-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchunk-53498d07.c46ec2ce.js
2 lines (2 loc) · 23.9 KB
/
chunk-53498d07.c46ec2ce.js
1
2
(window["webpackJsonp"]=window["webpackJsonp"]||[]).push([["chunk-53498d07"],{"01a2":function(t,a,e){"use strict";e("18c1")},"18c1":function(t,a,e){},"206b":function(t,a,e){},7718:function(t,a,e){t.exports=e.p+"img/data_flow.4565f1b5.png"},"8ae8":function(t,a,e){"use strict";e.r(a);var i=function(){var t=this,a=t._self._c;return a("div",{staticClass:"container"},[t._m(0),a("div",{staticClass:"content"},[a("div",[a("p",{staticClass:"title"},[t._v("Data Flow")]),a("a-divider",{staticStyle:{margin:"10px 0","background-image":"linear-gradient(to right, rgb(103, 179, 241), rgb(103, 179, 241), #f6f6f6, #f6f6f6)"}}),a("p",[t._v("In consideration of extensibiliy, flexibility and reusability, the data module designs an elegant data flow that transforms raw data into the unified input of model module. The overall data flow can be described as follows:")]),t._m(1),a("ul",[t._m(2),a("li",[a("span",{staticStyle:{"font-weight":"700"}},[t._v("Atomic Files")]),t._v(": Basic input elements for different traffic prediction tasks. You can download "),a("a",{attrs:{href:t.path+"A Unified Storage Format of Traffic Data Atomic Files in LibCity.pdf",download:"A Unified Storage Format of Traffic Data Atomic Files in LibCity.pdf"}},[t._v("A Unified Storage Format of Traffic Data Atomic Files in LibCity")]),t._v(" here for details.")]),t._m(3),t._m(4)]),a("br"),a("p",{staticClass:"title"},[t._v("Atomic Files")]),a("a-divider",{staticStyle:{margin:"10px 0","background-image":"linear-gradient(to right, rgb(103, 179, 241), rgb(103, 179, 241), #f6f6f6, #f6f6f6)"}}),a("p",[t._v("LibCity introduces and implements 6 atomic file types for formating various spatio-temporal datasets, which are able to characterize most forms of the input data required by different spatio-temporal data mining tasks. These atomic files can be identified by their filenames:")]),t._m(5),a("br"),t._m(6),a("br"),a("p",{staticClass:"title"},[t._v("Dataset List")]),a("a-divider",{staticStyle:{margin:"10px 0","background-image":"linear-gradient(to right, rgb(103, 179, 241), rgb(103, 179, 241), #f6f6f6, #f6f6f6)"}}),t._m(7),a("a-divider",{staticStyle:{"font-size":"24px"}},[t._v("Traffic State Dataset")]),a("condition-data-table",{attrs:{content:t.condition}}),a("br"),a("a-divider",{staticStyle:{"font-size":"24px"}},[t._v("Vehicle Trajectory Dataset")]),a("vehicle-data-table",{attrs:{content:t.vehicle}}),a("br"),a("a-divider",{staticStyle:{"font-size":"24px"}},[t._v("POI Check-in Dataset")]),a("people-data-table",{attrs:{content:t.people}}),a("br")],1)])])},s=[function(){var t=this,a=t._self._c;return a("div",{staticClass:"header"},[a("div",{staticStyle:{"padding-top":"20px",color:"white"}},[a("p",{staticStyle:{margin:"20px 0 30px 130px","font-size":"60px"}},[t._v("Data")]),a("p",{staticStyle:{margin:"0px 0 20px 130px","font-size":"30px"}},[t._v(" LibCity provides 35 spatio-temporal datasets and introduces unified "),a("br"),t._v(" data structures