Skip to content

Commit e470f69

Browse files
committed
Pushing the docs to dev/ for branch: master, commit d2f8292e11af5e1e019a982fa871b7b254150f95
1 parent df97088 commit e470f69

File tree

913 files changed

+2665
-2665
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

913 files changed

+2665
-2665
lines changed
0 Bytes
Binary file not shown.
0 Bytes
Binary file not shown.

dev/_downloads/scikit-learn-docs.pdf

10 KB
Binary file not shown.
-137 Bytes
-137 Bytes
-19 Bytes
-285 Bytes
-285 Bytes
-491 Bytes
-491 Bytes
-172 Bytes
-172 Bytes
140 Bytes
-129 Bytes
-2 Bytes
-101 Bytes
-51 Bytes
-51 Bytes
61 Bytes
61 Bytes
211 Bytes
211 Bytes
130 Bytes
130 Bytes
253 Bytes
253 Bytes
-77 Bytes
-77 Bytes
264 Bytes
101 Bytes
-187 Bytes
-187 Bytes
4 Bytes
-179 Bytes
-179 Bytes
214 Bytes
-22 Bytes

dev/_sources/auto_examples/applications/plot_model_complexity_influence.txt

+15-15
Original file line numberDiff line numberDiff line change
@@ -226,69 +226,69 @@ main code
226226
learning_rate='optimal', loss='modified_huber', n_iter=5, n_jobs=1,
227227
penalty='elasticnet', power_t=0.5, random_state=None, shuffle=True,
228228
verbose=0, warm_start=False)
229-
Complexity: 4454 | Hamming Loss (Misclassification Ratio): 0.2501 | Pred. Time: 0.029489s
229+
Complexity: 4454 | Hamming Loss (Misclassification Ratio): 0.2501 | Pred. Time: 0.028000s
230230

231231
Benchmarking SGDClassifier(alpha=0.001, average=False, class_weight=None, epsilon=0.1,
232232
eta0=0.0, fit_intercept=True, l1_ratio=0.5, learning_rate='optimal',
233233
loss='modified_huber', n_iter=5, n_jobs=1, penalty='elasticnet',
234234
power_t=0.5, random_state=None, shuffle=True, verbose=0,
235235
warm_start=False)
236-
Complexity: 1624 | Hamming Loss (Misclassification Ratio): 0.2923 | Pred. Time: 0.021876s
236+
Complexity: 1624 | Hamming Loss (Misclassification Ratio): 0.2923 | Pred. Time: 0.021235s
237237

238238
Benchmarking SGDClassifier(alpha=0.001, average=False, class_weight=None, epsilon=0.1,
239239
eta0=0.0, fit_intercept=True, l1_ratio=0.75,
240240
learning_rate='optimal', loss='modified_huber', n_iter=5, n_jobs=1,
241241
penalty='elasticnet', power_t=0.5, random_state=None, shuffle=True,
242242
verbose=0, warm_start=False)
243-
Complexity: 873 | Hamming Loss (Misclassification Ratio): 0.3191 | Pred. Time: 0.016780s
243+
Complexity: 873 | Hamming Loss (Misclassification Ratio): 0.3191 | Pred. Time: 0.017545s
244244

245245
Benchmarking SGDClassifier(alpha=0.001, average=False, class_weight=None, epsilon=0.1,
246246
eta0=0.0, fit_intercept=True, l1_ratio=0.9, learning_rate='optimal',
247247
loss='modified_huber', n_iter=5, n_jobs=1, penalty='elasticnet',
248248
power_t=0.5, random_state=None, shuffle=True, verbose=0,
249249
warm_start=False)
250-
Complexity: 655 | Hamming Loss (Misclassification Ratio): 0.3252 | Pred. Time: 0.014468s
250+
Complexity: 655 | Hamming Loss (Misclassification Ratio): 0.3252 | Pred. Time: 0.015625s
251251

252252
Benchmarking NuSVR(C=1000.0, cache_size=200, coef0=0.0, degree=3, gamma=3.0517578125e-05,
253253
kernel='rbf', max_iter=-1, nu=0.1, shrinking=True, tol=0.001,
254254
verbose=False)
255-
Complexity: 69 | MSE: 31.8133 | Pred. Time: 0.000389s
255+
Complexity: 69 | MSE: 31.8133 | Pred. Time: 0.000393s
256256

257257
Benchmarking NuSVR(C=1000.0, cache_size=200, coef0=0.0, degree=3, gamma=3.0517578125e-05,
258258
kernel='rbf', max_iter=-1, nu=0.25, shrinking=True, tol=0.001,
259259
verbose=False)
260-
Complexity: 136 | MSE: 25.6140 | Pred. Time: 0.000702s
260+
Complexity: 136 | MSE: 25.6140 | Pred. Time: 0.000693s
261261

262262
Benchmarking NuSVR(C=1000.0, cache_size=200, coef0=0.0, degree=3, gamma=3.0517578125e-05,
263263
kernel='rbf', max_iter=-1, nu=0.5, shrinking=True, tol=0.001,
264264
verbose=False)
265-
Complexity: 243 | MSE: 22.3315 | Pred. Time: 0.001198s
265+
Complexity: 243 | MSE: 22.3315 | Pred. Time: 0.001359s
266266

267267
Benchmarking NuSVR(C=1000.0, cache_size=200, coef0=0.0, degree=3, gamma=3.0517578125e-05,
268268
kernel='rbf', max_iter=-1, nu=0.75, shrinking=True, tol=0.001,
269269
verbose=False)
270-
Complexity: 350 | MSE: 21.3679 | Pred. Time: 0.001700s
270+
Complexity: 350 | MSE: 21.3679 | Pred. Time: 0.001671s
271271

272272
Benchmarking NuSVR(C=1000.0, cache_size=200, coef0=0.0, degree=3, gamma=3.0517578125e-05,
273273
kernel='rbf', max_iter=-1, nu=0.9, shrinking=True, tol=0.001,
274274
verbose=False)
275-
Complexity: 404 | MSE: 21.0915 | Pred. Time: 0.001934s
275+
Complexity: 404 | MSE: 21.0915 | Pred. Time: 0.001907s
276276

277277
Benchmarking GradientBoostingRegressor(alpha=0.9, criterion='friedman_mse', init=None,
278278
learning_rate=0.1, loss='ls', max_depth=3, max_features=None,
279279
max_leaf_nodes=None, min_impurity_split=1e-07,
280280
min_samples_leaf=1, min_samples_split=2,
281281
min_weight_fraction_leaf=0.0, n_estimators=10, presort='auto',
282282
random_state=None, subsample=1.0, verbose=0, warm_start=False)
283-
Complexity: 10 | MSE: 28.9793 | Pred. Time: 0.000120s
283+
Complexity: 10 | MSE: 28.9793 | Pred. Time: 0.000118s
284284

285285
Benchmarking GradientBoostingRegressor(alpha=0.9, criterion='friedman_mse', init=None,
286286
learning_rate=0.1, loss='ls', max_depth=3, max_features=None,
287287
max_leaf_nodes=None, min_impurity_split=1e-07,
288288
min_samples_leaf=1, min_samples_split=2,
289289
min_weight_fraction_leaf=0.0, n_estimators=50, presort='auto',
290290
random_state=None, subsample=1.0, verbose=0, warm_start=False)
291-
Complexity: 50 | MSE: 8.3398 | Pred. Time: 0.000212s
291+
Complexity: 50 | MSE: 8.3398 | Pred. Time: 0.000208s
292292

293293
Benchmarking GradientBoostingRegressor(alpha=0.9, criterion='friedman_mse', init=None,
294294
learning_rate=0.1, loss='ls', max_depth=3, max_features=None,
@@ -297,7 +297,7 @@ main code
297297
min_weight_fraction_leaf=0.0, n_estimators=100,
298298
presort='auto', random_state=None, subsample=1.0, verbose=0,
299299
warm_start=False)
300-
Complexity: 100 | MSE: 7.0096 | Pred. Time: 0.000306s
300+
Complexity: 100 | MSE: 7.0096 | Pred. Time: 0.000313s
301301

