| 
12 | 12 |      "collapsed": false,  | 
13 | 13 |      "input": [  | 
14 | 14 |       "figsize(12.5, 4)\n",  | 
15 |  | -      "import scipy.stats as stats\n"  | 
 | 15 | +      "import scipy.stats as stats;"  | 
16 | 16 |      ],  | 
17 | 17 |      "language": "python",  | 
18 | 18 |      "metadata": {},  | 
 | 
48 | 48 |      "cell_type": "code",  | 
49 | 49 |      "collapsed": false,  | 
50 | 50 |      "input": [  | 
51 |  | -      "run github_datapull.py\n"  | 
 | 51 | +      "run github_datapull.py;"  | 
52 | 52 |      ],  | 
53 | 53 |      "language": "python",  | 
54 | 54 |      "metadata": {},  | 
 | 
350 | 350 |       "plt.title(\"Popularity of Repos (as measured by stars and forks)\")\n",  | 
351 | 351 |       "plt.xlabel(\"$K$\")\n",  | 
352 | 352 |       "plt.ylabel(\"number of repos with stars/forks  $K$\")\n",  | 
353 |  | -      "plt.xlim(-200, 35000)\n"  | 
 | 353 | +      "plt.xlim(-200, 35000);"  | 
354 | 354 |      ],  | 
355 | 355 |      "language": "python",  | 
356 | 356 |      "metadata": {},  | 
 | 
385 | 385 |       "plt.legend(loc=\"upper right\")\n",  | 
386 | 386 |       "plt.title(\"Log-Log plot of Popularity of Repos (as measured by stars and forks)\")\n",  | 
387 | 387 |       "plt.xlabel(\"$\\log{K}$\")\n",  | 
388 |  | -      "plt.ylabel(\"$\\log$(number of repos with stars/forks  < K )\")\n"  | 
 | 388 | +      "plt.ylabel(\"$\\log$(number of repos with stars/forks  < K )\");"  | 
389 | 389 |      ],  | 
390 | 390 |      "language": "python",  | 
391 | 391 |      "metadata": {},  | 
 | 
473 | 473 |       "model = pm.Model([param, yule_simon])\n",  | 
474 | 474 |       "mcmc = pm.MCMC(model)\n",  | 
475 | 475 |       "\n",  | 
476 |  | -      "mcmc.sample(10000, 8000)\n"  | 
 | 476 | +      "mcmc.sample(10000, 8000);"  | 
477 | 477 |      ],  | 
478 | 478 |      "language": "python",  | 
479 | 479 |      "metadata": {},  | 
 | 
501 | 501 |       "def logp(value, rho):\n",  | 
502 | 502 |       "        return np.log(rho) + np.log(beta(value, rho + 1))\n",  | 
503 | 503 |       "\n",  | 
504 |  | -      "beta(repo_with_stars, 1.3)\n"  | 
 | 504 | +      "beta(repo_with_stars, 1.3);"  | 
505 | 505 |      ],  | 
506 | 506 |      "language": "python",  | 
507 | 507 |      "metadata": {},  | 
 | 
537 | 537 |       "plt.plot(x, exp(-(x - 1) ** 2), label=\"Normal distribution\")\n",  | 
538 | 538 |       "plt.plot(x, x ** (-2), label=r\"Power law, $\\beta = -2$\")\n",  | 
539 | 539 |       "plt.plot(x, x ** (-1), label=r\"Power law, $\\beta = -1$\")\n",  | 
540 |  | -      "plt.legend()\n"  | 
 | 540 | +      "plt.legend();"  | 
541 | 541 |      ],  | 
542 | 542 |      "language": "python",  | 
543 | 543 |      "metadata": {},  | 
 | 
574 | 574 |       "def css_styling():\n",  | 
575 | 575 |       "    styles = open(\"../styles/custom.css\", \"r\").read()\n",  | 
576 | 576 |       "    return HTML(styles)\n",  | 
577 |  | -      "css_styling()\n"  | 
 | 577 | +      "css_styling();"  | 
578 | 578 |      ],  | 
579 | 579 |      "language": "python",  | 
580 | 580 |      "metadata": {},  | 
 | 
662 | 662 |       "\n",  | 
663 | 663 |       "@pm.observed\n",  | 
664 | 664 |       "def survival(value=y_, beta=beta):\n",  | 
665 |  | -      "    return np.sum([value[i - 1] * np.log((i + 0.) ** beta - (i + 1.) ** beta) for i in range(1, 99)])\n"  | 
 | 665 | +      "    return np.sum([value[i - 1] * np.log((i + 0.) ** beta - (i + 1.) ** beta) for i in range(1, 99)]);"  | 
666 | 666 |      ],  | 
667 | 667 |      "language": "python",  | 
668 | 668 |      "metadata": {},  | 
 | 
678 | 678 |       "# map_.fit()\n",  | 
679 | 679 |       "\n",  | 
680 | 680 |       "mcmc = pm.MCMC(model)\n",  | 
681 |  | -      "mcmc.sample(50000, 40000)\n"  | 