to format representations of datas and the input of algorithms. ")])])])},function(){var t=this,a=t._self._c;return a("div",{staticStyle:{margin:"10px auto 10px auto","text-align":"center"}},[a("img",{attrs:{src:e("7718"),alt:"Data Flow",height:"120"}})])},function(){var t=this,a=t._self._c;return a("li",[a("span",{staticStyle:{"font-weight":"700"}},[t._v("Raw Data")]),t._v(": Original open source dataset. For each supported original data set, we provide scripts to convert it into "),a("a",{attrs:{href:"https://bigscity-libcity-docs.readthedocs.io/en/latest/user_guide/data/atomic_files.html",target:"_blank"}},[t._v("atomic files")]),t._v(".")])},function(){var t=this,a=t._self._c;return a("li",[a("span",{staticStyle:{"font-weight":"700"}},[t._v("Dataset")]),t._v(": Different "),a("code",{staticStyle:{color:"#e83e8c","font-size":"90%"}},[t._v("Dataset")]),t._v(" classes are developed for each type of traffic prediction task, which are responsible for reading atomic files and performing some data preprocessing operations. See "),a("a",{attrs:{href:"https://bigscity-libcity-docs.readthedocs.io/en/latest/user_guide/data/dataset_class.html",target:"_blank"}},[t._v("here")]),t._v(" for details.")])},function(){var t=this,a=t._self._c;return a("li",[a("span",{staticStyle:{"font-weight":"700"}},[t._v("DataLoader")]),t._v(": The "),a("code",{staticStyle:{color:"#e83e8c","font-size":"90%"}},[t._v("Dataloader")]),t._v(" class responsible for loading data, using the native "),a("code",{staticStyle:{color:"#e83e8c","font-size":"90%"}},[t._v("torch.utils.data.DataLoader")]),t._v(" of "),a("code",{staticStyle:{color:"#e83e8c","font-size":"90%"}},[t._v("PyTorch")]),t._v(", it is responsible for returning the data to the model in the form of the internal data representation structure "),a("a",{attrs:{href:"https://bigscity-libcity-docs.readthedocs.io/en/latest/user_guide/data/batch.html",target:"_blank"}},[t._v("Batch")]),t._v(" class.")])},function(){var t=this,a=t._self._c;return a("table",{staticStyle:{width:"1200px"}},[a("thead",{staticStyle:{"font-size":"16px"}},[a("tr",[a("th",{attrs:{width:"12%"}},[t._v("FILENAME")]),a("th",{attrs:{width:"58%"}},[t._v("CONTENT")]),a("th",{attrs:{width:"30%"}},[t._v("EXAMPLE FORMAT")])])]),a("tbody",[a("tr",[a("td",[t._v("xxx.geo")]),a("td",[t._v("Store geographic entity attribute information.")]),a("td",[t._v("geo_id, type, coordinates")])]),a("tr",[a("td",[t._v("xxx.usr")]),a("td",[t._v("Store traffic user information.")]),a("td",[t._v("usr_id, gender, birth_date")])]),a("tr",[a("td",[t._v("xxx.rel")]),a("td",[t._v("Store the relationship information between entities, such as road networks. ")]),a("td",[t._v("rel_id, type, origin_id, destination_id")])]),a("tr",[a("td",[t._v("xxx.dyna")]),a("td",[t._v("Store traffic condition information.")]),a("td",[t._v("dyna_id, type, time, entity_id, location_id")])]),a("tr",[a("td",[t._v("xxx.ext")]),a("td",[t._v("Store external information, such as weather, temperature, etc.")]),a("td",[t._v("ext_id, time, properties")])]),a("tr",[a("td",[t._v("config.json")]),a("td",[t._v("Used