@@ -412,7 +412,7 @@ CNTK2 = [
412
412
// Changes: dims -> shape
413
413
DynamicAxis(tag='') = new ComputationNode [ operation = 'DynamicAxis' ; /*plus the function args*/ ]
414
414
# TODO: Is it a good idea to default to "feature"?
415
- Input(shape, dynamicAxis='' , tag='feature' ) = new ComputationNode [ operation = 'InputValue' ; shape = new TensorShape [ /*shape*/ ] ; isImage = false /*plus the function args*/ ]
415
+ Input(shape, dynamicAxis='' , tag='feature' , precision=precision ) = new ComputationNode [ operation = 'InputValue' ; shape = new TensorShape [ /*shape*/ ] ; isImage = false /*plus the function args*/ ]
416
416
417
417
// 2. Variables and constants
418
418
// Changes: ParameterTensor -> _Parameter; "dims" -> "shape"
@@ -570,14 +570,14 @@ ParameterTensor {dims, learningRateMultiplier = 1.0, init = ''/*|uniform|fixedVa
570
570
ConstantFromString(literal, tag='' ) = ParameterTensor((0)/*dim, will be inferred*/, initFromLiteral = literal, learningRateMultiplier = 0.0)
571
571
# TODO: Deprecate ConstantFromString() in favor of Constant(array expression)
572
572
DynamicAxis(tag='') = new ComputationNode [ operation = 'DynamicAxis' ; /*plus the function args*/ ]
573
- Input(dims, dynamicAxis='' , sparse=false, tag='feature' ) =
574
- if sparse then SparseInput(dims, dynamicAxis=dynamicAxis, tag=tag)
573
+ Input(dims, dynamicAxis='' , sparse=false, tag='feature' , precision=precision ) =
574
+ if sparse then SparseInput(dims, dynamicAxis=dynamicAxis, tag=tag, precision=precision )
575
575
else new ComputationNode [ operation = 'InputValue' ; shape = new TensorShape [ /*dims*/ ] ; isImage = false /*plus the function args*/ ]
576
576
# TODO: change from dynamicAxis by name to dynamicAxis being an actual object
577
577
# the following variants of Input() are deprecated
578
- SparseInput(dims, dynamicAxis='', tag='feature') = new ComputationNode [ operation = 'SparseInputValue' ; shape = new TensorShape [ /*dims*/ ] ; isImage = false /*plus the function args*/ ]
579
- ImageInput(imageWidth, imageHeight, imageChannels, imageLayout='CHW', dynamicAxis='' , tag='feature' ) = new ComputationNode [ operation = 'InputValue' ; isImage = true /*plus the function args*/ ]
580
- SparseImageInput(imageWidth, imageHeight, imageChannels, imageLayout='CHW' , dynamicAxis='', tag='feature') = new ComputationNode [ operation = 'SparseInputValue' ; isImage = true /*plus the function args*/ ]
578
+ SparseInput(dims, dynamicAxis='', tag='feature', precision=precision ) = new ComputationNode [ operation = 'SparseInputValue' ; shape = new TensorShape [ /*dims*/ ] ; isImage = false /*plus the function args*/ ]
579
+ ImageInput(imageWidth, imageHeight, imageChannels, imageLayout='CHW', dynamicAxis='' , tag='feature' , precision=precision ) = new ComputationNode [ operation = 'InputValue' ; isImage = true /*plus the function args*/ ]
580
+ SparseImageInput(imageWidth, imageHeight, imageChannels, imageLayout='CHW' , dynamicAxis='', tag='feature', precision=precision ) = new ComputationNode [ operation = 'SparseInputValue' ; isImage = true /*plus the function args*/ ]
581
581
EnvironmentInput(propertyName, tag='' ) = new ComputationNode [ operation = 'EnvironmentInput' /*plus the function args*/ ]
582
582
# TODO: make 'dims' the first parameter, think ConstantTensor<dims> (val)
583
583
ConstantTensor(val, dims, tag='') = ParameterTensor(dims, learningRateMultiplier = 0, initValue = val)
@@ -706,6 +706,8 @@ TransposeTimes(leftMatrix, rightMatrix, tag='') = new ComputationNode [ operatio
706
706
QuantizedTimes(leftMatrix, rightMatrix, bitSmoothingA=1, bitSmoothingB=1, outputRank=1, inferInputRankToMap=-1, tag='' ) = new ComputationNode [ operation = 'QuantizedTimes' ; inputs = _AsNodes (leftMatrix : rightMatrix) /*plus the function args*/ ]
707
707
Where(cond, tag='') = new ComputationNode [ operation = 'Where' ; inputs = _AsNodes (cond) /*plus the function args*/ ]
708
708
709
+ Cast(node, precision='' , tag='') = new ComputationNode [ operation = 'Cast' ; inputs = _AsNodes (node) /*plus the function args*/ ]
710
+
709
711
##############################################################################
710
712
# non-neural-network functions
711
713
##############################################################################
0 commit comments