forked from salesforce/MultiHopKG
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_utils.py
439 lines (398 loc) · 17 KB
/
data_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
"""
Copyright (c) 2018, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
Data processing utilities.
"""
import collections
import numpy as np
import os
import pickle
START_RELATION = 'START_RELATION'
NO_OP_RELATION = 'NO_OP_RELATION'
NO_OP_ENTITY = 'NO_OP_ENTITY'
DUMMY_RELATION = 'DUMMY_RELATION'
DUMMY_ENTITY = 'DUMMY_ENTITY'
DUMMY_RELATION_ID = 0
START_RELATION_ID = 1
NO_OP_RELATION_ID = 2
DUMMY_ENTITY_ID = 0
NO_OP_ENTITY_ID = 1
def check_answer_ratio(examples):
entity_dict = {}
for e1, e2, r in examples:
if not e1 in entity_dict:
entity_dict[e1] = set()
entity_dict[e1].add(e2)
answer_ratio = 0
for e1 in entity_dict:
answer_ratio += len(entity_dict[e1])
return answer_ratio / len(entity_dict)
def check_relation_answer_ratio(input_file, kg):
example_dict = {}
with open(input_file) as f:
for line in f:
e1, e2, r = line.strip().split()
e1 = kg.entity2id[e1]
e2 = kg.entity2id[e2]
r = kg.relation2id[r]
if not r in example_dict:
example_dict[r] = []
example_dict[r].append((e1, e2, r))
r_answer_ratio = {}
for r in example_dict:
r_answer_ratio[r] = check_answer_ratio(example_dict[r])
return r_answer_ratio
def change_to_test_model_path(dataset, model_path):
model_dir = os.path.dirname(os.path.dirname(model_path))
model_subdir = os.path.basename(os.path.dirname(model_path))
file_name = os.path.basename(model_path)
new_model_subdir = dataset + '.test' + model_subdir[len(dataset):]
new_model_subdir += '-test'
new_model_path = os.path.join(model_dir, new_model_subdir, file_name)
return new_model_path
def get_train_path(args):
if 'NELL' in args.data_dir:
if not args.model.startswith('point'):
if args.test:
train_path = os.path.join(args.data_dir, 'train.dev.large.triples')
else:
train_path = os.path.join(args.data_dir, 'train.large.triples')
else:
if args.test:
train_path = os.path.join(args.data_dir, 'train.dev.triples')
else:
train_path = os.path.join(args.data_dir, 'train.triples')
else:
train_path = os.path.join(args.data_dir, 'train.triples')
return train_path
def load_seen_entities(adj_list_path, entity_index_path):
_, id2entity = load_index(entity_index_path)
with open(adj_list_path, 'rb') as f:
adj_list = pickle.load(f)
seen_entities = set()
for e1 in adj_list:
seen_entities.add(id2entity[e1])
for r in adj_list[e1]:
for e2 in adj_list[e1][r]:
seen_entities.add(id2entity[e2])
print('{} seen entities loaded...'.format(len(seen_entities)))
return seen_entities
def load_triples_with_label(data_path, r, entity_index_path, relation_index_path, seen_entities=None, verbose=False):
entity2id, _ = load_index(entity_index_path)
relation2id, _ = load_index(relation_index_path)
def triple2ids(e1, e2, r):
return entity2id[e1], entity2id[e2], relation2id[r]
triples, labels = [], []
with open(data_path) as f:
num_skipped = 0
for line in f:
pair, label = line.strip().split(': ')
e1, e2 = pair.strip().split(',')
if seen_entities and (not e1 in seen_entities or not e2 in seen_entities):
num_skipped += 1
if verbose:
print('Skip triple ({}) with unseen entity: {}'.format(num_skipped, line.strip()))
continue
triples.append(triple2ids(e1, e2, r))
labels.append(label.strip())
return triples, labels
def load_triples(data_path, entity_index_path, relation_index_path, group_examples_by_query=False,
add_reverse_relations=False, seen_entities=None, verbose=False):
"""
Convert triples stored on disc into indices.