to supplement the description of the above table information.")]),a("td",[t._v("-")])])])])},function(){var t=this,a=t._self._c;return a("p",[t._v("The essence of the atomic files is feature-based data frames corresponding to different parts of the task input. And atomic files are combined to support the input of different spatio-temporal data mining tasks. Detailed in "),a("a",{attrs:{href:"https://bigscity-libcity-docs.readthedocs.io/en/latest/user_guide/data/atomic_files.html",target:"_blank"}},[t._v("Document")]),t._v(".")])},function(){var t=this,a=t._self._c;return a("p",[t._v("We have already collected 35 spatio-temporal datasets. In order to directly use the datasets we collected in LibCity, we have converted all datasets into the format of atomic files, and provide the conversion tools in "),a("a",{attrs:{href:"https://github.com/LibCity/Bigscity-LibCity-Datasets",target:"_blank"}},[t._v("this repository")]),t._v(". Besides, we have uploaded the processed atomic files in network disks "),a("a",{attrs:{href:"https://pan.baidu.com/s/1qEfcXBO-QwZfiT0G3IYMpQ#list/path=%2F",target:"_blank"}},[t._v("BaiduDisk with code 1231")]),t._v(" or "),a("a",{attrs:{href:"https://drive.google.com/drive/folders/1g5v2Gq1tkOq8XO0HDCZ9nOTtRpB6-gPe?usp=sharing",target:"_blank"}},[t._v("Google Drive")]),t._v(".")])}],r=function(){var t=this,a=t._self._c;return a("table",[t._m(0),a("tbody",t._l(t.content,(function(e){return a("tr",{key:e.dataset},[a("td",{attrs:{width:"14%"}},[a("a",{attrs:{href:e.plink,target:"_blank"}},[t._v(t._s(e.dataset))])]),a("td",{attrs:{width:"4%"}},[t._v(t._s(e.geo))]),a("td",{attrs:{width:"4%"}},[t._v(t._s(e.rel))]),a("td",{attrs:{width:"6%"}},[t._v(t._s(e.dyna))]),a("td",{attrs:{width:"6%"}},[t._v(t._s(e.feature))]),a("td",{attrs:{width:"16%"}},[t._v(t._s(e.place))]),a("td",{attrs:{width:"19%"}},[t._v(t._s(e.duration))]),a("td",{attrs:{width:"8%"}},[t._v(t._s(e.interval))]),a("td",{attrs:{width:"23%"}},[a("a-button",{attrs:{type:"primary",shape:"round"}},[a("a",{attrs:{href:e.source,target:"_blank"}},[t._v("Source")])]),a("a-button",{staticStyle:{"margin-left":"5px"},attrs:{type:"primary",shape:"round"}},[a("a",{attrs:{href:e.slink,target:"_blank"}},[t._v("Script")])])],1)])})),0)])},o=[function(){var t=this,a=t._self._c;return a("thead",{staticStyle:{"font-size":"16px"}},[a("tr",[a("th",[t._v("DATASET")]),a("th",[t._v("#GEO")]),a("th",[t._v("#REL")]),a("th",[t._v("#DYNA")]),a("th",[t._v("FEATURES")]),a("th",[t._v("PLACE")]),a("th",[t._v("DURATION")]),a("th",[t._v("INTERVAL")]),a("th",[t._v("LINK")])])])}],n={props:{content:{type:Array,required:!0}},data(){return{}}},d=n,l=(e("01a2"),e("1805")),c=Object(l["a"])(d,r,o,!1,null,null,null),h=c.exports,p=function(){var t=this,a=t._self._c;return a("table",[t._m(0),a("tbody",t._l(t.content,(function(e){return