diff --git a/AbinitioDMFT/01-solid_dmft.ipynb b/AbinitioDMFT/01-solid_dmft.ipynb index 27cb360..e2e2ab4 100644 --- a/AbinitioDMFT/01-solid_dmft.ipynb +++ b/AbinitioDMFT/01-solid_dmft.ipynb @@ -46,8 +46,8 @@ "more information about the DFT+DMFT formalism and the utilized codes can be found here: \n", "* DFT+DMFT implementation using Quantum Espresso + Wannier90 + TRIQS: [doi.org/10.1088/1361-648X/ac5d1c](https://doi.org/10.1088/1361-648X/ac5d1c)\n", "* TRIQS documentation: [triqs.github.io](https://triqs.github.io/triqs/latest)\n", - "* solid_dmft documentation: [flatironinstitute.github.io/solid_dmft](https://flatironinstitute.github.io/solid_dmft)\n", - "* solid_dmft input parameter reference: [flatironinstitute.github.io/solid_dmft/_autosummary/read_config](https://flatironinstitute.github.io/solid_dmft/_autosummary/read_config.html)\n", + "* solid_dmft documentation: [triqs.github.io/solid_dmft](https://triqs.github.io/solid_dmft)\n", + "* solid_dmft input parameter reference: [triqs.github.io/solid_dmft/_autosummary/read_config](https://triqs.github.io/solid_dmft/_autosummary/read_config.html)\n", "* more TRIQS tutorials: [github.com/TRIQS/tutorials](https://github.com/TRIQS/tutorials/tree/3.0.x/TRIQSTutorialsPython)" ] }, @@ -192,7 +192,7 @@ "id": "32e3e4b0-759b-4145-9ba2-1b017bdfd817", "metadata": {}, "source": [ - "To check more carefully whether the tight-binding Hamiltonian describes the DFT bands close to the Fermi level correctly, we now plot the QE and the W90 bands on top of each other. To plot the W90 bands we will make use of the solid_dmft postprocessing module [plot_correlated_bands](https://flatironinstitute.github.io/solid_dmft/_autosummary/postprocessing.html) (`pcb`). This utility reads the real space Wannier Hamiltonian, and then leverages Wannier interpolation to construct $H(k)$ on any given $k$ point mesh." + "To check more carefully whether the tight-binding Hamiltonian describes the DFT bands close to the Fermi level correctly, we now plot the QE and the W90 bands on top of each other. To plot the W90 bands we will make use of the solid_dmft postprocessing module [plot_correlated_bands](https://triqs.github.io/solid_dmft/_autosummary/postprocessing.html) (`pcb`). This utility reads the real space Wannier Hamiltonian, and then leverages Wannier interpolation to construct $H(k)$ on any given $k$ point mesh." ] }, { @@ -379,7 +379,7 @@ "source": [ "Most important parameters not yet introduced are `U` (similar to DFT+U), the choice of solver `solver_type` (cthyb in our case as introduced above), the number of DMFT iterations `n_iter_dmft`, the jobname where the calculation is performed in `jobname`, and the choice of double counting `dc_type` (similar to DFT+U). For now you can leave all parameters as is.\n", "\n", - "The reference for these parameters can be found here [flatironinstitute.github.io/solid_dmft/_autosummary/read_config](https://flatironinstitute.github.io/solid_dmft/_autosummary/read_config.html) . Let us know if you have any questions.\n", + "The reference for these parameters can be found here [triqs.github.io/solid_dmft/_autosummary/read_config](https://triqs.github.io/solid_dmft/_autosummary/read_config.html) . Let us know if you have any questions.\n", "\n", " Now go to the terminal, navigate to the directory of the tutorial and start the run either interactively (the calculation will take 3-4 min on 4 cores): \n", "\n", @@ -662,7 +662,7 @@ "source": [ "## 4. Analytic continuation of the self-energy\n", "\n", - "Since we are interested in the real frequency properties of the material we have to perform an analytic continuation. We do this using the TRIQS application [triqs.github.io/maxent](https://triqs.github.io/maxent/latest/). This is a stochastic method, which also performs quite well on noisy QMC data. We wrapped the functionality in [solid_dmft/maxent](https://flatironinstitute.github.io/solid_dmft/_autosummary/postprocessing.maxent_sigma.html) to automatically load a result from a DMFT calculation with all necessary input.