"""
entity2id, _ = load_index(entity_index_path)
relation2id, _ = load_index(relation_index_path)
def triple2ids(e1, e2, r):
return entity2id[e1], entity2id[e2], relation2id[r]
triples = []
if group_examples_by_query:
triple_dict = {}
with open(data_path) as f:
num_skipped = 0
for line in f:
e1, e2, r = line.strip().split()
if seen_entities and (not e1 in seen_entities or not e2 in seen_entities):
num_skipped += 1
if verbose:
print('Skip triple ({}) with unseen entity: {}'.format(num_skipped, line.strip()))
continue
# if r in ['concept:agentbelongstoorganization', 'concept:teamplaysinleague']:
# continue
if group_examples_by_query:
e1_id, e2_id, r_id = triple2ids(e1, e2, r)
if e1_id not in triple_dict:
triple_dict[e1_id] = {}
if r_id not in triple_dict[e1_id]:
triple_dict[e1_id][r_id] = set()
triple_dict[e1_id][r_id].add(e2_id)
if add_reverse_relations:
r_inv = r + '_inv'
e2_id, e1_id, r_inv_id = triple2ids(e2, e1, r_inv)
if e2_id not in triple_dict:
triple_dict[e2_id] = {}
if r_inv_id not in triple_dict[e2_id]:
triple_dict[e2_id][r_inv_id] = set()
triple_dict[e2_id][r_inv_id].add(e1_id)
else:
triples.append(triple2ids(e1, e2, r))
if add_reverse_relations:
triples.append(triple2ids(e2, e1, r + '_inv'))
if group_examples_by_query:
for e1_id in triple_dict:
for r_id in triple_dict[e1_id]:
triples.append((e1_id, list(triple_dict[e1_id][r_id]), r_id))
print('{} triples loaded from {}'.format(len(triples), data_path))
return triples
def load_entity_hist(input_path):
entity_hist = {}
with open(input_path) as f:
for line in f.readlines():
v, f = line.strip().split()
entity_hist[v] = int(f)
return entity_hist
def load_index(input_path):
index, rev_index = {}, {}
with open(input_path) as f:
for i, line in enumerate(f.readlines()):
v, _ = line.strip().split()
index[v] = i
rev_index[i] = v
return index, rev_index
def prepare_kb_envrioment(raw_kb_path, train_path, dev_path, test_path, test_mode, add_reverse_relations=True):
"""
Process KB data which was saved as a set of triples.
(a) Remove train and test triples from the KB envrionment.
(b) Add reverse triples on demand.
(c) Index unique entities and relations appeared in the KB.
:param raw_kb_path: Path to the raw KB triples.
:param train_path: Path to the train set KB triples.
:param dev_path: Path to the dev set KB triples.
:param test_path: Path to the test set KB triples.
:param add_reverse_relations: If set, add reverse triples to the KB environment.
"""
data_dir = os.path.dirname(raw_kb_path)
def get_type(e_name):
if e_name == DUMMY_ENTITY:
return DUMMY_ENTITY
if 'nell-995' in data_dir.lower():
if '_' in e_name:
return e_name.split('_')[1]
else:
return 'numerical'
else:
return 'entity'
def hist_to_vocab(_dict):
return sorted(sorted(_dict.items(), key=lambda x: x[0]), key=lambda x: x[1], reverse=True)
# Create entity and relation indices
entity_hist = collections.defaultdict(int)
relation_hist = collections.defaultdict(int)
type_hist = collections.defaultdict(int)
with open(raw_kb_path) as f:
raw_kb_triples = [l.strip() for l in f.readlines()]
with open(train_path) as f:
train_triples = [l.strip() for l in f.readlines()]
with open(dev_path) as f:
dev_triples = [l.strip() for l in f.readlines()]
with open(test_path) as f:
test_triples = [l.strip() for l in f.readlines()]
if test_mode:
keep_triples = train_triples + dev_triples
removed_triples = test_triples
else:
keep_triples = train_triples
removed_triples = dev_triples + test_triples
# Index entities and relations
for line in set(raw_kb_triples + keep_triples + removed_triples):