a("tr",{key:e.dataset},[a("td",{attrs:{width:"14%"}},[a("a",{attrs:{href:e.plink,target:"_blank"}},[t._v(t._s(e.dataset))])]),a("td",{attrs:{width:"4%"}},[t._v(t._s(e.geo))]),a("td",{attrs:{width:"4%"}},[t._v(t._s(e.rel))]),a("td",{attrs:{width:"6%"}},[t._v(t._s(e.usr))]),a("td",{attrs:{width:"6%"}},[t._v(t._s(e.dyna))]),a("td",{attrs:{width:"16%"}},[t._v(t._s(e.place))]),a("td",{attrs:{width:"19%"}},[t._v(t._s(e.duration))]),a("td",{attrs:{width:"8%"}},[t._v(t._s(e.interval))]),a("td",{attrs:{width:"23%"}},[a("a-button",{attrs:{type:"primary",shape:"round"}},[a("a",{attrs:{href:e.source,target:"_blank"}},[t._v("Source")])]),a("a-button",{staticStyle:{"margin-left":"5px"},attrs:{type:"primary",shape:"round"}},[a("a",{attrs:{href:e.slink,target:"_blank"}},[t._v("Script")])])],1)])})),0)])},u=[function(){var t=this,a=t._self._c;return a("thead",{staticStyle:{"font-size":"16px"}},[a("tr",[a("th",[t._v("DATASET")]),a("th",[t._v("#GEO")]),a("th",[t._v("#REL")]),a("th",[t._v("#USR")]),a("th",[t._v("#DYNA")]),a("th",[t._v("PLACE")]),a("th",[t._v("DURATION")]),a("th",[t._v("INTERVAL")]),a("th",[t._v("LINK")])])])}],b={props:{content:{type:Array,required:!0}},data(){return{}}},y=b,g=(e("b4b9"),Object(l["a"])(y,p,u,!1,null,null,null)),_=g.exports,m=function(){var t=this,a=t._self._c;return a("table",[t._m(0),a("tbody",t._l(t.content,(function(e){return a("tr",{key:e.dataset},[a("td",{attrs:{width:"14%"}},[a("a",{attrs:{href:e.plink,target:"_blank"}},[t._v(t._s(e.dataset))])]),a("td",{attrs:{width:"4%"}},[t._v(t._s(e.geo))]),a("td",{attrs:{width:"4%"}},[t._v(t._s(e.rel))]),a("td",{attrs:{width:"6%"}},[t._v(t._s(e.dyna))]),a("td",{attrs:{width:"6%"}},[t._v(t._s(e.vehicle))]),a("td",{attrs:{width:"16%"}},[t._v(t._s(e.place))]),a("td",{attrs:{width:"19%"}},[t._v(t._s(e.duration))]),a("td",{attrs:{width:"8%"}},[t._v(t._s(e.interval))]),a("td",{attrs:{width:"23%"}},[a("a-button",{attrs:{type:"primary",shape:"round"}},[a("a",{attrs:{href:e.source,target:"_blank"}},[t._v("Source")])]),a("a-button",{staticStyle:{"margin-left":"5px"},attrs:{type:"primary",shape:"round"}},[a("a",{attrs:{href:e.slink,target:"_blank"}},[t._v("Script")])])],1)])})),0)])},f=[function(){var t=this,a=t._self._c;return a("thead",{staticStyle:{"font-size":"16px"}},[a("tr",[a("th",[t._v("DATASET")]),a("th",[t._v("#GEO")]),a("th",[t._v("#REL")]),a("th",[t._v("#DYNA")]),a("th",[t._v("TYPE")]),a("th",[t._v("PLACE")]),a("th",[t._v("DURATION")]),a("th",[t._v("INTERVAL")]),a("th",[t._v("LINK")])])])}],v={props:{content:{type:Array,required:!0}},data(){return{}}},w=v,k=(e("b4f5"),Object(l["a"])(w,m,f,!1,null,null,null)),C=k.exports;const S=[{dataset:"METR_LA",geo:"207",rel:"11,753",dyna:"7,094,304",feature:"speed",place:"Los Angeles, USA",duration:"Mar. 1, 2012 - Jun. 27, 2012",interval:"5min",source:"https://github.com/liyaguang/DCRNN",plink:"https://bigscity-libcity-docs.readthedocs.io/en/latest/user_guide/data/raw_data.html#metr-la",slink:"https://github.com/LibCity/Bigscity-LibCity-Datasets/blob/master/metr_la.py"},{dataset:"LOS_LOOP",geo:"207",rel:"42,849",dyna:"7,094,304",feature:"speed",place:"Los Angeles, USA",duration:"Mar. 1, 2012 - Jun. 27, 