Skip to content

the loss function seems deferent from orignal one. #2

@TimHe95

Description

@TimHe95

the loss function you use here is:

def loss_with_spring(self):
        margin = 5.0
        labels_t = self.y_
        labels_f = tf.subtract(1.0, self.y_, name="1-yi")          # labels_ = !labels;
        eucd2 = tf.pow(tf.subtract(self.o1, self.o2), 2)
        eucd2 = tf.reduce_sum(eucd2, 1)
        eucd = tf.sqrt(eucd2+1e-6, name="eucd")
        C = tf.constant(margin, name="C")
        # yi*||CNN(p1i)-CNN(p2i)||^2 + (1-yi)*max(0, C-||CNN(p1i)-CNN(p2i)||^2)
        pos = tf.multiply(labels_t, eucd2, name="yi_x_eucd2")
        # neg = tf.multiply(labels_f, tf.sub(0.0,eucd2), name="yi_x_eucd2")
        # neg = tf.multiply(labels_f, tf.maximum(0.0, tf.sub(C,eucd2)), name="Nyi_x_C-eucd_xx_2")
        neg = tf.multiply(labels_f, tf.pow(tf.maximum(tf.subtract(C, eucd), 0), 2), name="Nyi_x_C-eucd_xx_2")
        losses = tf.add(pos, neg, name="losses")
        loss = tf.reduce_mean(losses, name="loss")
        return loss

However, isn't the loss function should be this?
image

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions