Skip to content

Commit 33c6635

Browse files
committed
More robust test for sample_weight in Ridge.
1 parent 41ae4c9 commit 33c6635

File tree

1 file changed

+16
-15
lines changed

1 file changed

+16
-15
lines changed

sklearn/linear_model/tests/test_ridge.py

Lines changed: 16 additions & 15 deletions
Original file line numberDiff line numberDiff line change
@@ -108,24 +108,25 @@ def test_ridge_singular():
108108

109109
def test_ridge_sample_weights():
110110
rng = np.random.RandomState(0)
111-
alpha = 1.0
112111

113-
#for solver in ("svd", "sparse_cg", "dense_cholesky", "lsqr"):
114112
for solver in ("dense_cholesky", ):
115113
for n_samples, n_features in ((6, 5), (5, 10)):
116-
y = rng.randn(n_samples)
117-
X = rng.randn(n_samples, n_features)
118-
sample_weight = 1 + rng.rand(n_samples)
119-
120-
coefs = ridge_regression(X, y, alpha, sample_weight,
121-
solver=solver)
122-
# Sample weight can be implemented via a simple rescaling
123-
# for the square loss
124-
coefs2 = ridge_regression(
125-
X * np.sqrt(sample_weight)[:, np.newaxis],
126-
y * np.sqrt(sample_weight),
127-
alpha, solver=solver)
128-
assert_array_almost_equal(coefs, coefs2)
114+
for alpha in (1.0, 1e-2):
115+
y = rng.randn(n_samples)
116+
X = rng.randn(n_samples, n_features)
117+
sample_weight = 1 + rng.rand(n_samples)
118+
119+
coefs = ridge_regression(X, y,
120+
alpha=alpha,
121+
sample_weight=sample_weight,
122+
solver=solver)
123+
# Sample weight can be implemented via a simple rescaling
124+
# for the square loss.
125+
coefs2 = ridge_regression(
126+
X * np.sqrt(sample_weight)[:, np.newaxis],
127+
y * np.sqrt(sample_weight),
128+
alpha=alpha, solver=solver)
129+
assert_array_almost_equal(coefs, coefs2)
129130

130131

131132
def test_ridge_shapes():

0 commit comments

Comments
 (0)