 | 681 | +      "mcmc.sample(50000, 40000);"  | 
682 | 682 |      ],  | 
683 | 683 |      "language": "python",  | 
684 | 684 |      "metadata": {},  | 
 | 
706 | 706 |      "collapsed": false,  | 
707 | 707 |      "input": [  | 
708 | 708 |       "from pymc.Matplot import plot as mcplot\n",  | 
709 |  | -      "mcplot(mcmc)\n"  | 
 | 709 | +      "mcplot(mcmc);"  | 
710 | 710 |      ],  | 
711 | 711 |      "language": "python",  | 
712 | 712 |      "metadata": {},  | 
 | 
729 | 729 |      "cell_type": "code",  | 
730 | 730 |      "collapsed": false,  | 
731 | 731 |      "input": [  | 
732 |  | -      "stars_to_explore[1:]\n"  | 
 | 732 | +      "stars_to_explore[1:];"  | 
733 | 733 |      ],  | 
734 | 734 |      "language": "python",  | 
735 | 735 |      "metadata": {},  | 
 | 
749 | 749 |      "cell_type": "code",  | 
750 | 750 |      "collapsed": false,  | 
751 | 751 |      "input": [  | 
752 |  | -      "a = stats.pareto.rvs(2.5, size=(50000, 1))\n"  | 
 | 752 | +      "a = stats.pareto.rvs(2.5, size=(50000, 1));"  | 
753 | 753 |      ],  | 
754 | 754 |      "language": "python",  | 
755 | 755 |      "metadata": {},  | 
 | 
761 | 761 |      "collapsed": false,  | 
762 | 762 |      "input": [  | 
763 | 763 |       "hist(a, bins=100)\n",  | 
764 |  | -      "print\n"  | 
 | 764 | +      "print;"  | 
765 | 765 |      ],  | 
766 | 766 |      "language": "python",  | 
767 | 767 |      "metadata": {},  | 
 | 
784 | 784 |      "cell_type": "code",  | 
785 | 785 |      "collapsed": false,  | 
786 | 786 |      "input": [  | 
787 |  | -      "y = [(a >= i).sum() for i in range(1, 100)]\n"  | 
 | 787 | +      "y = [(a >= i).sum() for i in range(1, 100)];"  | 
788 | 788 |      ],  | 
789 | 789 |      "language": "python",  | 
790 | 790 |      "metadata": {},  | 
 | 
798 | 798 |       "y_ = -np.diff(y)\n",  | 
799 | 799 |       "print y_\n",  | 
800 | 800 |       "\n",  | 
801 |  | -      "print y\n"  | 
 | 801 | +      "print y;"  | 
802 | 802 |      ],  | 
803 | 803 |      "language": "python",  | 
804 | 804 |      "metadata": {},  | 
 | 
826 | 826 |      "cell_type": "code",  | 
827 | 827 |      "collapsed": false,  | 
828 | 828 |      "input": [  | 
829 |  | -      "b = -2.3\n"  | 
 | 829 | +      "b = -2.3;"  | 
830 | 830 |      ],  | 
831 | 831 |      "language": "python",  | 
832 | 832 |      "metadata": {},  | 
 | 
837 | 837 |      "cell_type": "code",  | 
838 | 838 |      "collapsed": false,  | 
839 | 839 |      "input": [  | 
840 |  | -      "np.sum([y_[i - 1] * np.log((i + 0.) ** b - (i + 1.) ** b) for i in range(1, 7)]) + y[-1] * np.log(7)\n"  | 
 | 840 | +      "np.sum([y_[i - 1] * np.log((i + 0.) ** b - (i + 1.) ** b) for i in range(1, 7)]) + y[-1] * np.log(7);"  | 
841 | 841 |      ],  | 
842 | 842 |      "language": "python",  | 
843 | 843 |      "metadata": {},  | 
 | 
856 | 856 |      "cell_type": "code",  | 
857 | 857 |      "collapsed": false,  | 
858 | 858 |      "input": [  | 
859 |  | -      "y_\n"  | 
 | 859 | +      "y_;"  | 
860 | 860 |      ],  | 
861 | 861 |      "language": "python",  | 
862 | 862 |      "metadata": {},  | 
 | 
875 | 875 |      "cell_type": "code",  | 
876 | 876 |      "collapsed": false,  | 
877 | 877 |      "input": [  | 
878 |  | -      "np.append(y_, y[-1])\n"  | 
 | 878 | +      "np.append(y_, y[-1]);"  | 
879 | 879 |      ],  | 
880 | 880 |      "language": "python",  | 
881 | 881 |      "metadata": {},  | 
 | 
894 | 894 |      "cell_type": "code",  | 
895 | 895 |      "collapsed": false,  | 
896 | 896 |      "input": [  | 
897 |  | -      "mc.Uninformative?\n"  | 
 | 897 | +      "mc.Uninformative?"  | 
898 | 898 |      ],  | 
899 | 899 |      "language": "python",  | 
900 | 900 |      "metadata": {},  | 
 | 
0 commit comments