302302
Benchmarking GradientBoostingRegressor(alpha=0.9, criterion='friedman_mse', init=None,
303303
learning_rate=0.1, loss='ls', max_depth=3, max_features=None,
@@ -306,7 +306,7 @@ main code
306306
min_weight_fraction_leaf=0.0, n_estimators=200,
307307
presort='auto', random_state=None, subsample=1.0, verbose=0,
308308
warm_start=False)
309-
Complexity: 200 | MSE: 6.1836 | Pred. Time: 0.000484s
309+
Complexity: 200 | MSE: 6.1836 | Pred. Time: 0.000476s
310310

311311
Benchmarking GradientBoostingRegressor(alpha=0.9, criterion='friedman_mse', init=None,
312312
learning_rate=0.1, loss='ls', max_depth=3, max_features=None,
@@ -315,10 +315,10 @@ main code
315315
min_weight_fraction_leaf=0.0, n_estimators=500,
316316
presort='auto', random_state=None, subsample=1.0, verbose=0,
317317
warm_start=False)
318-
Complexity: 500 | MSE: 6.3426 | Pred. Time: 0.001058s
318+
Complexity: 500 | MSE: 6.3426 | Pred. Time: 0.001060s
319319

320320

321-
**Total running time of the script:** ( 0 minutes 25.226 seconds)
321+
**Total running time of the script:** ( 0 minutes 25.285 seconds)
322322

323323

324324

dev/_sources/auto_examples/applications/plot_out_of_core_classification.txt

+27-27
Original file line numberDiff line numberDiff line change
@@ -357,45 +357,45 @@ maximum
357357

358358
Test set is 878 documents (108 positive)
359359
Passive-Aggressive classifier : 962 train docs ( 132 positive) 878 test docs ( 108 positive) accuracy: 0.913 in 1.77s ( 544 docs/s)
360-
Perceptron classifier : 962 train docs ( 132 positive) 878 test docs ( 108 positive) accuracy: 0.921 in 1.77s ( 543 docs/s)
361-
SGD classifier : 962 train docs ( 132 positive) 878 test docs ( 108 positive) accuracy: 0.925 in 1.77s ( 542 docs/s)
360+
Perceptron classifier : 962 train docs ( 132 positive) 878 test docs ( 108 positive) accuracy: 0.921 in 1.77s ( 542 docs/s)
361+
SGD classifier : 962 train docs ( 132 positive) 878 test docs ( 108 positive) accuracy: 0.925 in 1.78s ( 541 docs/s)
362362
NB Multinomial classifier : 962 train docs ( 132 positive) 878 test docs ( 108 positive) accuracy: 0.877 in 1.81s ( 530 docs/s)
363363

364364

365-
Passive-Aggressive classifier : 3911 train docs ( 517 positive) 878 test docs ( 108 positive) accuracy: 0.946 in 5.15s ( 759 docs/s)
366-
Perceptron classifier : 3911 train docs ( 517 positive) 878 test docs ( 108 positive) accuracy: 0.926 in 5.15s ( 759 docs/s)
367-
SGD classifier : 3911 train docs ( 517 positive) 878 test docs ( 108 positive) accuracy: 0.945 in 5.16s ( 758 docs/s)
368-
NB Multinomial classifier : 3911 train docs ( 517 positive) 878 test docs ( 108 positive) accuracy: 0.885 in 5.19s ( 753 docs/s)
365+
Passive-Aggressive classifier : 3911 train docs ( 517 positive) 878 test docs ( 108 positive) accuracy: 0.946 in 5.16s ( 758 docs/s)
366+
Perceptron classifier : 3911 train docs ( 517 positive) 878 test docs ( 108 positive) accuracy: 0.926 in 5.16s ( 758 docs/s)
367+
SGD classifier : 3911 train docs ( 517 positive) 878 test docs ( 108 positive) accuracy: 0.945 in 5.16s ( 757 docs/s)
368+
NB Multinomial classifier : 3911 train docs ( 517 positive) 878 test docs ( 108 positive) accuracy: 0.885 in 5.20s ( 751 docs/s)
369369

