@@ -13,7 +13,7 @@ converting them
13
13
to TensorFlow's native TFRecord format and reading them in using TF-Slim's
14
14
data reading and queueing utilities. You can easily train any model on any of
15
15
these datasets, as we demonstrate below. We've also included a
16
- [ jupyter notebook] ( https://github.com/tensorflow/models/blob/master/slim/slim_walkthrough.ipynb ) ,
16
+ [ jupyter notebook] ( https://github.com/tensorflow/models/blob/master/research/ slim/slim_walkthrough.ipynb ) ,
17
17
which provides working examples of how to use TF-Slim for image classification.
18
18
For developing or modifying your own models, see also the [ main TF-Slim page] ( https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/slim ) .
19
19
@@ -55,7 +55,7 @@ python -c "import tensorflow.contrib.slim as slim; eval = slim.evaluation.evalua
55
55
## Installing the TF-slim image models library
56
56
57
57
To use TF-Slim for image classification, you also have to install
58
- the [ TF-Slim image models library] ( https://github.com/tensorflow/models/tree/master/slim ) ,
58
+ the [ TF-Slim image models library] ( https://github.com/tensorflow/models/tree/master/research/ slim ) ,
59
59
which is not part of the core TF library.
60
60
To do this, check out the
61
61
[ tensorflow/models] ( https://github.com/tensorflow/models/ ) repository as follows:
@@ -65,7 +65,7 @@ cd $HOME/workspace
65
65
git clone https://github.com/tensorflow/models/
66
66
```
67
67
68
- This will put the TF-Slim image models library in ` $HOME/workspace/models/slim ` .
68
+ This will put the TF-Slim image models library in ` $HOME/workspace/models/research/ slim ` .
69
69
(It will also create a directory called
70
70
[ models/inception] ( https://github.com/tensorflow/models/tree/master/inception ) ,
71
71
which contains an older version of slim; you can safely ignore this.)
@@ -74,7 +74,7 @@ To verify that this has worked, execute the following commands; it should run
74
74
without raising any errors.
75
75
76
76
```
77
- cd $HOME/workspace/models/slim
77
+ cd $HOME/workspace/models/research/ slim
78
78
python -c "from nets import cifarnet; mynet = cifarnet.cifarnet"
79
79
```
80
80
@@ -140,11 +140,11 @@ which stores pointers to the data file, as well as various other pieces of
140
140
metadata, such as the class labels, the train/test split, and how to parse the
141
141
TFExample protos. We have included the TF-Slim Dataset descriptors
142
142
for
143
- [ Cifar10] ( https://github.com/tensorflow/models/blob/master/slim/datasets/cifar10.py ) ,
144
- [ ImageNet] ( https://github.com/tensorflow/models/blob/master/slim/datasets/imagenet.py ) ,
145
- [ Flowers] ( https://github.com/tensorflow/models/blob/master/slim/datasets/flowers.py ) ,
143
+ [ Cifar10] ( https://github.com/tensorflow/models/blob/master/research/ slim/datasets/cifar10.py ) ,
144
+ [ ImageNet] ( https://github.com/tensorflow/models/blob/master/research/ slim/datasets/imagenet.py ) ,
145
+ [ Flowers] ( https://github.com/tensorflow/models/blob/master/research/ slim/datasets/flowers.py ) ,
146
146
and
147
- [ MNIST] ( https://github.com/tensorflow/models/blob/master/slim/datasets/mnist.py ) .
147
+ [ MNIST] ( https://github.com/tensorflow/models/blob/master/research/ slim/datasets/mnist.py ) .
148
148
An example of how to load data using a TF-Slim dataset descriptor using a
149
149
TF-Slim
150
150
[ DatasetDataProvider] ( https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/slim/python/slim/data/dataset_data_provider.py )
@@ -242,30 +242,30 @@ crops at multiple scales.