\n", + "Since we are interested in the real frequency properties of the material we have to perform an analytic continuation. We do this using the TRIQS application [triqs.github.io/maxent](https://triqs.github.io/maxent/latest/). This is a stochastic method, which also performs quite well on noisy QMC data. We wrapped the functionality in [solid_dmft/maxent](https://triqs.github.io/solid_dmft/_autosummary/postprocessing.maxent_sigma.html) to automatically load a result from a DMFT calculation with all necessary input.\n", "\n", "Disclaimer: The analytic continuation of a self-energy is delicate and should be done with great care. Always check if the results are physically sound and avoid overinterpreting specific features of a MaxEnt-continued Green's function.\n", "\n", diff --git a/AbinitioDMFT/04-HubbardI-comparison.ipynb b/AbinitioDMFT/04-HubbardI-comparison.ipynb index 5e0d171..d512097 100644 --- a/AbinitioDMFT/04-HubbardI-comparison.ipynb +++ b/AbinitioDMFT/04-HubbardI-comparison.ipynb @@ -255,7 +255,7 @@ "## Advanced: Running a Full charge self-consistent DFT+DMFT calculation\n", "\n", "Now that you have mastered the one-shot calculation, you can repeat the calculation with full charge self-consistency and see how the solution changes. Instructions are described in the tutorial:\n", - "[flatironinstitute.github.io/solid_dmft/tutorials/Ce2O3_csc_w90/tutorial](https://flatironinstitute.github.io/solid_dmft/tutorials/Ce2O3_csc_w90/tutorial.html)" + "[triqs.github.io/solid_dmft/tutorials/Ce2O3_csc_w90/tutorial](https://triqs.github.io/solid_dmft/tutorials/Ce2O3_csc_w90/tutorial.html)" ] } ], diff --git a/AbinitioDMFT/solutions/01s-solid_dmft.ipynb b/AbinitioDMFT/solutions/01s-solid_dmft.ipynb index 62f0be2..7bd49c8 100644 --- a/AbinitioDMFT/solutions/01s-solid_dmft.ipynb +++ b/AbinitioDMFT/solutions/01s-solid_dmft.ipynb @@ -61,8 +61,8 @@ "more information about the DFT+DMFT formalism and the utilized codes can be found here: \n", "* DFT+DMFT implementation using Quantum Espresso + Wannier90 + TRIQS: [doi.org/10.1088/1361-648X/ac5d1c](https://doi.org/10.1088/1361-648X/ac5d1c)\n", "* TRIQS documentation: [triqs.github.io](https://triqs.github.io/triqs/latest)\n", - "* solid_dmft documentation: [flatironinstitute.github.io/solid_dmft](https://flatironinstitute.github.io/solid_dmft)\n", - "* solid_dmft input parameter reference: [flatironinstitute.github.io/solid_dmft/_autosummary/read_config](https://flatironinstitute.github.io/solid_dmft/_autosummary/read_config.html)\n", + "* solid_dmft documentation: [triqs.github.io/solid_dmft](https://triqs.github.io/solid_dmft)\n", + "* solid_dmft input parameter reference: [triqs.github.io/solid_dmft/_autosummary/read_config](https://triqs.github.io/solid_dmft/_autosummary/read_config.html)\n", "* more TRIQS tutorials: [github.com/TRIQS/tutorials](https://github.com/TRIQS/tutorials/tree/3.0.x/TRIQSTutorialsPython)" ] }, @@ -222,7 +222,7 @@ "id": "32e3e4b0-759b-4145-9ba2-1b017bdfd817", "metadata": {}, "source": [ - "To check more carefully whether the tight-binding Hamiltonian describes the DFT bands close to the Fermi level correctly, we now plot the QE and the W90 bands on top of each other. To plot the W90 bands we will make use of the solid_dmft postprocessing module [plot_correlated_bands](https://flatironinstitute.github.io/solid_dmft/_autosummary/postprocessing.html) (`pcb`). This utility reads the real space Wannier Hamiltonian, and then leverages Wannier interpolation to construct $H(k)$ on any given $k$ point mesh." + "To check more carefully whether the