370370

371-
Passive-Aggressive classifier : 6821 train docs ( 891 positive) 878 test docs ( 108 positive) accuracy: 0.951 in 8.52s ( 801 docs/s)
372-
Perceptron classifier : 6821 train docs ( 891 positive) 878 test docs ( 108 positive) accuracy: 0.949 in 8.52s ( 800 docs/s)
373-
SGD classifier : 6821 train docs ( 891 positive) 878 test docs ( 108 positive) accuracy: 0.938 in 8.52s ( 800 docs/s)
374-
NB Multinomial classifier : 6821 train docs ( 891 positive) 878 test docs ( 108 positive) accuracy: 0.899 in 8.56s ( 796 docs/s)
371+
Passive-Aggressive classifier : 6821 train docs ( 891 positive) 878 test docs ( 108 positive) accuracy: 0.951 in 8.52s ( 800 docs/s)
372+
Perceptron classifier : 6821 train docs ( 891 positive) 878 test docs ( 108 positive) accuracy: 0.949 in 8.53s ( 799 docs/s)
373+
SGD classifier : 6821 train docs ( 891 positive) 878 test docs ( 108 positive) accuracy: 0.938 in 8.53s ( 799 docs/s)
374+
NB Multinomial classifier : 6821 train docs ( 891 positive) 878 test docs ( 108 positive) accuracy: 0.899 in 8.57s ( 796 docs/s)
375375

376376

377-
Passive-Aggressive classifier : 9759 train docs ( 1276 positive) 878 test docs ( 108 positive) accuracy: 0.964 in 11.89s ( 820 docs/s)
378-
Perceptron classifier : 9759 train docs ( 1276 positive) 878 test docs ( 108 positive) accuracy: 0.950 in 11.89s ( 820 docs/s)
379-
SGD classifier : 9759 train docs ( 1276 positive) 878 test docs ( 108 positive) accuracy: 0.958 in 11.90s ( 820 docs/s)
380-
NB Multinomial classifier : 9759 train docs ( 1276 positive) 878 test docs ( 108 positive) accuracy: 0.909 in 11.93s ( 817 docs/s)
377+
Passive-Aggressive classifier : 9759 train docs ( 1276 positive) 878 test docs ( 108 positive) accuracy: 0.964 in 11.86s ( 822 docs/s)
378+
Perceptron classifier : 9759 train docs ( 1276 positive) 878 test docs ( 108 positive) accuracy: 0.950 in 11.87s ( 822 docs/s)
379+
SGD classifier : 9759 train docs ( 1276 positive) 878 test docs ( 108 positive) accuracy: 0.958 in 11.87s ( 821 docs/s)
380+
NB Multinomial classifier : 9759 train docs ( 1276 positive) 878 test docs ( 108 positive) accuracy: 0.909 in 11.91s ( 819 docs/s)
381381

382382

383-
Passive-Aggressive classifier : 11680 train docs ( 1499 positive) 878 test docs ( 108 positive) accuracy: 0.951 in 14.96s ( 780 docs/s)
384-
Perceptron classifier : 11680 train docs ( 1499 positive) 878 test docs ( 108 positive) accuracy: 0.951 in 14.96s ( 780 docs/s)
385-
SGD classifier : 11680 train docs ( 1499 positive) 878 test docs ( 108 positive) accuracy: 0.951 in 14.96s ( 780 docs/s)
386-
NB Multinomial classifier : 11680 train docs ( 1499 positive) 878 test docs ( 108 positive) accuracy: 0.916 in 15.00s ( 778 docs/s)
383+
Passive-Aggressive classifier : 11680 train docs ( 1499 positive) 878 test docs ( 108 positive) accuracy: 0.951 in 14.88s ( 784 docs/s)
384+
Perceptron classifier : 11680 train docs ( 1499 positive) 878 test docs ( 108 positive) accuracy: 0.951 in 14.88s ( 784 docs/s)
385+
SGD classifier : 11680 train docs ( 1499 positive) 878 test docs ( 108 positive) accuracy: 0.951 in 14.89s ( 784 docs/s)
386+
NB Multinomial classifier : 11680 train docs ( 1499 positive) 878 test docs ( 108 positive) accuracy: 0.916 in 14.92s ( 782 docs/s)
387387