242
242
243
243
Model | TF-Slim File | Checkpoint | Top-1 Accuracy| Top-5 Accuracy |
244
244
:----:|:------------:|:----------:|:-------:|:--------:|
245
- [ Inception V1] ( http://arxiv.org/abs/1409.4842v1 ) |[ Code] ( https://github.com/tensorflow/models/blob/master/slim/nets/inception_v1.py ) |[ inception_v1_2016_08_28.tar.gz] ( http://download.tensorflow.org/models/inception_v1_2016_08_28.tar.gz ) |69.8|89.6|
246
- [ Inception V2] ( http://arxiv.org/abs/1502.03167 ) |[ Code] ( https://github.com/tensorflow/models/blob/master/slim/nets/inception_v2.py ) |[ inception_v2_2016_08_28.tar.gz] ( http://download.tensorflow.org/models/inception_v2_2016_08_28.tar.gz ) |73.9|91.8|
247
- [ Inception V3] ( http://arxiv.org/abs/1512.00567 ) |[ Code] ( https://github.com/tensorflow/models/blob/master/slim/nets/inception_v3.py ) |[ inception_v3_2016_08_28.tar.gz] ( http://download.tensorflow.org/models/inception_v3_2016_08_28.tar.gz ) |78.0|93.9|
248
- [ Inception V4] ( http://arxiv.org/abs/1602.07261 ) |[ Code] ( https://github.com/tensorflow/models/blob/master/slim/nets/inception_v4.py ) |[ inception_v4_2016_09_09.tar.gz] ( http://download.tensorflow.org/models/inception_v4_2016_09_09.tar.gz ) |80.2|95.2|
249
- [ Inception-ResNet-v2] ( http://arxiv.org/abs/1602.07261 ) |[ Code] ( https://github.com/tensorflow/models/blob/master/slim/nets/inception_resnet_v2.py ) |[ inception_resnet_v2_2016_08_30.tar.gz] ( http://download.tensorflow.org/models/inception_resnet_v2_2016_08_30.tar.gz ) |80.4|95.3|
250
- [ ResNet V1 50] ( https://arxiv.org/abs/1512.03385 ) |[ Code] ( https://github.com/tensorflow/models/blob/master/slim/nets/resnet_v1.py ) |[ resnet_v1_50_2016_08_28.tar.gz] ( http://download.tensorflow.org/models/resnet_v1_50_2016_08_28.tar.gz ) |75.2|92.2|
251
- [ ResNet V1 101] ( https://arxiv.org/abs/1512.03385 ) |[ Code] ( https://github.com/tensorflow/models/blob/master/slim/nets/resnet_v1.py ) |[ resnet_v1_101_2016_08_28.tar.gz] ( http://download.tensorflow.org/models/resnet_v1_101_2016_08_28.tar.gz ) |76.4|92.9|
252
- [ ResNet V1 152] ( https://arxiv.org/abs/1512.03385 ) |[ Code] ( https://github.com/tensorflow/models/blob/master/slim/nets/resnet_v1.py ) |[ resnet_v1_152_2016_08_28.tar.gz] ( http://download.tensorflow.org/models/resnet_v1_152_2016_08_28.tar.gz ) |76.8|93.2|
253
- [ ResNet V2 50] ( https://arxiv.org/abs/1603.05027 ) ^|[ Code] ( https://github.com/tensorflow/models/blob/master/slim/nets/resnet_v2.py ) |[ resnet_v2_50_2017_04_14.tar.gz] ( http://download.tensorflow.org/models/resnet_v2_50_2017_04_14.tar.gz ) |75.6|92.8|
254
- [ ResNet V2 101] ( https://arxiv.org/abs/1603.05027 ) ^|[ Code] ( https://github.com/tensorflow/models/blob/master/slim/nets/resnet_v2.py ) |[ resnet_v2_101_2017_04_14.tar.gz] ( http://download.tensorflow.org/models/resnet_v2_101_2017_04_14.tar.gz ) |77.0|93.7|
255
- [ ResNet V2 152] ( https://arxiv.org/abs/1603.05027 ) ^|[ Code] ( https://github.com/tensorflow/models/blob/master/slim/nets/resnet_v2.py ) |[ resnet_v2_152_2017_04_14.tar.gz] ( http://download.tensorflow.org/models/resnet_v2_152_2017_04_14.tar.gz ) |77.8|94.1|
256