e1, e2, r = line.strip().split()
entity_hist[e1] += 1
entity_hist[e2] += 1
if 'nell-995' in data_dir.lower():
t1 = e1.split('_')[1] if '_' in e1 else 'numerical'
t2 = e2.split('_')[1] if '_' in e2 else 'numerical'
else:
t1 = get_type(e1)
t2 = get_type(e2)
type_hist[t1] += 1
type_hist[t2] += 1
relation_hist[r] += 1
if add_reverse_relations:
inv_r = r + '_inv'
relation_hist[inv_r] += 1
# Save the entity and relation indices sorted by decreasing frequency
with open(os.path.join(data_dir, 'entity2id.txt'), 'w') as o_f:
o_f.write('{}\t{}\n'.format(DUMMY_ENTITY, DUMMY_ENTITY_ID))
o_f.write('{}\t{}\n'.format(NO_OP_ENTITY, NO_OP_ENTITY_ID))
for e, freq in hist_to_vocab(entity_hist):
o_f.write('{}\t{}\n'.format(e, freq))
with open(os.path.join(data_dir, 'relation2id.txt'), 'w') as o_f:
o_f.write('{}\t{}\n'.format(DUMMY_RELATION, DUMMY_RELATION_ID))
o_f.write('{}\t{}\n'.format(START_RELATION, START_RELATION_ID))
o_f.write('{}\t{}\n'.format(NO_OP_RELATION, NO_OP_RELATION_ID))
for r, freq in hist_to_vocab(relation_hist):
o_f.write('{}\t{}\n'.format(r, freq))
with open(os.path.join(data_dir, 'type2id.txt'), 'w') as o_f:
for t, freq in hist_to_vocab(type_hist):
o_f.write('{}\t{}\n'.format(t, freq))
print('{} entities indexed'.format(len(entity_hist)))
print('{} relations indexed'.format(len(relation_hist)))
print('{} types indexed'.format(len(type_hist)))
entity2id, id2entity = load_index(os.path.join(data_dir, 'entity2id.txt'))
relation2id, id2relation = load_index(os.path.join(data_dir, 'relation2id.txt'))
type2id, id2type = load_index(os.path.join(data_dir, 'type2id.txt'))
removed_triples = set(removed_triples)
adj_list = collections.defaultdict(collections.defaultdict)
entity2typeid = [0 for i in range(len(entity2id))]
num_facts = 0
for line in set(raw_kb_triples + keep_triples):
e1, e2, r = line.strip().split()
triple_signature = '{}\t{}\t{}'.format(e1, e2, r)
e1_id = entity2id[e1]
e2_id = entity2id[e2]
t1 = get_type(e1)
t2 = get_type(e2)
t1_id = type2id[t1]
t2_id = type2id[t2]
entity2typeid[e1_id] = t1_id
entity2typeid[e2_id] = t2_id
if not triple_signature in removed_triples:
r_id = relation2id[r]
if not r_id in adj_list[e1_id]:
adj_list[e1_id][r_id] = set()
if e2_id in adj_list[e1_id][r_id]:
print('Duplicate fact: {} ({}, {}, {})!'.format(
line.strip(), id2entity[e1_id], id2relation[r_id], id2entity[e2_id]))
adj_list[e1_id][r_id].add(e2_id)
num_facts += 1
if add_reverse_relations:
inv_r = r + '_inv'
inv_r_id = relation2id[inv_r]
if not inv_r_id in adj_list[e2_id]:
adj_list[e2_id][inv_r_id] = set([])
if e1_id in adj_list[e2_id][inv_r_id]:
print('Duplicate fact: {} ({}, {}, {})!'.format(
line.strip(), id2entity[e2_id], id2relation[inv_r_id], id2entity[e1_id]))
adj_list[e2_id][inv_r_id].add(e1_id)
num_facts += 1
print('{} facts processed'.format(num_facts))
# Save adjacency list
adj_list_path = os.path.join(data_dir, 'adj_list.pkl')
with open(adj_list_path, 'wb') as o_f:
pickle.dump(dict(adj_list), o_f)
with open(os.path.join(data_dir, 'entity2typeid.pkl'), 'wb') as o_f:
pickle.dump(entity2typeid, o_f)
def get_seen_queries(data_dir, entity_index_path, relation_index_path):
entity2id, _ = load_index(entity_index_path)
relation2id, _ = load_index(relation_index_path)
seen_queries = set()
with open(os.path.join(data_dir, 'train.triples')) as f:
for line in f:
e1, e2, r = line.strip().split('\t')
e1_id = entity2id[e1]
r_id = relation2id[r]
seen_queries.add((e1_id, r_id))
seen_exps = []
unseen_exps = []
num_exps = 0