2012",interval:"5min",source:"https://github.com/lehaifeng/T-GCN/tree/master/data",plink:"https://bigscity-libcity-docs.readthedocs.io/en/latest/user_guide/data/raw_data.html#los-loop",slink:"https://github.com/LibCity/Bigscity-LibCity-Datasets/blob/master/los_loop.py"},{dataset:"SZ_TAXI",geo:"156",rel:"24,336",dyna:"464,256",feature:"speed",place:"Shenzhen, China",duration:"Jan. 1, 2015 - Jan. 31, 2015",interval:"15min",source:"https://github.com/lehaifeng/T-GCN/tree/master/data",plink:"https://bigscity-libcity-docs.readthedocs.io/en/latest/user_guide/data/raw_data.html#sz-taxi",slink:"https://github.com/LibCity/Bigscity-LibCity-Datasets/blob/master/sz_taxi.py"},{dataset:"LOOP_SEATTLE",geo:"323",rel:"104,329",dyna:"33,953,760",feature:"speed",place:"Greater Seattle Area, USA",duration:"over the entirely of 2015",interval:"5min",source:"https://github.com/zhiyongc/Seattle-Loop-Data",plink:"https://bigscity-libcity-docs.readthedocs.io/en/latest/user_guide/data/raw_data.html#loop-seattle",slink:"https://github.com/LibCity/Bigscity-LibCity-Datasets/blob/master/loop_seattle.py"},{dataset:"Q_TRAFFIC",geo:"45,148",rel:"63,422",dyna:"264,386,688",feature:"speed",place:"Beijing, China",duration:"Apr. 1, 2017 - May 31, 2017",interval:"15min",source:"https://github.com/JingqingZ/BaiduTraffic",plink:"https://bigscity-libcity-docs.readthedocs.io/en/latest/user_guide/data/raw_data.html#q-traffic",slink:"https://github.com/LibCity/Bigscity-LibCity-Datasets/blob/master/q_traffic.py"},{dataset:"PEMSD3",geo:"358",rel:"547",dyna:"9,382,464",feature:"flow",place:"California, USA",duration:"Sept. 1, 2018 - Nov. 30, 2018",interval:"5min",source:"https://github.com/Davidham3/STSGCN",plink:"https://bigscity-libcity-docs.readthedocs.io/en/latest/user_guide/data/raw_data.html#pemsd3",slink:"https://github.com/LibCity/Bigscity-LibCity-Datasets/blob/master/pemsd3.py"},{dataset:"PEMSD4",geo:"307",rel:"340",dyna:"\t5,216,544",feature:"flow, speed, occupancy",place:"San Francisco Bay Area, USA",duration:"Jan. 1, 2018 - Feb. 28, 2018",interval:"5min",source:"https://github.com/Davidham3/ASTGCN/tree/master/data/PEMS04",plink:"https://bigscity-libcity-docs.readthedocs.io/en/latest/user_guide/data/raw_data.html#pemsd4",slink:"https://github.com/LibCity/Bigscity-LibCity-Datasets/blob/master/pemsd4.py"},{dataset:"PEMSD7",geo:"883",rel:"866",dyna:"24,921,792",feature:"flow",place:"California, USA",duration:"Jul. 1, 2016 - Aug. 31, 2016",interval:"5min",source:"https://github.com/Davidham3/STSGCN",plink:"https://bigscity-libcity-docs.readthedocs.io/en/latest/user_guide/data/raw_data.html#pemsd7",slink:"https://github.com/LibCity/Bigscity-LibCity-Datasets/blob/master/pemsd7.py"},{dataset:"PEMSD8",geo:"170",rel:"277",dyna:"3,035,520",feature:"flow, speed, occupancy",place:"San Bernardino Area, USA",duration:"Jul. 1, 2016 - Aug. 31, 2016",interval:"5min",source:"https://github.com/Davidham3/ASTGCN/tree/master/data/PEMS08",plink:"https://bigscity-libcity-docs.readthedocs.io/en/latest/user_guide/data/raw_data.html#pemsd8",slink:"https://github.com/LibCity/Bigscity-LibCity-Datasets/blob/master/pemsd8.py"},{dataset:"PEMSD7(M)",geo:"228",rel:"51,984",dyna:"2,889,216",feature:"speed",place:"California, USA",duration:"weekdays of