|
1 |
| -{ |
2 |
| - "cells": [ |
3 |
| - { |
4 |
| - "cell_type": "code", |
5 |
| - "execution_count": 1, |
6 |
| - "metadata": {}, |
7 |
| - "outputs": [], |
8 |
| - "source": [ |
9 |
| - "import numpy as np" |
10 |
| - ] |
11 |
| - }, |
12 |
| - { |
13 |
| - "cell_type": "code", |
14 |
| - "execution_count": 2, |
15 |
| - "metadata": {}, |
16 |
| - "outputs": [], |
17 |
| - "source": [ |
18 |
| - "X = np.zeros((100, 5), dtype='bool')\n", |
19 |
| - "features = [\"bread\", \"milk\", \"cheese\", \"apples\", \"bananas\"]" |
20 |
| - ] |
21 |
| - }, |
22 |
| - { |
23 |
| - "cell_type": "code", |
24 |
| - "execution_count": 3, |
25 |
| - "metadata": {}, |
26 |
| - "outputs": [], |
27 |
| - "source": [ |
28 |
| - "for i in range(X.shape[0]):\n", |
29 |
| - " if np.random.random() < 0.3:\n", |
30 |
| - " # A bread winner\n", |
31 |
| - " X[i][0] = 1\n", |
32 |
| - " if np.random.random() < 0.5:\n", |
33 |
| - " # Who likes milk\n", |
34 |
| - " X[i][1] = 1\n", |
35 |
| - " if np.random.random() < 0.2:\n", |
36 |
| - " # Who likes cheese\n", |
37 |
| - " X[i][2] = 1\n", |
38 |
| - " if np.random.random() < 0.25:\n", |
39 |
| - " # Who likes apples\n", |
40 |
| - " X[i][3] = 1\n", |
41 |
| - " if np.random.random() < 0.5:\n", |
42 |
| - " # Who likes bananas\n", |
43 |
| - " X[i][4] = 1\n", |
44 |
| - " else:\n", |
45 |
| - " # Not a bread winner\n", |
46 |
| - " if np.random.random() < 0.5:\n", |
47 |
| - " # Who likes milk\n", |
48 |
| - " X[i][1] = 1\n", |
49 |
| - " if np.random.random() < 0.2:\n", |
50 |
| - " # Who likes cheese\n", |
51 |
| - " X[i][2] = 1\n", |
52 |
| - " if np.random.random() < 0.25:\n", |
53 |
| - " # Who likes apples\n", |
54 |
| - " X[i][3] = 1\n", |
55 |
| - " if np.random.random() < 0.5:\n", |
56 |
| - " # Who likes bananas\n", |
57 |
| - " X[i][4] = 1\n", |
58 |
| - " else:\n", |
59 |
| - " if np.random.random() < 0.8:\n", |
60 |
| - " # Who likes cheese\n", |
61 |
| - " X[i][2] = 1\n", |
62 |
| - " if np.random.random() < 0.6:\n", |
63 |
| - " # Who likes apples\n", |
64 |
| - " X[i][3] = 1\n", |
65 |
| - " if np.random.random() < 0.7:\n", |
66 |
| - " # Who likes bananas\n", |
67 |
| - " X[i][4] = 1\n", |
68 |
| - " if X[i].sum() == 0:\n", |
69 |
| - " X[i][4] = 1 # Must buy something, so gets bananas\n" |
70 |
| - ] |
71 |
| - }, |
72 |
| - { |
73 |
| - "cell_type": "code", |
74 |
| - "execution_count": 5, |
75 |
| - "metadata": {}, |
76 |
| - "outputs": [ |
77 |
| - { |
78 |
| - "name": "stdout", |
79 |
| - "output_type": "stream", |
80 |
| - "text": [ |
81 |
| - "[[False False True True True]\n", |
82 |
| - " [ True True False True False]\n", |
83 |
| - " [ True False True True False]\n", |
84 |
| - " [False False True True True]\n", |
85 |
| - " [False True False False True]]\n" |
86 |
| - ] |
87 |
| - } |
88 |
| - ], |
89 |
| - "source": [ |
90 |
| - "print(X[:5])" |
91 |
| - ] |
92 |
| - }, |
93 |
| - { |
94 |
| - "cell_type": "code", |
95 |
| - "execution_count": 7, |
96 |
| - "metadata": {}, |
97 |
| - "outputs": [], |
98 |
| - "source": [ |
99 |
| - "np.savetxt(\"affinity_dataset.txt\", X, fmt='%d')" |
100 |
| - ] |
101 |
| - }, |
102 |
| - { |
103 |
