You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
"Sometimes writing a deterministic function using the `@mc.deterministic` decorator can seem like a chore, especially for a small function. I have already mentioned that elementary math operations *can* produce deterministic variables implicitly, but what about operations like indexing or slicing? Built-in `Lambda` functions can handle this with the elegance and simplicity required. For example, \n",
"Previously in this Chapter, we simulated artificial dataset for the SMS example. To do this, we sampled values from the priors. We saw how varied the resulting datasets looked like, and rarely did they mimic our observed dataset. In the current example, we should sample from the *posterior* distributions to create *very plausible datasets*. Luckily, our Bayesian framework makes this very easy. We only need to create a new `Stochastic` variable, that is exactly the same as our variable that stored the observations, but minus the observations themselves. If you recall, our `Stochastic` variable that stored our observed data was:\n",
2120
2118
"\n",
2121
-
" observed = mc.Bernoulli( \"bernoulli_obs\", p, value = D, observed=True)\n",
0 commit comments