May and June, 2012",interval:"5min",source:"https://github.com/Davidham3/STGCN/tree/master/datasets",plink:"https://bigscity-libcity-docs.readthedocs.io/en/latest/user_guide/data/raw_data.html#pemsd7-m",slink:"https://github.com/LibCity/Bigscity-LibCity-Datasets/blob/master/pemsd7(m).py"},{dataset:"PEMS_BAY",geo:"325",rel:"8,358",dyna:"16,937,700",feature:"speed",place:"San Francisco Bay Area, USA",duration:"Jan. 1, 2017 - Jun. 30, 2017",interval:"5min",source:"https://github.com/liyaguang/DCRNN",plink:"https://bigscity-libcity-docs.readthedocs.io/en/latest/user_guide/data/raw_data.html#pems-bay",slink:"https://github.com/LibCity/Bigscity-LibCity-Datasets/blob/master/pems_bay.py"},{dataset:"BEIJING_SUBWAY",geo:"276",rel:"76,176",dyna:"248,400",feature:"people flow",place:"Beijing, China",duration:"Feb. 29, 2016 - Apr. 3, 2016",interval:"30min",source:"https://github.com/JinleiZhangBJTU/ResNet-LSTM-GCN",plink:"https://bigscity-libcity-docs.readthedocs.io/en/latest/user_guide/data/raw_data.html#beijing-subway",slink:"https://github.com/LibCity/Bigscity-LibCity-Datasets/blob/master/beijing_subway.py"},{dataset:"M_DENSE",geo:"30",rel:"-",dyna:"525,600",feature:"car flow",place:"Madrid, Spain",duration:"Jan. 1, 2018 - Dec. 21, 2019",interval:"60min",source:"https://github.com/Davidham3/STSGCN",plink:"https://bigscity-libcity-docs.readthedocs.io/en/latest/user_guide/data/raw_data.html#m-dense",slink:"https://github.com/LibCity/Bigscity-LibCity-Datasets/blob/master/m_dense.py"},{dataset:"ROTTERDAM",geo:"208",rel:"-",dyna:"4,813,536",feature:"speed",place:"Rotterdam, Holland",duration:"135 days of 2018",interval:"2min",source:"https://github.com/RomainLITUD/DGCN_traffic_forecasting",plink:"https://bigscity-libcity-docs.readthedocs.io/en/latest/user_guide/data/raw_data.html#rotterdam",slink:"https://github.com/LibCity/Bigscity-LibCity-Datasets/blob/master/rotterdam.py"},{dataset:"SHMETRO",geo:"288",rel:"82,944",dyna:"1,934,208",feature:"people flow",place:"Shanghai, China",duration:"Jul. 1, 2016 - Sept. 30, 2016",interval:"15min",source:"https://github.com/ivechan/PVCGN",plink:"https://bigscity-libcity-docs.readthedocs.io/en/latest/user_guide/data/raw_data.html#shmetro",slink:"https://github.com/LibCity/Bigscity-LibCity-Datasets/blob/master/sh_metro.py"},{dataset:"HZMETRO",geo:"80",rel:"6400",dyna:"146,000",feature:"people flow",place:"Hangzhou, China",duration:"Jan. 1, 2019 - Jan. 25, 2019",interval:"15min",source:"https://github.com/ivechan/PVCGN",plink:"https://bigscity-libcity-docs.readthedocs.io/en/latest/user_guide/data/raw_data.html#hzmetro",slink:"https://github.com/LibCity/Bigscity-LibCity-Datasets/blob/master/hz_metro.py"},{dataset:"TAXIBJ",geo:"32*32",rel:"-",dyna:"5,652,480",feature:"people flow",place:"Beijing, China",duration:"Mar. 1, 2015 - Jun. 30, 2015",interval:"30min",source:"https://github.com/TolicWang/DeepST/issues/3",plink:"https://bigscity-libcity-docs.readthedocs.io/en/latest/user_guide/data/raw_data.html#taxibj",slink:"https://github.com/LibCity/Bigscity-LibCity-Datasets/blob/master/taxibj.py"},{dataset:"NYCTAXI_DYNA",geo:"263",rel:"69,169",dyna:"574,392",feature:"flow (irregular area)",place:"New York, USA",duration:"Jan. 1, 2020 - Mar. 30, 2020",interval:"60min",source:"https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page",plink:"https://bigscity-libcity-docs.readthedocs.io/en/latest/user_guide/data/raw_data.html#nyctaxi-dyna",slink:"https://github.com/LibCity/Bigscity-LibCity-Datasets/blob/master/nyctaxi_dyna.py"},{dataset:"NYCTAXI_OD",geo:"263",rel:"69,169",dyna:"150,995,927",feature:"OD flow (irregular area)",place:"New York, USA",duration:"Apr. 1, 2020 - Jun. 30, 2020",interval:"60min",source:"https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page",plink:"https://bigscity-libcity-docs.readthedocs.io/en/latest/user_guide/data/raw_data.html#nyctaxi-od",slink:"https://github.com/LibCity/Bigscity-LibCity-Datasets/blob/master/nyctaxi_od.py"},{dataset:"NYCTAXI_GRID",geo:"10*20",rel:"-",dyna:"\t432,000",feature:"flow (grid-base)",place:"New York, USA",duration:"Jan. 1, 2014 - Mar. 31, 2014",interval:"60min",source:"https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page",plink:"https://bigscity-libcity-docs.readthedocs.io/en/latest/user_guide/data/raw_data.html#nyctaxi-grid",slink:"https://github.com/LibCity/Bigscity-LibCity-Datasets/blob/master/nyctaxi_grid.py"}],L=[{dataset:"Foursquare_TKY",geo:"94,890",rel:"-",usr:"11,589",dyna:"1,112,156",place:"Tokyo, Japan",duration:"Apr. 3, 2012 - Sep. 16, 2013",interval:"-",source:"https://sites.google.com/site/yangdingqi/home/foursquare-dataset",plink:"https://bigscity-libcity-docs.readthedocs.io/en/latest/user_guide/data/raw_data.html#foursquare",slink:"https://github.com/LibCity/Bigscity-LibCity-Datasets/blob/master/foursquare.py"},{dataset:"Foursquare_NYC",geo:"64,735",rel:"-",usr:"17,175",dyna:"568,444",place:"New York, USA",duration:"Apr. 3, 2012 - Sep. 16, 2013",interval:"-",source:"https://sites.google.com/site/yangdingqi/home/foursquare-dataset",plink:"https://bigscity-libcity-docs.readthedocs.io/en/latest/user_guide/data/raw_data.html#foursquare",slink:"https://github.com/LibCity/Bigscity-LibCity-Datasets/blob/master/foursquare.py"},{dataset:"Gowalla",geo:"1,280,969",rel:"913,660",usr:"107,092",dyna:"6,442,892",place:"Global",duration:"Feb. 4, 2009 - Oct. 23, 2010",interval:"-",source:"https://snap.stanford.edu/data/loc-gowalla.html",plink:"https://bigscity-libcity-docs.readthedocs.io/en/latest/user_guide/data/raw_data.html#gowalla",slink:"https://github.com/LibCity/Bigscity-LibCity-Datasets/blob/master/gowalla.py"},{dataset:"Brightkite",geo:"772,966",rel:"394,334",usr:"51,406",dyna:"4,747,287",place:"Global",duration:"Mar. 21, 2008 - Oct. 18, 2010",interval:"-",source:"http://snap.stanford.edu/data/loc-brightkite.html",plink:"https://bigscity-libcity-docs.readthedocs.io/en/latest/user_guide/data/raw_data.html#brightkite",slink:"https://github.com/LibCity/Bigscity-LibCity-Datasets/blob/master/brightkite.py"},{dataset:"Instagram",geo:"13,187",rel:"-",usr:"78,233",dyna:"2,205,794",place:"New York, USA",duration:"Jun. 15, 2011 - Nov. 8, 