| - "cell_type": "code", |
104 |
| - "execution_count": null, |
105 |
| - "metadata": {}, |
106 |
| - "outputs": [], |
107 |
| - "source": [] |
108 |
| - } |
109 |
| - ], |
110 |
| - "metadata": { |
111 |
| - "kernelspec": { |
112 |
| - "display_name": "Python 3", |
113 |
| - "language": "python", |
114 |
| - "name": "python3" |
115 |
| - }, |
116 |
| - "language_info": { |
117 |
| - "codemirror_mode": { |
118 |
| - "name": "ipython", |
119 |
| - "version": 3 |
120 |
| - }, |
121 |
| - "file_extension": ".py", |
122 |
| - "mimetype": "text/x-python", |
123 |
| - "name": "python", |
124 |
| - "nbconvert_exporter": "python", |
125 |
| - "pygments_lexer": "ipython3", |
126 |
| - "version": "3.5.2" |
127 |
| - }, |
128 |
| - "toc": { |
129 |
| - "colors": { |
130 |
| - "hover_highlight": "#DAA520", |
131 |
| - "navigate_num": "#000000", |
132 |
| - "navigate_text": "#333333", |
133 |
| - "running_highlight": "#FF0000", |
134 |
| - "selected_highlight": "#FFD700", |
135 |
| - "sidebar_border": "#EEEEEE", |
136 |
| - "wrapper_background": "#FFFFFF" |
137 |
| - }, |
138 |
| - "moveMenuLeft": true, |
139 |
| - "nav_menu": { |
140 |
| - "height": "12px", |
141 |
| - "width": "252px" |
142 |
| - }, |
143 |
| - "navigate_menu": true, |
144 |
| - "number_sections": true, |
145 |
| - "sideBar": true, |
146 |
| - "threshold": 4, |
147 |
| - "toc_cell": false, |
148 |
| - "toc_section_display": "block", |
149 |
| - "toc_window_display": false, |
150 |
| - "widenNotebook": false |
151 |
| - } |
152 |
| - }, |
153 |
| - "nbformat": 4, |
154 |
| - "nbformat_minor": 1 |
155 |
| -} |
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 1, |
| 6 | + "metadata": {}, |
| 7 | + "outputs": [], |
| 8 | + "source": [ |
| 9 | + "import numpy as np" |
| 10 | + ] |
| 11 | + }, |
| 12 | + { |
| 13 | + "cell_type": "code", |
| 14 | + "execution_count": 2, |
| 15 | + "metadata": {}, |
| 16 | + "outputs": [], |
| 17 | + "source": [ |
| 18 | + "X = np.zeros((100, 5), dtype='bool')\n", |
| 19 | + "features = [\"bread\", \"milk\", \"cheese\", \"apples\", \"bananas\"]" |
| 20 | + ] |
| 21 | + }, |
| 22 | + { |
| 23 | + "cell_type": "code", |
| 24 | + "execution_count": 3, |
| 25 | + "metadata": {}, |
| 26 | + "outputs": [], |
| 27 | + "source": [ |
| 28 | + "for i in range(X.shape[0]):\n", |
| 29 | + " if np.random.random() < 0.3:\n", |
| 30 | + " # A bread winner\n", |
| 31 | + " X[i][0] = 1\n", |
| 32 | + " if np.random.random() < 0.5:\n", |
| 33 | + " # Who likes milk\n", |
| 34 | + " X[i][1] = 1\n", |
| 35 | + " if np.random.random() < 0.2:\n", |
| 36 | + " # Who likes cheese\n", |
| 37 | + " X[i][2] = 1\n", |
| 38 | + " if np.random.random() < 0.25:\n", |
| 39 | + " # Who likes apples\n", |
| 40 | + " X[i][3] = 1\n", |
| 41 | + " if np.random.random() < 0.5:\n", |
| 42 | + " # Who likes bananas\n", |
| 43 | + " X[i][4] = 1\n", |
| 44 | + " else:\n", |
| 45 | + " # Not a bread winner\n", |
| 46 | + " if np.random.random() < 0.5:\n", |
| 47 | + " # Who likes milk\n", |
| 48 | + " X[i][1] = 1\n", |
| 49 | + " if np.random.random() < 0.2:\n", |
| 50 | + " # Who likes cheese\n", |
| 51 | + " X[i][2] = 1\n", |