388388

389-
Passive-Aggressive classifier : 14625 train docs ( 1865 positive) 878 test docs ( 108 positive) accuracy: 0.966 in 18.37s ( 796 docs/s)
390-
Perceptron classifier : 14625 train docs ( 1865 positive) 878 test docs ( 108 positive) accuracy: 0.956 in 18.37s ( 796 docs/s)
391-
SGD classifier : 14625 train docs ( 1865 positive) 878 test docs ( 108 positive) accuracy: 0.954 in 18.38s ( 795 docs/s)
392-
NB Multinomial classifier : 14625 train docs ( 1865 positive) 878 test docs ( 108 positive) accuracy: 0.926 in 18.41s ( 794 docs/s)
389+
Passive-Aggressive classifier : 14625 train docs ( 1865 positive) 878 test docs ( 108 positive) accuracy: 0.966 in 18.34s ( 797 docs/s)
390+
Perceptron classifier : 14625 train docs ( 1865 positive) 878 test docs ( 108 positive) accuracy: 0.956 in 18.35s ( 797 docs/s)
391+
SGD classifier : 14625 train docs ( 1865 positive) 878 test docs ( 108 positive) accuracy: 0.954 in 18.35s ( 796 docs/s)
392+
NB Multinomial classifier : 14625 train docs ( 1865 positive) 878 test docs ( 108 positive) accuracy: 0.926 in 18.39s ( 795 docs/s)
393393

394394

395-
Passive-Aggressive classifier : 17360 train docs ( 2179 positive) 878 test docs ( 108 positive) accuracy: 0.954 in 21.53s ( 806 docs/s)
396-
Perceptron classifier : 17360 train docs ( 2179 positive) 878 test docs ( 108 positive) accuracy: 0.957 in 21.54s ( 806 docs/s)
397-
SGD classifier : 17360 train docs ( 2179 positive) 878 test docs ( 108 positive) accuracy: 0.949 in 21.54s ( 805 docs/s)
398-
NB Multinomial classifier : 17360 train docs ( 2179 positive) 878 test docs ( 108 positive) accuracy: 0.932 in 21.58s ( 804 docs/s)
395+
Passive-Aggressive classifier : 17360 train docs ( 2179 positive) 878 test docs ( 108 positive) accuracy: 0.954 in 21.52s ( 806 docs/s)
396+
Perceptron classifier : 17360 train docs ( 2179 positive) 878 test docs ( 108 positive) accuracy: 0.957 in 21.52s ( 806 docs/s)
397+
SGD classifier : 17360 train docs ( 2179 positive) 878 test docs ( 108 positive) accuracy: 0.949 in 21.53s ( 806 docs/s)
398+
NB Multinomial classifier : 17360 train docs ( 2179 positive) 878 test docs ( 108 positive) accuracy: 0.932 in 21.56s ( 805 docs/s)
399399

400400

401401
Plot results
@@ -526,7 +526,7 @@ Plot results
526526

527527

528528

529-
**Total running time of the script:** ( 0 minutes 23.561 seconds)
529+
**Total running time of the script:** ( 0 minutes 23.547 seconds)
530530

531531

532532

dev/_sources/auto_examples/applications/plot_outlier_detection_housing.txt

+1-1
Original file line numberDiff line numberDiff line change
@@ -158,7 +158,7 @@ risk of over-fitting the data.
158158

159159
plt.show()
160160

161-
**Total running time of the script:** ( 0 minutes 4.720 seconds)
161+
**Total running time of the script:** ( 0 minutes 4.769 seconds)
162162

163163

164164

dev/_sources/auto_examples/applications/plot_prediction_latency.txt

+2-2
Original file line numberDiff line numberDiff line change
@@ -372,10 +372,10 @@ main code
372372
benchmarking with 100 features
373373
benchmarking with 250 features
374374
benchmarking with 500 features
375-
example run in 3.85s
375+
example run in 3.91s
376376

377377

378-
**Total running time of the script:** ( 0 minutes 3.854 seconds)
378+
**Total running time of the script:** ( 0 minutes 3.910 seconds)
379379

380380

381381

dev/_sources/auto_examples/applications/plot_species_distribution_modeling.txt

+2-2
Original file line numberDiff line numberDiff line change
@@ -65,7 +65,7 @@ References
6565

