@@ -267,8 +267,8 @@ def sample(self, event):
267267def enumeration_ask (X , e , bn ):
268268 """Return the conditional probability distribution of variable X
269269 given evidence e, from BayesNet bn. [Fig. 14.9]
270- >>> enumeration_ask('Burglary',
271- ... {'JohnCalls': True, 'MaryCalls': True}, burglary ).show_approx()
270+ >>> enumeration_ask('Burglary', dict(JohnCalls=T, MaryCalls=T), burglary
271+ ... ).show_approx()
272272 'False: 0.716, True: 0.284'"""
273273 Q = ProbDist (X )
274274 for xi in bn .variable_values (X ):
@@ -342,9 +342,8 @@ def rejection_sampling(X, e, bn, N):
342342 Raises a ZeroDivisionError if all the N samples are rejected,
343343 i.e., inconsistent with e.
344344 >>> seed(47)
345- >>> p = rejection_sampling('Burglary',
346- ... {'JohnCalls': True, 'MaryCalls': True}, burglary, 10000)
347- >>> p.show_approx()
345+ >>> rejection_sampling('Burglary', dict(JohnCalls=T, MaryCalls=T),
346+ ... burglary, 10000).show_approx()
348347 'False: 0.7, True: 0.3'
349348 """
350349 counts = {True : 0 , False : 0 } # boldface N in Fig. 14.14
@@ -365,9 +364,8 @@ def likelihood_weighting(X, e, bn, N):
365364 """Estimate the probability distribution of variable X given
366365 evidence e in BayesNet bn. [Fig. 14.15]
367366 >>> seed(1017)
368- >>> p = likelihood_weighting('Burglary',
369- ... {'JohnCalls': True, 'MaryCalls': True}, burglary, 10000)
370- >>> p.show_approx()
367+ >>> likelihood_weighting('Burglary', dict(JohnCalls=T, MaryCalls=T),
368+ ... burglary, 10000).show_approx()
371369 'False: 0.702, True: 0.298'
372370 """
373371 W = {True : 0.0 , False : 0.0 }
0 commit comments