with open(os.path.join(data_dir, 'dev.triples')) as f:
for line in f:
num_exps += 1
e1, e2, r = line.strip().split('\t')
e1_id = entity2id[e1]
r_id = relation2id[r]
if (e1_id, r_id) in seen_queries:
seen_exps.append(line)
else:
unseen_exps.append(line)
num_seen_exps = len(seen_exps) + 0.0
num_unseen_exps = len(unseen_exps) + 0.0
seen_ratio = num_seen_exps / num_exps
unseen_ratio = num_unseen_exps / num_exps
print('Seen examples: {}/{} {}'.format(num_seen_exps, num_exps, seen_ratio))
print('Unseen examples: {}/{} {}'.format(num_unseen_exps, num_exps, unseen_ratio))
return seen_queries, (seen_ratio, unseen_ratio)
def get_relations_by_type(data_dir, relation_index_path):
with open(os.path.join(data_dir, 'raw.kb')) as f:
triples = list(f.readlines())
with open(os.path.join(data_dir, 'train.triples')) as f:
triples += list(f.readlines())
triples = list(set(triples))
query_answers = dict()
theta_1_to_M = 1.5
for triple_str in triples:
e1, e2, r = triple_str.strip().split('\t')
if not r in query_answers:
query_answers[r] = dict()
if not e1 in query_answers[r]:
query_answers[r][e1] = set()
query_answers[r][e1].add(e2)
to_M_rels = set()
to_1_rels = set()
dev_rels = set()
with open(os.path.join(data_dir, 'dev.triples')) as f:
for line in f:
e1, e2, r = line.strip().split('\t')
dev_rels.add(r)
relation2id, _ = load_index(relation_index_path)
num_rels = len(dev_rels)
print('{} relations in dev dataset in total'.format(num_rels))
for r in dev_rels:
ratio = np.mean([len(x) for x in query_answers[r].values()])
if ratio > theta_1_to_M:
to_M_rels.add(relation2id[r])
else:
to_1_rels.add(relation2id[r])
num_to_M = len(to_M_rels) + 0.0
num_to_1 = len(to_1_rels) + 0.0
print('to-M relations: {}/{} ({})'.format(num_to_M, num_rels, num_to_M / num_rels))
print('to-1 relations: {}/{} ({})'.format(num_to_1, num_rels, num_to_1 / num_rels))
to_M_examples = []
to_1_examples = []
num_exps = 0
with open(os.path.join(data_dir, 'dev.triples')) as f:
for line in f:
num_exps += 1
e1, e2, r = line.strip().split('\t')
if relation2id[r] in to_M_rels:
to_M_examples.append(line)
elif relation2id[r] in to_1_rels:
to_1_examples.append(line)
num_to_M_exps = len(to_M_examples) + 0.0
num_to_1_exps = len(to_1_examples) + 0.0
to_M_ratio = num_to_M_exps / num_exps
to_1_ratio = num_to_1_exps / num_exps
print('to-M examples: {}/{} ({})'.format(num_to_M_exps, num_exps, to_M_ratio))
print('to-1 examples: {}/{} ({})'.format(num_to_1_exps, num_exps, to_1_ratio))
return to_M_rels, to_1_rels, (to_M_ratio, to_1_ratio)
def load_configs(args, config_path):
with open(config_path) as f:
print('loading configuration file {}'.format(config_path))
for line in f:
if not '=' in line:
continue
arg_name, arg_value = line.strip().split('=')
if arg_value.startswith('"') and arg_value.endswith('"'):
arg_value = arg_value[1:-1]
if hasattr(args, arg_name):
print('{} = {}'.format(arg_name, arg_value))
arg_value2 = getattr(args, arg_name)
if type(arg_value2) is str:
setattr(args, arg_name, arg_value)
elif type(arg_value2) is bool:
if arg_value == 'True':
setattr(args, arg_name, True)
elif arg_value == 'False':
setattr(args, arg_name, False)
else:
raise ValueError('Unrecognized boolean value description: {}'.format(arg_value))
elif type(arg_value2) is int:
setattr(args, arg_name, int(arg_value))
elif type(arg_value2) is float:
setattr(args, arg_name, float(arg_value))
else:
raise ValueError('Unrecognized attribute type: {}: {}'.format(arg_name, type(arg_value2)))
else:
raise ValueError('Unrecognized argument: {}'.format(arg_name))
return args