2016",interval:"-",source:"https://dmis.korea.ac.kr/cape",plink:"https://bigscity-libcity-docs.readthedocs.io/en/latest/user_guide/data/raw_data.html#instagram",slink:"https://github.com/LibCity/Bigscity-LibCity-Datasets/blob/master/instagram.py"}],D=[{dataset:"T_DRIVE",geo:"32*32",rel:"1,048,576",dyna:"3,686,400",vehicle:"taxi",place:"Beijing, China",duration:"Feb. 1, 2015 - Jun. 30, 2015",interval:"60min",source:"https://www.microsoft.com/en-us/research/publication/t-drive-trajectory-data-sample/",plink:"https://bigscity-libcity-docs.readthedocs.io/en/latest/user_guide/data/raw_data.html#t-drive",slink:"https://github.com/LibCity/Bigscity-LibCity-Datasets/blob/master/t_drive_small.py"},{dataset:"PORTO",geo:"20*10",rel:"-",dyna:"441,600",vehicle:"taxi",place:"Porto, Portugal",duration:"Jul. 1, 2013 - Sept. 30, 2013",interval:"60min",source:"https://archive.ics.uci.edu/ml/datasets/Taxi+Service+Trajectory+-+Prediction+Challenge%2C+ECML+PKDD+2015",plink:"https://bigscity-libcity-docs.readthedocs.io/en/latest/user_guide/data/raw_data.html#porto",slink:"https://github.com/LibCity/Bigscity-LibCity-Datasets/blob/master/porto.py"},{dataset:"NYCBIKE",geo:"10*20",rel:"-",dyna:"441,600",vehicle:"bike",place:"New York, USA",duration:"Jul. 1, 2020 - Sept. 30, 2020",interval:"60min",source:"https://www.citibikenyc.com/system-data",plink:"https://bigscity-libcity-docs.readthedocs.io/en/latest/user_guide/data/raw_data.html#nyc-bike",slink:"#"},{dataset:"AUSTINRIDE",geo:"16*8",rel:"-",dyna:"282,624",vehicle:"bike",place:"Austin, USA",duration:"Jul. 1, 2016 - Sept. 30, 2016",interval:"60min",source:"https://data.world/ride-austin/ride-austin-june-6-april-13",plink:"https://bigscity-libcity-docs.readthedocs.io/en/latest/user_guide/data/raw_data.html#austinride",slink:"https://github.com/LibCity/Bigscity-LibCity-Datasets/blob/master/austinride.py"},{dataset:"BIKEDC",geo:"16*8",rel:"-",dyna:"282,624",vehicle:"bike",place:"Washington, USA",duration:"Jul. 1, 2020 - Sept. 30, 2020",interval:"60min",source:"https://www.capitalbikeshare.com/system-data",plink:"https://bigscity-libcity-docs.readthedocs.io/en/latest/user_guide/data/raw_data.html#bikedc",slink:"https://github.com/LibCity/Bigscity-LibCity-Datasets/blob/master/bikedc.py"},{dataset:"BIKECHI",geo:"15*18",rel:"-",dyna:"670,680",vehicle:"bike",place:"Chicago, USA",duration:"Jul. 1, 2020 - Sept. 30, 2020",interval:"60min",source:"https://www.divvybikes.com/system-data",plink:"https://bigscity-libcity-docs.readthedocs.io/en/latest/user_guide/data/raw_data.html#bikechi",slink:"https://github.com/LibCity/Bigscity-LibCity-Datasets/blob/master/bikechi.py"}];var A={data(){return{condition:S,people:L,vehicle:D,path:""}},components:{conditionDataTable:h,peopleDataTable:_,vehicleDataTable:C}},T=A,x=(e("e60c"),Object(l["a"])(T,i,s,!1,null,"5c27edf6",null));a["default"]=x.exports},b4b9:function(t,a,e){"use strict";e("206b")},b4f5:function(t,a,e){"use strict";e("cc815")},bb06:function(t,a,e){},cc815:function(t,a,e){},e60c:function(t,a,e){"use strict";e("bb06")}}]);
//# sourceMappingURL=chunk-53498d07.c46ec2ce.js.map