@@ -1325,7 +1325,8 @@ def _mini_batch_convergence(model, iteration_idx, n_iter, tol,
13251325
13261326
13271327class MiniBatchKMeans (KMeans ):
1328- """Mini-Batch K-Means clustering
1328+ """
1329+ Mini-Batch K-Means clustering.
13291330
13301331 Read more in the :ref:`User Guide <mini_batch_kmeans>`.
13311332
@@ -1356,10 +1357,10 @@ class MiniBatchKMeans(KMeans):
13561357 batch_size : int, optional, default: 100
13571358 Size of the mini batches.
13581359
1359- verbose : boolean , optional
1360+ verbose : bool , optional
13601361 Verbosity mode.
13611362
1362- compute_labels : boolean , default=True
1363+ compute_labels : bool , default=True
13631364 Compute label assignment and inertia for the complete dataset
13641365 once the minibatch optimization has converged in fit.
13651366
@@ -1419,6 +1420,17 @@ class MiniBatchKMeans(KMeans):
14191420 defined as the sum of square distances of samples to their nearest
14201421 neighbor.
14211422
1423+ See Also
1424+ --------
1425+ KMeans
1426+ The classic implementation of the clustering method based on the
1427+ Lloyd's algorithm. It consumes the whole set of input data at each
1428+ iteration.
1429+
1430+ Notes
1431+ -----
1432+ See https://www.eecs.tufts.edu/~dsculley/papers/fastkmeans.pdf
1433+
14221434 Examples
14231435 --------
14241436 >>> from sklearn.cluster import MiniBatchKMeans
@@ -1448,19 +1460,6 @@ class MiniBatchKMeans(KMeans):
14481460 [1.12195122, 1.3902439 ]])
14491461 >>> kmeans.predict([[0, 0], [4, 4]])
14501462 array([1, 0], dtype=int32)
1451-
1452- See also
1453- --------
1454-
1455- KMeans
1456- The classic implementation of the clustering method based on the
1457- Lloyd's algorithm. It consumes the whole set of input data at each
1458- iteration.
1459-
1460- Notes
1461- -----
1462- See https://www.eecs.tufts.edu/~dsculley/papers/fastkmeans.pdf
1463-
14641463 """
14651464
14661465 def __init__ (self , n_clusters = 8 , init = 'k-means++' , max_iter = 100 ,
@@ -1489,12 +1488,15 @@ def fit(self, X, y=None, sample_weight=None):
14891488 if the given data is not C-contiguous.
14901489
14911490 y : Ignored
1492- not used, present here for API consistency by convention.
1491+ Not used, present here for API consistency by convention.
14931492
14941493 sample_weight : array-like, shape (n_samples,), optional
14951494 The weights for each observation in X. If None, all observations
1496- are assigned equal weight (default: None)
1495+ are assigned equal weight (default: None).
14971496
1497+ Returns
1498+ -------
1499+ self
14981500 """
14991501 random_state = check_random_state (self .random_state )
15001502 X = check_array (X , accept_sparse = "csr" , order = 'C' ,
0 commit comments