Skip to content

CNNDailymail data: Predicted summaries are lists of single words and lead to rouge score of zero #21

@shandou

Description

@shandou

Thank you very much for providing the latest updates to the repo. I am still having trouble training the model on a small subset of CNNDailymail data. Upon inferencing, the model keeps producing predictions that are lists of single words. I am providing more details below:

  1. How I ran the code:
train_and_eval.py --infer_source_file /home/shan/datasets/NLP/dev_CNNDM_sequenceGGNN/jsonl/test/inputs.jsonl.gz --infer_predictions_file /home/shan/datasets/NLP/dev_CNNDM_sequenceGGNN/jsonl/test/predictions.jsonl
  1. The spurious single-word predictions:
Validation predictions...
[['at'], ['at'], ['at'], ['at'], ['5.3million'], ['5.3million'], ['5.3million'], ['at'], ['at'], ['at'], ['at'], ['at'], ['5.3million'], ['at'], ['at'], ['at'], ['at'], ['at'], ['at'], ['5.3million'], ['at'], ['at'], ['5.3million'], ['at'], ['at'], ['at'], ['at'], ['at'], ['at'], ['at'], ['at'], ['at'], ['at'], ['5.3million'], ['at'], ['5.3million'], ['at'], ['at'], ['at'], ['5.3million'], ['at'], ['5.3million'], ['5.3million'], ['at'], ['rehahn'], ['at'], ['at'], ['at'], ['at'], ['at'], ['at'], ['at'], ['rehahn'], ['at'],
(rest of stdout omitted)

Whereas the target summaries should have been parsed properly. For example:

Targets...
[['Lord', 'Mervyn', 'Davies,', '62,', 'was', 'at', 'a', 'Royal', 'Academy', 'of', 'Arts', 'party', 'last', 'night.', 'Singer', 'Usher', 'had', 'been', 'speaking', 'to', 'group', 'of', 'young', 'people', 'at', 'charity', 'event.', 'Labour', 'peer', 'showed', 'off', 'his', 'fancy', 'footwork', 'on', 'the', 'dance', 'floor.', 'Usher', 'will', 'finish', 'his', 'tour', 'with', 'a', 'concert', 'at', 'the', 'O2', 'tonight', '.'], ['Craig', 'MacLean,', '22,', 'was', 'on', 'flight', 'to', 'Abu', 'Dhabi', 'when', 'staff', 'called', 'for', 'doctor.', 'The', 'medical', 'student', 'stepped', 'in', 'to', 'help', 'when', 'man', 'suffered', 'a', 'cardiac', 'arrest.', 'Dundee', 'University', 'student', 'started', 'trying', 'to', 'revive', 'the', 'passenger', 'at', '36,000ft.', 'KLM', 'flight', 'from', 'Scotland', 'diverted', 'to', 'Turkey', 'and', 'man', 'received', 'medical', 'care.'],
(and so on)
  1. The error messages:
    The rouge score ends up being zero and the training quickly reports error:
eval loss: 8.41, eval rouge: 0.00
early stopping triggered...
---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
~/workspace/GGNN_text_summarizer/train_and_eval.py in <module>
    625 
    626 if __name__ == "__main__":
--> 627     main()

~/workspace/GGNN_text_summarizer/train_and_eval.py in main()
    212 
    213     if args.infer_source_file is not None:
--> 214         infer(model, args)
    215 
    216 

~/workspace/GGNN_text_summarizer/train_and_eval.py in infer(model, args)
    487         # saver = tf.train.Saver(max_to_keep=100)
    488         saver = tf.train.Saver(max_to_keep=1)
--> 489         saver.restore(session, os.path.join(args.checkpoint_dir, "best.ckpt"))
    490 
    491         # build eval graph, loss and prediction ops

~/software/anaconda3/envs/tensorflow/lib/python3.7/site-packages/tensorflow/python/training/saver.py in restore(self, sess, save_path)
   1266     if not checkpoint_management.checkpoint_exists(compat.as_text(save_path)):
   1267       raise ValueError("The passed save_path is not a valid checkpoint: "
-> 1268                        + compat.as_text(save_path))
   1269 
   1270     logging.info("Restoring parameters from %s", compat.as_text(save_path))

ValueError: The passed save_path is not a valid checkpoint: cnndailymail_summarizer/best.ckpt

Would you mind providing some insights on what might have caused this issue? Thanks!

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions