@@ -463,7 +463,7 @@ def _interpolate_single_key(self, return_key, tri_index, x, y):
463463        else :
464464            raise  ValueError ("Invalid return_key: "  +  return_key )
465465
466-     def  _compute_dof (self , kind , dz ):
466+     def  _compute_dof (self , kind , dz = None ):
467467        """ 
468468        Computes and returns nodal dofs according to kind 
469469
@@ -604,28 +604,28 @@ def _compute_tri_eccentricities(tris_pts):
604604# problem (Reduced HCT element) 
605605class  _ReducedHCT_Element ():
606606    """ 
607- Implementation of reduced HCT triangular element with explicit shape 
608- functions. 
607+      Implementation of reduced HCT triangular element with explicit shape
608+      functions.
609609
610- Computes z, dz, d2z and the element stiffness matrix for bending energy: 
611- E(f) = integral( (d2z/dx2 + d2z/dy2)**2 dA) 
610+      Computes z, dz, d2z and the element stiffness matrix for bending energy:
611+      E(f) = integral( (d2z/dx2 + d2z/dy2)**2 dA)
612612
613-  *** Reference for the shape functions: *** 
614-  [1] Basis functions for general Hsieh-Clough-Tocher _triangles, complete or 
615-      reduced. 
616-  Michel Bernadou, Kamal Hassan 
617-  International Journal for Numerical Methods in Engineering. 
618-      17(5):784 - 789.  2.01 
613+      *** Reference for the shape functions: *** 
614+      [1] Basis functions for general Hsieh-Clough-Tocher _triangles, complete or 
615+          reduced. 
616+          Michel Bernadou, Kamal Hassan 
617+          International Journal for Numerical Methods in Engineering. 
618+          17(5):784 - 789.  2.01 
619619
620-  *** Element description: *** 
621-  9 dofs: z and dz given at 3 apex 
622-  C1 (conform) 
620+      *** Element description: *** 
621+      9 dofs: z and dz given at 3 apex 
622+      C1 (conform) 
623623
624624    """ 
625625    # 1) Loads matrices to generate shape functions as a function of 
626626    #    triangle eccentricities - based on [1] p.11 ''' 
627627    M  =  np .array ([
628-         [0.00 ,   0.00 , 0.00 ,  4.50 ,  4.50 , 0.00 , 0.00 , 0.00 , 0.00 , 0.00 ],
628+         [  0.00 , 0.00 , 0.00 ,  4.50 ,  4.50 , 0.00 , 0.00 , 0.00 , 0.00 , 0.00 ],
629629        [- 0.25 , 0.00 , 0.00 ,  0.50 ,  1.25 , 0.00 , 0.00 , 0.00 , 0.00 , 0.00 ],
630630        [- 0.25 , 0.00 , 0.00 ,  1.25 ,  0.50 , 0.00 , 0.00 , 0.00 , 0.00 , 0.00 ],
631631        [ 0.50 , 1.00 , 0.00 , - 1.50 ,  0.00 , 3.00 , 3.00 , 0.00 , 0.00 , 3.00 ],
@@ -942,7 +942,7 @@ def get_Kff_and_Ff(self, J, ecc, triangles, Uc):
942942        minimization of curvature energy with value of function at node 
943943        imposed and derivatives 'free'. 
944944        Builds the global Kff matrix in cco format. 
945-         Builds the full Ff vec   Ff = - Kfc x Uc 
945+         Builds the full Ff vec Ff = - Kfc x Uc 
946946
947947        Parameters 
948948        ---------- 
@@ -1048,17 +1048,17 @@ def compute_dof_from_df(self):
10481048    @staticmethod  
10491049    def  get_dof_vec (tri_z , tri_dz , J ):
10501050        """ 
1051- Computes the dof vector of a triangle, knowing the value of f, df and of the  
1052- local Jacobian at each node. 
1051+          Computes the dof vector of a triangle, knowing the value of f, df and
1052+         of the  local Jacobian at each node.
10531053
1054- *tri_z*: array of shape (3,) of f nodal values 
1055- *tri_dz*: array of shape (3,2) of df/dx, df/dy nodal values 
1056- *J*: Jacobian matrix in local basis of apex 0 
1054+          *tri_z*: array of shape (3,) of f nodal values
1055+          *tri_dz*: array of shape (3,2) of df/dx, df/dy nodal values
1056+          *J*: Jacobian matrix in local basis of apex 0
10571057
1058- Returns dof array of shape (9,) so that for each apex iapex: 
1059-         dof[iapex*3+0] = f(Ai) 
1060-         dof[iapex*3+1] = df(Ai).(AiAi+) 
1061-         dof[iapex*3+2] = df(Ai).(AiAi-)] 
1058+          Returns dof array of shape (9,) so that for each apex iapex:
1059+              dof[iapex*3+0] = f(Ai) 
1060+              dof[iapex*3+1] = df(Ai).(AiAi+) 
1061+              dof[iapex*3+2] = df(Ai).(AiAi-)] 
10621062        """ 
10631063        npt  =  tri_z .shape [0 ]
10641064        dof  =  np .zeros ([npt , 9 ], dtype = np .float64 )
@@ -1311,28 +1311,28 @@ def _cg(A, b, x0=None, tol=1.e-10, maxiter=1000):
13111311
13121312    Parameters 
13131313    ---------- 
1314-     *A* : _Sparse_Matrix_coo 
1314+     A : _Sparse_Matrix_coo 
13151315        *A* must have been compressed before by compress_csc or 
13161316        compress_csr method. 
13171317
1318-     *b* : array 
1318+     b : array 
13191319        Right hand side of the linear system. 
13201320
13211321    Returns 
13221322    ---------- 
1323-     *x* : array. 
1323+     x : array. 
13241324        The converged solution. 
1325-     * err* : float 
1325+     err: float 
13261326        The absolute error np.linalg.norm(A.dot(x) - b) 
13271327
13281328    Other parameters 
13291329    ---------- 
1330-     *x0* : array. 
1330+     x0 : array. 
13311331        Starting guess for the solution. 
1332-     * tol* : float. 
1332+     tol: float. 
13331333        Tolerance to achieve. The algorithm terminates when the relative 
13341334        residual is below tol. 
1335-     * maxiter* : integer. 
1335+     maxiter: integer. 
13361336        Maximum number of iterations. Iteration will stop 
13371337        after maxiter steps even if the specified tolerance has not 
13381338        been achieved. 
0 commit comments