|
| 1 | +""" |
| 2 | + Graph Coloring also called "m coloring problem" |
| 3 | + consists of coloring given graph with at most m colors |
| 4 | + such that no adjacent vertices are assigned same color |
| 5 | +
|
| 6 | + Wikipedia: https://en.wikipedia.org/wiki/Graph_coloring |
| 7 | +""" |
| 8 | +from typing import List |
| 9 | + |
| 10 | + |
| 11 | +def valid_coloring( |
| 12 | + neighbours: List[int], colored_vertices: List[int], color: int |
| 13 | +) -> bool: |
| 14 | + """ |
| 15 | + For each neighbour check if coloring constraint is satisfied |
| 16 | + If any of the neighbours fail the constraint return False |
| 17 | + If all neighbours validate constraint return True |
| 18 | +
|
| 19 | + >>> neighbours = [0,1,0,1,0] |
| 20 | + >>> colored_vertices = [0, 2, 1, 2, 0] |
| 21 | + |
| 22 | + >>> color = 1 |
| 23 | + >>> valid_coloring(neighbours, colored_vertices, color) |
| 24 | + True |
| 25 | +
|
| 26 | + >>> color = 2 |
| 27 | + >>> valid_coloring(neighbours, colored_vertices, color) |
| 28 | + False |
| 29 | + """ |
| 30 | + # Does any neighbour not satisfy the constraints |
| 31 | + return not any( |
| 32 | + neighbour == 1 and colored_vertices[i] == color |
| 33 | + for i, neighbour in enumerate(neighbours) |
| 34 | + ) |
| 35 | + |
| 36 | + |
| 37 | +def util_color( |
| 38 | + graph: List[List[int]], max_colors: int, colored_vertices: List[int], index: int |
| 39 | +) -> bool: |
| 40 | + """ |
| 41 | + Pseudo-Code |
| 42 | +
|
| 43 | + Base Case: |
| 44 | + 1. Check if coloring is complete |
| 45 | + 1.1 If complete return True (meaning that we successfully colored graph) |
| 46 | +
|
| 47 | + Recursive Step: |
| 48 | + 2. Itterates over each color: |
| 49 | + Check if current coloring is valid: |
| 50 | + 2.1. Color given vertex |
| 51 | + 2.2. Do recursive call check if this coloring leads to solving problem |
| 52 | + 2.4. if current coloring leads to solution return |
| 53 | + 2.5. Uncolor given vertex |
| 54 | +
|
| 55 | + >>> graph = [[0, 1, 0, 0, 0], |
| 56 | + ... [1, 0, 1, 0, 1], |
| 57 | + ... [0, 1, 0, 1, 0], |
| 58 | + ... [0, 1, 1, 0, 0], |
| 59 | + ... [0, 1, 0, 0, 0]] |
| 60 | + >>> max_colors = 3 |
| 61 | + >>> colored_vertices = [0, 1, 0, 0, 0] |
| 62 | + >>> index = 3 |
| 63 | + |
| 64 | + >>> util_color(graph, max_colors, colored_vertices, index) |
| 65 | + True |
| 66 | +
|
| 67 | + >>> max_colors = 2 |
| 68 | + >>> util_color(graph, max_colors, colored_vertices, index) |
| 69 | + False |
| 70 | + """ |
| 71 | + |
| 72 | + # Base Case |
| 73 | + if index == len(graph): |
| 74 | + return True |
| 75 | + |
| 76 | + # Recursive Step |
| 77 | + for i in range(max_colors): |
| 78 | + if valid_coloring(graph[index], colored_vertices, i): |
| 79 | + # Color current vertex |
| 80 | + colored_vertices[index] = i |
| 81 | + # Validate coloring |
| 82 | + if util_color(graph, max_colors, colored_vertices, index + 1): |
| 83 | + return True |
| 84 | + # Backtrack |
| 85 | + colored_vertices[index] = -1 |
| 86 | + return False |
| 87 | + |
| 88 | + |
| 89 | +def color(graph: List[List[int]], max_colors: int) -> List[int]: |
| 90 | + """ |
| 91 | + Wrapper function to call subroutine called util_color |
| 92 | + which will either return True or False. |
| 93 | + If True is returned colored_vertices list is filled with correct colorings |
| 94 | + |
| 95 | + >>> graph = [[0, 1, 0, 0, 0], |
| 96 | + ... [1, 0, 1, 0, 1], |
| 97 | + ... [0, 1, 0, 1, 0], |
| 98 | + ... [0, 1, 1, 0, 0], |
| 99 | + ... [0, 1, 0, 0, 0]] |
| 100 | +
|
| 101 | + >>> max_colors = 3 |
| 102 | + >>> color(graph, max_colors) |
| 103 | + [0, 1, 0, 2, 0] |
| 104 | +
|
| 105 | + >>> max_colors = 2 |
| 106 | + >>> color(graph, max_colors) |
| 107 | + [] |
| 108 | + """ |
| 109 | + colored_vertices = [-1] * len(graph) |
| 110 | + |
| 111 | + if util_color(graph, max_colors, colored_vertices, 0): |
| 112 | + return colored_vertices |
| 113 | + |
| 114 | + return [] |
0 commit comments