6666
Area under the ROC curve : 0.993919
6767

68-
time elapsed: 6.82s
68+
time elapsed: 6.84s
6969

7070

7171

@@ -247,7 +247,7 @@ References
247247
plot_species_distribution()
248248
plt.show()
249249

250-
**Total running time of the script:** ( 0 minutes 6.826 seconds)
250+
**Total running time of the script:** ( 0 minutes 6.843 seconds)
251251

252252

253253

dev/_sources/auto_examples/applications/plot_stock_market.txt

+1-1
Original file line numberDiff line numberDiff line change
@@ -340,7 +340,7 @@ Visualization
340340

341341

342342

343-
**Total running time of the script:** ( 0 minutes 11.446 seconds)
343+
**Total running time of the script:** ( 0 minutes 11.194 seconds)
344344

345345

346346

dev/_sources/auto_examples/applications/plot_tomography_l1_reconstruction.txt

+1-1
Original file line numberDiff line numberDiff line change
@@ -164,7 +164,7 @@ contributed to fewer projections than the central disk.
164164

165165
plt.show()
166166

167-
**Total running time of the script:** ( 0 minutes 9.916 seconds)
167+
**Total running time of the script:** ( 0 minutes 9.900 seconds)
168168

169169

170170

dev/_sources/auto_examples/bicluster/plot_spectral_biclustering.txt

+1-1
Original file line numberDiff line numberDiff line change
@@ -106,7 +106,7 @@ representation of the checkerboard structure.
106106

107107
plt.show()
108108

109-
**Total running time of the script:** ( 0 minutes 0.909 seconds)
109+
**Total running time of the script:** ( 0 minutes 0.938 seconds)
110110

111111

112112

dev/_sources/auto_examples/bicluster/plot_spectral_coclustering.txt

+1-1
Original file line numberDiff line numberDiff line change
@@ -93,7 +93,7 @@ the biclusters.
9393

9494
plt.show()
9595

96-
**Total running time of the script:** ( 0 minutes 0.240 seconds)
96+
**Total running time of the script:** ( 0 minutes 0.241 seconds)
9797

9898

9999

dev/_sources/auto_examples/calibration/plot_calibration_curve.txt

+1-1
Original file line numberDiff line numberDiff line change
@@ -214,7 +214,7 @@ but not where it is transposed-sigmoid (e.g., Gaussian naive Bayes).
214214

215215
plt.show()
216216

217-
**Total running time of the script:** ( 0 minutes 2.261 seconds)
217+
**Total running time of the script:** ( 0 minutes 2.280 seconds)
218218

219219

220220

dev/_sources/auto_examples/calibration/plot_calibration_multiclass.txt

+1-1
Original file line numberDiff line numberDiff line change
@@ -204,7 +204,7 @@ would have resulted in a similar decrease in log-loss.
204204

205205
plt.show()
206206

207-
**Total running time of the script:** ( 0 minutes 0.703 seconds)
207+
**Total running time of the script:** ( 0 minutes 0.705 seconds)
208208

209209

210210

dev/_sources/auto_examples/calibration/plot_compare_calibration.txt

+1-1
Original file line numberDiff line numberDiff line change
@@ -147,7 +147,7 @@ Plot calibration plots
147147

148148

149149

150-
**Total running time of the script:** ( 0 minutes 2.659 seconds)
150+
**Total running time of the script:** ( 0 minutes 2.732 seconds)
151151

152152

153153

dev/_sources/auto_examples/classification/plot_classification_probability.txt

+1-1
Original file line numberDiff line numberDiff line change
@@ -113,7 +113,7 @@ a result it can identify only the first class.
113113

114114
plt.show()
115115

116-
**Total running time of the script:** ( 0 minutes 2.565 seconds)
116+
**Total running time of the script:** ( 0 minutes 2.588 seconds)
117117

118118

119119

dev/_sources/auto_examples/classification/plot_classifier_comparison.txt

+1-1
Original file line numberDiff line numberDiff line change
@@ -153,7 +153,7 @@ set.
153153
plt.tight_layout()
154154
plt.show()
155155

156-
**Total running time of the script:** ( 0 minutes 8.043 seconds)
156+
**Total running time of the script:** ( 0 minutes 8.075 seconds)
157157

