-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathukf.cpp
107 lines (83 loc) · 3.52 KB
/
ukf.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
#include "localization/ukf.hpp"
// UKF
std::tuple<std::vector<float>, std::vector<float>, float>
setupWeights(float nx, float alpha, float kappa, float beta) {
// nx = L
float lamb = std::pow(alpha, 2) * (nx + kappa) - nx;
float gamma = std::sqrt(nx + lamb);
std::vector<float> wm(2*nx+1, 0.0f);
std::vector<float> wc(2*nx+1, 0.0f);
wm[0] = lamb / (lamb + nx);
wc[0] = ( lamb / (lamb + nx) ) + (1 - std::pow(alpha, 2) + beta);
for (size_t i = 1; i < 2*nx+1; ++i) {
wm[i] = 1.0f / (2 * (nx + lamb));
wc[i] = 1.0f / (2 * (nx + lamb));
}
return {wm, wc, gamma};
}
void unscentedKalmanFilter(Eigen::Vector4f& x_est, Eigen::Matrix4f& P_est,
const Eigen::Vector2f& u, const Eigen::Vector2f& z,
const Eigen::Matrix4f& Q, const Eigen::Matrix2f& R,
const float dt, const float gamma,
const std::vector<float>& wm,
const std::vector<float>& wc) {
std::vector<Eigen::Vector4f> sigma_points;
// STATE PREDICT
// generate and propogate sigma points through motion model
sigma_points = generateSigmaPoints(x_est, P_est, gamma);
for (auto& pt : sigma_points)
pt = motionModel(pt, u, dt);
// recombine sigma points to get predict mean and cov
Eigen::Vector4f x_pred = Eigen::Vector4f::Zero(4);
for (size_t i = 0; i < sigma_points.size(); ++i)
x_pred += wm[i] * sigma_points[i];
Eigen::Matrix4f P_pred = Q;
for (size_t i = 0; i < sigma_points.size(); ++i) {
Eigen::Vector4f diff = (sigma_points[i] - x_pred);
P_pred += wc[i] * diff * diff.transpose();
}
// STATE CORRECT
Eigen::Vector2f z_pred = observationModel(x_pred);
Eigen::Vector2f y = z - z_pred;
// generate sigma points, transform to observation domain
sigma_points = generateSigmaPoints(x_pred, P_pred, gamma);
std::vector<Eigen::Vector2f> z_sigma_points;
for (auto& pt : sigma_points)
z_sigma_points.emplace_back( observationModel(pt) );
Eigen::Vector2f z_mean = Eigen::Vector2f::Zero(2);
for (size_t i = 0; i < sigma_points.size(); ++i)
z_mean += wm[i] * z_sigma_points[i];
Eigen::Matrix2f cov_zz = R; // st
for (size_t i = 0; i < z_sigma_points.size(); ++i) {
Eigen::Vector2f diff = (z_sigma_points[i] - z_mean);
cov_zz += wc[i] * diff * diff.transpose();
}
// Eigen::Matrix<float, 4, 2> cov_xz;
Eigen::Matrix<float, 4, 2> cov_xz = Eigen::MatrixXf::Zero(4,2);
for (size_t i = 0; i < z_sigma_points.size(); ++i) {
Eigen::Vector2f diffz = (z_sigma_points[i] - z_mean);
Eigen::Vector4f diffx = (sigma_points[i] - x_pred);
cov_xz += wc[i] * diffx * diffz.transpose();
}
auto K = cov_xz * cov_zz.inverse(); // (4x2) * (2,2) => (4,2)
x_est = x_pred + K * y; // (4,1) + (4,2) * (2,1)
P_est = P_pred - K * cov_zz * K.transpose(); // (4,4) - (4,2)*(2,2)*(2,4)
}
std::vector<Eigen::Vector4f> generateSigmaPoints(
const Eigen::Vector4f& x_est, const Eigen::Matrix4f& P_est, const float gamma) {
//
const size_t L = 4;
std::vector<Eigen::Vector4f> sigma_points;
sigma_points.reserve(2*L + 1);
sigma_points.push_back(x_est);
Eigen::Matrix4f P_sqrt ( P_est.llt().matrixL() );
for (size_t i = 0; i < L; ++i) {
Eigen::Vector4f pt = x_est + gamma * P_sqrt.col(i);
sigma_points.push_back(pt);
}
for (size_t i = 0; i < L; ++i) {
Eigen::Vector4f pt = x_est - gamma * P_sqrt.col(i);
sigma_points.push_back(pt);
}
return sigma_points;
}