You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
<!-- navigation toc: --><li><ahref="#techniques-for-speeding-up-diffusion-models" style="font-size: 80%;">Techniques for speeding up diffusion models</a></li>
226
+
<!-- navigation toc: --><li><ahref="#applications-of-diffusion-models" style="font-size: 80%;">Applications of diffusion models</a></li>
192
227
<!-- navigation toc: --><li><ahref="#pytorch-implementation-of-a-denoising-diffusion-probabilistic-model-ddpm-trained-on-the-mnist-dataset" style="font-size: 80%;">PyTorch implementation of a Denoising Diffusion Probabilistic Model (DDPM) trained on the MNIST dataset</a></li>
193
228
<!-- navigation toc: --><li><ahref="#problem-with-diffusion-models" style="font-size: 80%;">Problem with diffusion models</a></li>
194
229
<!-- navigation toc: --><li><ahref="#imports-and-utilities" style="font-size: 80%;">Imports and Utilities</a></li>
<li> A central paper is the one by Sohl-Dickstein et al, Deep Unsupervised Learning using Nonequilibrium Thermodynamics, <ahref="https://arxiv.org/abs/1503.03585" target="_self"><tt>https://arxiv.org/abs/1503.03585</tt></a></li>
256
291
<li> Calvin Luo at <ahref="https://arxiv.org/abs/2208.11970" target="_self"><tt>https://arxiv.org/abs/2208.11970</tt></a></li>
257
292
<li> See also Diederik P. Kingma, Tim Salimans, Ben Poole, Jonathan Ho, Variational Diffusion Models, <ahref="https://arxiv.org/abs/2107.00630" target="_self"><tt>https://arxiv.org/abs/2107.00630</tt></a></li>
293
+
<li> See also David Foster <em>Generative Deep Learning</em>, chapter 8 on diffusion models.</li>
<p>Denoising diffusion probabilistic models (DDPMs) are a specific type
740
+
of diffusion model that focuses on probabilistically removing noise
741
+
from data. During training, they learn how noise is added to data over
742
+
time and how to reverse this process to recover the original
743
+
data. This involves using probabilities to make educated guesses about
744
+
what the data looked like before noise was added. This approach is
745
+
essential for the model's capability to accurately reconstruct data,
746
+
ensuring the outputs aren’t just noise-free but also closely resemble
747
+
the original data.
748
+
</p>
749
+
750
+
<!-- !split -->
751
+
<h2id="techniques-for-speeding-up-diffusion-models" class="anchor">Techniques for speeding up diffusion models </h2>
752
+
753
+
<p>Generating a sample from DDPM using the reverse diffusion process is
754
+
quite slow because it involves many steps, possibly up to a
755
+
thousand. For instance, according to Song et al. (2020), it takes
756
+
about 20 hours to generate 50,000 small images with a DDPM, while a
757
+
GAN can create the same amount in less than a minute using an Nvidia
758
+
2080 Ti GPU.
759
+
</p>
760
+
761
+
<p>There is an alternative method called Denoising Diffusion Implicit
762
+
Model (DDIM) that stands out for its efficiency and quality. Unlike
763
+
traditional models, DDIM needs fewer steps to create clear images from
764
+
noisy data.
765
+
</p>
766
+
767
+
<!-- !split -->
768
+
<h2id="applications-of-diffusion-models" class="anchor">Applications of diffusion models </h2>
769
+
770
+
<p>There are very diverse applications of diffusion models, one of the most exciting being digital art creation.
771
+
The document at <ahref="https://www.superannotate.com/blog/diffusion-models#:~:text=A%20primary%20advantage%20of%20diffusion,to%20generate%20highly%20realistic%20images" target="_self"><tt>https://www.superannotate.com/blog/diffusion-models#:~:text=A%20primary%20advantage%20of%20diffusion,to%20generate%20highly%20realistic%20images</tt></a> gives many nice examples of applications.
772
+
.
773
+
</p>
774
+
609
775
<!-- !split -->
610
776
<h2id="pytorch-implementation-of-a-denoising-diffusion-probabilistic-model-ddpm-trained-on-the-mnist-dataset" class="anchor">PyTorch implementation of a Denoising Diffusion Probabilistic Model (DDPM) trained on the MNIST dataset </h2>
0 commit comments