158158

159159

dev/_sources/auto_examples/classification/plot_digits_classification.txt

+1-1
Original file line numberDiff line numberDiff line change
@@ -120,7 +120,7 @@ This example is commented in the
120120

121121
plt.show()
122122

123-
**Total running time of the script:** ( 0 minutes 0.797 seconds)
123+
**Total running time of the script:** ( 0 minutes 0.788 seconds)
124124

125125

126126

dev/_sources/auto_examples/classification/plot_lda.txt

+1-1
Original file line numberDiff line numberDiff line change
@@ -86,7 +86,7 @@ Shows how shrinkage improves classification.
8686
shrinkage Linear Discriminant Analysis (1 discriminative feature)')
8787
plt.show()
8888

89-
**Total running time of the script:** ( 0 minutes 6.176 seconds)
89+
**Total running time of the script:** ( 0 minutes 6.236 seconds)
9090

9191

9292

dev/_sources/auto_examples/classification/plot_lda_qda.txt

+1-1
Original file line numberDiff line numberDiff line change
@@ -204,7 +204,7 @@ plot functions
204204

205205

206206

207-
**Total running time of the script:** ( 0 minutes 0.425 seconds)
207+
**Total running time of the script:** ( 0 minutes 0.426 seconds)
208208

209209

210210

dev/_sources/auto_examples/cluster/plot_adjusted_for_chance_measures.txt

+6-6
Original file line numberDiff line numberDiff line change
@@ -50,17 +50,17 @@ value of k on various overlapping sub-samples of the dataset.
5050
Computing v_measure_score for 10 values of n_clusters and n_samples=100
5151
done in 0.064s
5252
Computing adjusted_mutual_info_score for 10 values of n_clusters and n_samples=100
53-
done in 0.486s
53+
done in 0.488s
5454
Computing mutual_info_score for 10 values of n_clusters and n_samples=100
5555
done in 0.054s
5656
Computing adjusted_rand_score for 10 values of n_clusters and n_samples=1000
57-
done in 0.066s
57+
done in 0.071s
5858
Computing v_measure_score for 10 values of n_clusters and n_samples=1000
59-
done in 0.085s
59+
done in 0.088s
6060
Computing adjusted_mutual_info_score for 10 values of n_clusters and n_samples=1000
61-
done in 0.308s
61+
done in 0.320s
6262
Computing mutual_info_score for 10 values of n_clusters and n_samples=1000
63-
done in 0.069s
63+
done in 0.074s
6464

6565

6666

@@ -171,7 +171,7 @@ value of k on various overlapping sub-samples of the dataset.
171171
plt.legend(plots, names)
172172
plt.show()
173173

174-
**Total running time of the script:** ( 0 minutes 1.416 seconds)
174+
**Total running time of the script:** ( 0 minutes 1.449 seconds)
175175

176176

177177

dev/_sources/auto_examples/cluster/plot_affinity_propagation.txt

+1-1
Original file line numberDiff line numberDiff line change
@@ -118,7 +118,7 @@ Plot result
118118

119119

120120

121-
**Total running time of the script:** ( 0 minutes 0.718 seconds)
121+
**Total running time of the script:** ( 0 minutes 0.739 seconds)
122122

123123

124124

dev/_sources/auto_examples/cluster/plot_agglomerative_clustering.txt

+1-1
Original file line numberDiff line numberDiff line change
@@ -111,7 +111,7 @@ percolation instability.
111111

112112
plt.show()
113113

114-
**Total running time of the script:** ( 0 minutes 2.902 seconds)
114+
**Total running time of the script:** ( 0 minutes 3.154 seconds)
115115

116116

117117

dev/_sources/auto_examples/cluster/plot_agglomerative_clustering_metrics.txt

+1-1
Original file line numberDiff line numberDiff line change
@@ -179,7 +179,7 @@ thus the clustering puts them in the same cluster.
179179

180180
plt.show()
181181

182-
**Total running time of the script:** ( 0 minutes 1.295 seconds)
182+
**Total running time of the script:** ( 0 minutes 1.351 seconds)
183183

184184

185185

0 commit comments

Comments
 (0)