
Serial communications with SPI

Embedded Systems Design Course
Applying the mbed microcontroller

1

These course notes are written by R.Toulson (Anglia Ruskin University) and T.Wilmshurst
(University of Derby). (c) ARM 2012

These course notes accompany the textbook “Fast and effective embedded system design :
Applying the ARM mbed”

Serial communications with SPI

2

• Introducing SPI

• Evaluating simple SPI communications

• SPI on the mbed

• Evaluating the ADXL345 SPI accelerometer

• Interfacing the ADXL345 with the mbed

• Interfacing the Nokia 6610 display with the mbed

• Interfacing multiple devices on a single SPI bus

• Digital spirit level design challenge

Introducing SPI

• Serial Peripheral Interface Bus (SPI) is a serial data protocol
which operates with a master/slave relationship

• When the master initiates communication and selects a slave
device, data can be transferred in either or both directions
simultaneously

• A master must send a byte to receive a byte - transmitting a
dummy byte is a typical way to make a read transaction

3

Introducing SPI

• The SPI protocol uses four signals: clock (SCLK); master data output, slave
data input (MOSI); master data input, slave data output (MISO); and slave
chip select (CS)

• When multiple slave devices exist, the master must output a unique CS
signal for each slave

4

Evaluating simple SPI communications

• SPI is suited to transferring data streams, for example data
communication between microprocessors or data transfer from an
analogue-to-digital converter

• It can achieve higher data rates than I2C, as it doesn't send address
or control information, and doesn't include an acknowledge bit for
every byte

• SPI data communication is ideal for use in digital signal processing
applications, where data is regularly exchanged between the master
and slave

5

Evaluating simple SPI communications

• A SPI data transfer is initiated by the master device as follows:

– The master first configures the SPI clock (SCLK) to be a frequency
supported by the recipient slave device (up to 70 MHz)

– The master sets the chip select signal (CS) of the intended recipient
slave to 0 V

– The master then starts the clock pulses on SCLK to indicate that data is
to be transferred

– The master simultaneously sends data as consecutive bits on MOSI

– The number of bits in each data frame can be configured, but is
usually between 4 and 16 bits

– The slave returns data in the same manner on MISO

6

Evaluating simple SPI communications

• The master must also configure the clock’s polarity (CPOL) and
phase (CPHA) as follows:

7

CPOL

0 Clock active high (off =0)

1 Clock active low (off=1)

CPHA

0
Clock out of phase with data

(CPOL = 0)

1
Clock in phase with data

(CPOL = 0)

Evaluating simple SPI communications

• We therefore have four SPI Modes as follows:

• In general, SPI devices are designed to operate in one of the four modes
and this will described in the device datasheet

8

Mode CPOL CPHA

0 0 0

1 0 1

2 1 0

3 1 1

SPI on the mbed

9

The mbed SPI library functions are shown in the table below:

SPI

A SPI Master, used for communicating with SPI slave devices
Functions

Functions Usage

SPI Create a SPI master connected to the specified pins format

format Configure the data transmission mode and data length

frequency Set the SPI bus clock frequency

write Write to the SPI Slave and return the response

Note: this table is for the SPI master library. There is also a SPI slave library which is is
used for communicating with a SPI Master device. The SPISlave library is not covered
in these slides.

• The SPI Interface can be used on pins p5/p6/p7 and p11/p12/p13

SPI on the mbed

• Default settings of the SPI interface
on the mbed:

– Default clock frequency of 1 MHz

– Default data length of 8 bits

– Default mode of 0

10

Evaluating the ADXL345 SPI accelerometer

• Configuration and data register details are given in the ADXL345 datasheet

http://www.analog.com/static/imported-files/data_sheets/ADXL345.pdf

• The accelerometer is actually analogue in nature, measuring acceleration
on 3 axes.

• This kind of accelerometer has an internal capacitor mounted in the plane
of each axis. Acceleration causes the capacitor plates to move, hence
changing the output voltage proportionally to the acceleration or force.

• The ADXL345 accelerometer converts the analogue voltage fluctuations to
digital and outputs this over a digital communication protocol.

• The ADXL345 can be configured to communicate in SPI and I2C modes.

11

http://www.analog.com/static/imported-files/data_sheets/ADXL345.pdf
http://www.analog.com/static/imported-files/data_sheets/ADXL345.pdf
http://www.analog.com/static/imported-files/data_sheets/ADXL345.pdf

Evaluating the ADXL345 SPI accelerometer

• To configure the accelerometer for SPI communication we need to:

– Set the SPI frequency to 1-5 MHz and SPI Mode 3

– Set the Data Format by writing to register 0x31; a data byte of 0x0B will configure the
accelerometer data to be in the range ±16g and to a resolution of 0.004g/LSB (1g is the
value of acceleration due to earth’s gravity, i.e. 9.81ms-2)

– Set the device into ‘measure’ mode by sending a data value 0x08 to the Power Control
register (address 0x2D)

• When writing to the ADXL345 we must follow the following sequential
procedure
– Set CS low

– Send register address byte

– Send data byte

– Set CS high

12

Evaluating the ADXL345 SPI accelerometer

• To read 3-axis data back from the ADXL345 we must:

– Set the read/write bit high (bit 7 of the address byte)

– Set the multibyte-data flag high (bit 6 of the address byte)

– Set CS low

– Send the configured address byte for register 0x32

– Read 6 bytes of data back from the ADXL345 by writing 6 dummy bytes of 0x00

– Set CS high

• The 6 returned data bytes contain the most significant and least significant
bytes for each of the three measurement axes (x, y and z).

• We therefore need to convert the data to floating point ‘g’ values by
combining the relevant data bytes and multiplying by the configured data
resolution.

13

Interfacing the ADXL345 SPI accelerometer
with the mbed

• The ADXL345 can be connected to the mbed as shown:

14

• Exercise 1: Configure the ADXL345 accelerometer to continuously output
3-axis data to the terminal screen.

– Set up the SPI accelerometer as described in the previous slides

– Initiate a data read by setting CS high and writing the configured address value

– Use a 6 element ‘char’ buffer to read the raw data back from the accelerometer

– Combine the relevant most significant and least significant bytes into three twos-
complement, 16-bit integer values (to keep things simple, you can make use of the
16int_t data type for this to function correctly)

– Convert the 16-bit data to floating point by multiplying each axis reading by the
configured data resolution

– Output and display data to a host terminal application

15

Interfacing the ADXL345 SPI accelerometer
with the mbed

16

// solution for SPI Exercise 1

#include "mbed.h“

SPI acc(p11,p12,p13); // setup SPI interface on pins 11,12,13

DigitalOut cs(p14); // use pin 14 as chip select

Serial pc(USBTX, USBRX); // setup USB interface to host terminal

char buffer[6]; // raw data array type char

signed short data[3]; // acc data is signed 16 bit from -32,768 to +32,767

float x, y, z; // floating point data

int main() {

 cs=1;

 acc.format(8,3); // 8 bit data, Mode 3

 acc.frequency(2000000); // 2MHz clock rate

 cs=0;

 acc.write(0x31); // data format register

 acc.write(0x0B); // format +/-16g, 0.004g/LSB

 cs=1;

 cs=0;

 acc.write(0x2D); // power ctrl register

 acc.write(0x08); // measure mode

 cs=1;

 while (1) { // infinite loop

 wait(0.2);

 cs=0;

 acc.write(0x80|0x40|0x32); // RW bit high, MB bit high, plus address

 for (int i = 0;i<=5;i++) {

 buffer[i]=acc.write(0x00); // read back 6 data bytes

 }

 cs=1;

 data[0] = buffer[1]<<8 | buffer[0]; // combine MSB and LSB

 data[1] = buffer[3]<<8 | buffer[2];

 data[2] = buffer[5]<<8 | buffer[4];

 x=0.004*data[0]; y=0.004*data[1]; z=0.004*data[2]; // convert to floating point

 pc.printf("x = %+1.2fg\t y = %+1.2fg\t z = %+1.2fg\n\r", x, y,z); //print to screen

 }

}

Interfacing the ADXL345 SPI accelerometer
with the mbed

• Exercise 2: Experiment with advanced configuration parameters for the
ADXL345.

– For example, the following configuration code will set the data rate to measure at
3200 Hz:

– Similarly, the following configuration will set the measurement range to ±2g:

– A number of other features including tap detection, freefall detection and threshold
exceedance interrupts can also be configured with the ADXL345

17

cs=0;

acc.write(0x2C); // data rate register

acc.write(0x0F); // set to 3200Hz

cs=1;

cs=0; // active low

acc.write(0x31); // data format register

acc.write(0x08); // format +/-2g, 0.004g/LSB

cs=1;

Interfacing the Nokia 6610 LCD display
with the mbed

• The mobile screen has 10 pins and can be connected to the mbed as
shown:

18

Interfacing the Nokia 6610 LCD display
with the mbed

• Exercise 3: Display text typed into the terminal application on to the LCD
screen. Use the # key to clear the screen of the text you have written.
– You’ll need to define the following screen_setup function to set a background colour

and clear the screen :

– You’ll also need to import the MobileLCD library from

http://mbed.co.uk/projects/cookbook/svn/MobileLCD/tests/MobileLCD

– Note also that the cursor can be moved to a chosen position to allow you to choose
where to display data, for example:

19

void screen_setup(void) { // define a function called screen_setup

 lcd.background(0x0000FF); // set the background colour

 lcd.cls(); // clear the screen

}

lcd.locate(3,1); // move cursor to row 1 column 3

http://mbed.co.uk/projects/cookbook/svn/MobileLCD/tests/MobileLCD

20

// solution for SPI Exercise 3

#include "mbed.h"

#include "MobileLCD.h“ //include the Nokia display library

MobileLCD lcd(p11, p12, p13, p15, p16); //mosi,miso,clk,cs,rst

Serial pc(USBTX, USBRX); // host terminal comms setup

char c; // char variable for keyboard input

void screen_setup(void); // function proptotype

int main() {

 pc.printf("\n\rType something to be displayed:\n\r");

 screen_setup(); // call the screen setup function

 while(1){

 c = pc.getc(); // c = character input from computer keyboard

 wait(0.001);

 if (c=='#'){ // perform the following if "#" is pressed

 screen_setup(); // call the screen setup function

 lcd.locate(0,0); // move the cursor back to row 0 column 0

 }

 else{

 lcd.printf("%c",c); // print character on the LCD screen

 pc.printf("%c",c); // print character on the terminal screen

 }

 }

}

void screen_setup(void) { // define a function called screen_setup

 lcd.background(0x0000FF); // set the background colour

 lcd.cls(); // clear the screen

}

Interfacing the Nokia 6610 LCD display
with the mbed

• Exercise 4: Experiment with the fill and pixel commands to draw on the
LCD Display. For example:

– Use the following fill functions in order to fill some areas of the LCD display:

– Draw on the screen pixel by pixel. The following loop will create the function for a sine
wave and print this to the screen:

– Note the use of colour as a single 24-bit value for red, green and blue (8-bits each)

0xFF0000 = red 0x00FF00 = green 0x0000FF = blue 0x000000 = black 0xFFFFFF = white

21

lcd.fill(2, 51, 128, 10, 0x00FF00); //fill an area between the defined pixels

lcd.fill(50, 1, 10, 128, 0xFF0000);

for(int i=0; i<130; i++) {

 //draw a black pixel at the location described by the following formula

 lcd.pixel(i, 80 + sin((float)i / 5.0)*10, 0x000000);

}

Interfacing multiple devices
on a single SPI bus

• Exercise 5: You can use a single SPI data bus to control the ADXL345
accelerometer and the Nokia 6610 display at the same time. Write a
program so that the x, y and z data appear and update on the LCD
display, rather than on a host pc.

• You will need a separate slave chip select signal for each device.

22

Digital spirit level design challenge

• Exercise 6: Design, build and test a digital spirit level based on the mbed
microcontroller, the ADXL345 accelerometer and the Nokia 6610 display

• You may wish to consider the following:

– Design your display to show a pixel or image moving around the LCD screen
with respect to the orientation of the accelerometer

– Improve your display output to include accurate measurements of the 2-plane
orientation angles in degrees from the horizontal (i.e. horizontal = 0⁰)

– You may need to include some calibration or filtering techniques to ensure
smooth and accurate functionality

23

Summary

• Introducing SPI

• Evaluating simple SPI communications

• SPI on the mbed

• Evaluating the ADXL345 SPI accelerometer

• Interfacing the ADXL345 with the mbed

• Interfacing the Nokia 6610 display with the mbed

• Interfacing multiple devices on a single SPI bus

• Digital spirit level design challenge

24

