grouped
queries that take into account application-time or sys-
tem-time periods of rows.
• Support for period UNION, INTERSECT and
EXCEPT operators that take into account application-
time or system-time periods of rows.
• Support for period normalization that produces
semantically-equivalent minimal set of rows for a given
table by combining contiguous rows that have exactly
the same values in non-period columns.
• Support for multiple application-time periods per
table.
• Support for non-temporal periods.

3. Comparison with previous tempo-
ral proposals

 Earlier, we alluded to the fact that the SQL committee
had initiated a temporal project that was eventually can-
celled around 2001. We list below some of the differ-
ences between the approach taken by the previous
proposals and the approach taken by SQL:2011 exten-
sions:
• In previous proposals, the period information was
associated with the rows of temporal tables using an
unnamed hidden column. This design was motivated by
the notion of temporal upward compatibility [12], which
required a temporal table and its equivalent non-tempo-
ral table to have exactly the same number of columns.
One major drawback of this approach is that it is incom-
patible with SQL’s notion of tables, which requires all
information associated with the rows of a table to be
captured explicitly as (and only as) column values. The
other drawback was that queries of the form “SELECT
* FROM T”, where T is a temporal table, did not return
the period information associated with the rows of T in
the query result. If users wanted to access the period
information associated with the rows, they were forced
to include invocations of special built-in functions in the
select list of a query for that purpose. These built-in
functions operated on the range variables associated
with temporal tables in a query expression, and returned
the period value associated with the rows pointed to by
those range variables. In contrast, the period informa-
tion is associated with the rows of temporal tables using
explicit, user-defined columns in SQL:2011. Also, the
period information associated with the rows of a tempo-
ral table can be accessed in SQL:2011 simply by includ-
ing the corresponding period start and end columns in
the select list of a query.
• The previous proposals resorted to a controversial
technique of prefixing queries, constraints, and insert/
update/delete statements with the so-called statement
modifiers for changing their normal semantics [12].
Unfortunately, previous proposals contained no clear
rules specifying the semantics of constructs prefixed
with these statement modifiers, so it was hard to figure
out the end result [9]. In contrast, SQL:2011 provides a
small set of syntactic extensions with clearly-specified
scope and semantics.
• In previous proposals, query expressions, constraint
definitions, and insert/update/delete statements
expressed without the statement modifier prefixes were
assumed to operate only on the current rows. This
applied to both transaction time tables and valid time
tables. While this made sense for transaction time
tables, it did not make much sense for valid time tables.
For instance, users were allowed to insert into valid time

42 SIGMOD Record, September 2012 (Vol. 41, No. 3)

tables only those rows whose valid time period started
with the current time. In fact, there was no way for users
to insert rows into valid time tables whose validity peri-
ods were either in the past or in the future. In contrast,
query expressions, constraint definitions, and insert/
update/delete statements on application-time period
tables in SQL:2011 operate on the entire table content
and follow the standard semantics. Also, SQL:2011
allows users to specify any time values they desire for
the application-time period start and end columns as
part of the INSERT statement on application-time
period tables.
• The previous proposals relied on adding special
syntax to the table definition for creating temporal
tables (AS TRANSACTION TIME for transaction-time
support and AS VALIDTIME for valid-time support).
Consequently, supporting additional periods in previous
approach would have required extending the table defi-
nition syntax every time a new period was added. In
contrast, supporting additional periods requires no new
syntax in SQL:2011.

4. Acknowledgements
The authors thank Fred Zemke and Matthias Nicola

for their valuable comments on the prior versions of this
article.

5. References
 [1] Fred Zemke, “What’s new in SQL:2011”, SIGMOD

Record, Vol. 41, No. 1, March 2012, pp. 67-73,
http://www.sigmod.org/publications/sigmod-record/
1203/pdfs/10.industry.zemke.pdf/

 [2] Yu Wu, Sushil Jajodia, X. Sean Wang, “Temporal
Database Bibliography Update”, In Temporal Data-
bases: Research and Practice, O. Etzion, S. Jajodia,
and S.Sripada, eds., Springer, 1998

 [3] Richard Snodgrass, “Developing Time-Oriented
Database Applications in SQL”, Morgan Kauf-
mann, 1999

 [4] C. J. Date, Hugh Darwen, Nikos A. Lorentzos,
“Temporal Data and the Relational Model”, Morgan
Kaufman, 2003

 [5] Cynthia Saracco, Matthias Nicola, Lenisha Gandhi,
“A matter of time: Temporal data management in
DB2 10”, April 2012, http://www.ibm.com/devel-
operworks/data/library/techarticle/dm-
1204db2temporaldata/

 [6] Kevin Jerrigan, “Oracle Total Recall with Oracle
Database 11g Release 2”, September 2009, http://
www.oracle.com/us/products/database/security/
total-recall-whitepaper-171749.pdf

 [7] Gregory Sannik, Fred Daniels, “Enabling the Tem-
poral Data Warehouse”, September 2010, http://
www.teradata.com/white-papers/

 [8] Richard Snodgrass (Ed.), “The TSQL2 Temporal
Query Language”, Kluwer Academic Publishers,
1995

 [9] Hugh Darwen, C.J. Date, “An overview and Analy-
sis of Proposals Based on the TSQL2 Approach”, In
Date on Database: Writings 2000-2006, C.J. Date,
Apress, 2006, also avaliable in http://www.dcs.war-
wick.ac.uk/~hugh/TTM/OnTSQL2.pdf

 [10] ISO/IEC 9075-2:2011, Information technology—
Database languages—SQL—Part 2: Foundation
(SQL/Foundation), 2011

 [11] James F. Allen, “Maintaining knowledge about
temporal intervals”, Communications of ACM, Vol.
26, No. 11, November 1983

 [12] Michael Bohlen, Christian Jensen, Richard
Snodgrass, “Temporal Statement Modifiers”, ACM
Trans. on Database Systems, Vol. 25, No. 4, Decem-
ber 2000

SIGMOD Record, September 2012 (Vol. 41, No. 3) 43