tight-binding Hamiltonian describes the DFT bands close to the Fermi level correctly, we now plot the QE and the W90 bands on top of each other. To plot the W90 bands we will make use of the solid_dmft postprocessing module [plot_correlated_bands](https://triqs.github.io/solid_dmft/_autosummary/postprocessing.html) (`pcb`). This utility reads the real space Wannier Hamiltonian, and then leverages Wannier interpolation to construct $H(k)$ on any given $k$ point mesh." ] }, { @@ -527,7 +527,7 @@ "source": [ "Most important parameters not yet introduced are `U` (similar to DFT+U), the choice of solver `solver_type` (cthyb in our case as introduced above), the number of DMFT iterations `n_iter_dmft`, the jobname where the calculation is performed in `jobname`, and the choice of double counting `dc_type` (similar to DFT+U). For now you can leave all parameters as is.\n", "\n", - "The reference for these parameters can be found here [flatironinstitute.github.io/solid_dmft/_autosummary/read_config](https://flatironinstitute.github.io/solid_dmft/_autosummary/read_config.html) . Let us know if you have any questions.\n", + "The reference for these parameters can be found here [triqs.github.io/solid_dmft/_autosummary/read_config](https://triqs.github.io/solid_dmft/_autosummary/read_config.html) . Let us know if you have any questions.\n", "\n", " Now go to the terminal, navigate to the directory of the tutorial and start the run either interactively (the calculation will take 3-4 min on 4 cores): \n", "\n", @@ -928,7 +928,7 @@ "source": [ "## 4. Analytic continuation of the self-energy\n", "\n", - "Since we are interested in the real frequency properties of the material we have to perform an analytic continuation. We do this using the TRIQS application [triqs.github.io/maxent](https://triqs.github.io/maxent/latest/). This is a stochastic method, which also performs quite well on noisy QMC data. We wrapped the functionality in [solid_dmft/maxent](https://flatironinstitute.github.io/solid_dmft/_autosummary/postprocessing.maxent_sigma.html) to automatically load a result from a DMFT calculation with all necessary input.\n", + "Since we are interested in the real frequency properties of the material we have to perform an analytic continuation. We do this using the TRIQS application [triqs.github.io/maxent](https://triqs.github.io/maxent/latest/). This is a stochastic method, which also performs quite well on noisy QMC data. We wrapped the functionality in [solid_dmft/maxent](https://triqs.github.io/solid_dmft/_autosummary/postprocessing.maxent_sigma.html) to automatically load a result from a DMFT calculation with all necessary input.\n", "\n", "Disclaimer: The analytic continuation of a self-energy is delicate and should be done with great care. Always check if the results are physically sound and avoid overinterpreting specific features of a MaxEnt-continued Green's function.\n", "\n", diff --git a/AbinitioDMFT/solutions/04s-HubbardI-comparison.ipynb b/AbinitioDMFT/solutions/04s-HubbardI-comparison.ipynb index 9d187c5..6c58a7a 100644 --- a/AbinitioDMFT/solutions/04s-HubbardI-comparison.ipynb +++ b/AbinitioDMFT/solutions/04s-HubbardI-comparison.ipynb @@ -495,7 +495,7 @@ "## Advanced: Running a Full charge self-consistent DFT+DMFT calculation\n", "\n", "Now that you have mastered the one-shot calculation, you can repeat the calculation with full charge self-consistency and see how the solution changes. Instructions are described in the tutorial:\n", - "[flatironinstitute.github.io/solid_dmft/tutorials/Ce2O3_csc_w90/tutorial](https://flatironinstitute.github.io/solid_dmft/tutorials/Ce2O3_csc_w90/tutorial.html)" + "[triqs.github.io/solid_dmft/tutorials/Ce2O3_csc_w90/tutorial](https://triqs.github.io/solid_dmft/tutorials/Ce2O3_csc_w90/tutorial.html)" ] } ],