| 52 | + " if np.random.random() < 0.25:\n", |
| 53 | + " # Who likes apples\n", |
| 54 | + " X[i][3] = 1\n", |
| 55 | + " if np.random.random() < 0.5:\n", |
| 56 | + " # Who likes bananas\n", |
| 57 | + " X[i][4] = 1\n", |
| 58 | + " else:\n", |
| 59 | + " if np.random.random() < 0.8:\n", |
| 60 | + " # Who likes cheese\n", |
| 61 | + " X[i][2] = 1\n", |
| 62 | + " if np.random.random() < 0.6:\n", |
| 63 | + " # Who likes apples\n", |
| 64 | + " X[i][3] = 1\n", |
| 65 | + " if np.random.random() < 0.7:\n", |
| 66 | + " # Who likes bananas\n", |
| 67 | + " X[i][4] = 1\n", |
| 68 | + " if X[i].sum() == 0:\n", |
| 69 | + " X[i][4] = 1 # Must buy something, so gets bananas\n" |
| 70 | + ] |
| 71 | + }, |
| 72 | + { |
| 73 | + "cell_type": "code", |
| 74 | + "execution_count": 5, |
| 75 | + "metadata": {}, |
| 76 | + "outputs": [ |
| 77 | + { |
| 78 | + "name": "stdout", |
| 79 | + "output_type": "stream", |
| 80 | + "text": [ |
| 81 | + "[[False False True True True]\n", |
| 82 | + " [ True True False True False]\n", |
| 83 | + " [ True False True True False]\n", |
| 84 | + " [False False True True True]\n", |
| 85 | + " [False True False False True]]\n" |
| 86 | + ] |
| 87 | + } |
| 88 | + ], |
| 89 | + "source": [ |
| 90 | + "print(X[:5])" |
| 91 | + ] |
| 92 | + }, |
| 93 | + { |
| 94 | + "cell_type": "code", |
| 95 | + "execution_count": 7, |
| 96 | + "metadata": {}, |
| 97 | + "outputs": [], |
| 98 | + "source": [ |
| 99 | + "np.savetxt(\"affinity_dataset.txt\", X, fmt='%d')" |
| 100 | + ] |
| 101 | + }, |
| 102 | + { |
| 103 | + "cell_type": "code", |
| 104 | + "execution_count": null, |
| 105 | + "metadata": {}, |
| 106 | + "outputs": [], |
| 107 | + "source": [] |
| 108 | + } |
| 109 | + ], |
| 110 | + "metadata": { |
| 111 | + "kernelspec": { |
| 112 | + "display_name": "Python 3", |
| 113 | + "language": "python", |
| 114 | + "name": "python3" |
| 115 | + }, |
| 116 | + "language_info": { |
| 117 | + "codemirror_mode": { |
| 118 | + "name": "ipython", |
| 119 | + "version": 3 |
| 120 | + }, |
| 121 | + "file_extension": ".py", |
| 122 | + "mimetype": "text/x-python", |
| 123 | + "name": "python", |
| 124 | + "nbconvert_exporter": "python", |
| 125 | + "pygments_lexer": "ipython3", |
| 126 | + "version": "3.5.2" |
| 127 | + }, |
| 128 | + "toc": { |
| 129 | + "colors": { |
| 130 | + "hover_highlight": "#DAA520", |
| 131 | + "navigate_num": "#000000", |
| 132 | + "navigate_text": "#333333", |
| 133 | + "running_highlight": "#FF0000", |
| 134 | + "selected_highlight": "#FFD700", |
| 135 | + "sidebar_border": "#EEEEEE", |
| 136 | + "wrapper_background": "#FFFFFF" |
| 137 | + }, |
| 138 | + "moveMenuLeft": true, |
| 139 | + "nav_menu": { |
| 140 | + "height": "12px", |
| 141 | + "width": "252px" |
| 142 | + }, |
| 143 | + "navigate_menu": true, |
| 144 | + "number_sections": true, |
| 145 | + "sideBar": true, |
| 146 | + "threshold": 4, |
| 147 | + "toc_cell": false, |
| 148 | + "toc_section_display": "block", |
| 149 | + "toc_window_display": false, |
| 150 | + "widenNotebook": false |
| 151 | + } |
| 152 | + }, |
| 153 | + "nbformat": 4, |
| 154 | + "nbformat_minor": 1 |
| 155 | +} |
0 commit comments