- [ ResNet V2 200] ( https://arxiv.org/abs/1603.05027 ) |[ Code] ( https://github.com/tensorflow/models/blob/master/slim/nets/resnet_v2.py ) |[ TBA] ( ) |79.9\* |95.2\* |
257
- [ VGG 16] ( http://arxiv.org/abs/1409.1556.pdf ) |[ Code] ( https://github.com/tensorflow/models/blob/master/slim/nets/vgg.py ) |[ vgg_16_2016_08_28.tar.gz] ( http://download.tensorflow.org/models/vgg_16_2016_08_28.tar.gz ) |71.5|89.8|
258
- [ VGG 19] ( http://arxiv.org/abs/1409.1556.pdf ) |[ Code] ( https://github.com/tensorflow/models/blob/master/slim/nets/vgg.py ) |[ vgg_19_2016_08_28.tar.gz] ( http://download.tensorflow.org/models/vgg_19_2016_08_28.tar.gz ) |71.1|89.8|
259
- [ MobileNet_v1_1.0_224] ( https://arxiv.org/pdf/1704.04861.pdf ) |[ Code] ( https://github.com/tensorflow/models/blob/master/slim/nets/mobilenet_v1.py ) |[ mobilenet_v1_1.0_224_2017_06_14.tar.gz] ( http://download.tensorflow.org/models/mobilenet_v1_1.0_224_2017_06_14.tar.gz ) |70.7|89.5|
260
- [ MobileNet_v1_0.50_160] ( https://arxiv.org/pdf/1704.04861.pdf ) |[ Code] ( https://github.com/tensorflow/models/blob/master/slim/nets/mobilenet_v1.py ) |[ mobilenet_v1_0.50_160_2017_06_14.tar.gz] ( http://download.tensorflow.org/models/mobilenet_v1_0.50_160_2017_06_14.tar.gz ) |59.9|82.5|
261
- [ MobileNet_v1_0.25_128] ( https://arxiv.org/pdf/1704.04861.pdf ) |[ Code] ( https://github.com/tensorflow/models/blob/master/slim/nets/mobilenet_v1.py ) |[ mobilenet_v1_0.25_128_2017_06_14.tar.gz] ( http://download.tensorflow.org/models/mobilenet_v1_0.25_128_2017_06_14.tar.gz ) |41.3|66.2|
245
+ [ Inception V1] ( http://arxiv.org/abs/1409.4842v1 ) |[ Code] ( https://github.com/tensorflow/models/blob/master/research/ slim/nets/inception_v1.py ) |[ inception_v1_2016_08_28.tar.gz] ( http://download.tensorflow.org/models/inception_v1_2016_08_28.tar.gz ) |69.8|89.6|
246
+ [ Inception V2] ( http://arxiv.org/abs/1502.03167 ) |[ Code] ( https://github.com/tensorflow/models/blob/master/research/ slim/nets/inception_v2.py ) |[ inception_v2_2016_08_28.tar.gz] ( http://download.tensorflow.org/models/inception_v2_2016_08_28.tar.gz ) |73.9|91.8|
247
+ [ Inception V3] ( http://arxiv.org/abs/1512.00567 ) |[ Code] ( https://github.com/tensorflow/models/blob/master/research/ slim/nets/inception_v3.py ) |[ inception_v3_2016_08_28.tar.gz] ( http://download.tensorflow.org/models/inception_v3_2016_08_28.tar.gz ) |78.0|93.9|
248
+ [ Inception V4] ( http://arxiv.org/abs/1602.07261 ) |[ Code] ( https://github.com/tensorflow/models/blob/master/research/ slim/nets/inception_v4.py ) |[ inception_v4_2016_09_09.tar.gz] ( http://download.tensorflow.org/models/inception_v4_2016_09_09.tar.gz ) |80.2|95.2|
249
+ [ Inception-ResNet-v2] ( http://arxiv.org/abs/1602.07261 ) |[ Code] ( https://github.com/tensorflow/models/blob/master/research/ slim/nets/inception_resnet_v2.py ) |[ inception_resnet_v2_2016_08_30.tar.gz] ( http://download.tensorflow.org/models/inception_resnet_v2_2016_08_30.tar.gz ) |80.4|95.3|
250
+ [ ResNet V1 50] ( https://arxiv.org/abs/1512.03385 ) |[ Code] ( https://github.com/tensorflow/models/blob/master/research/ slim/nets/resnet_v1.py ) |[ resnet_v1_50_2016_08_28.tar.gz] ( http://download.tensorflow.org/models/resnet_v1_50_2016_08_28.tar.gz ) |75.2|92.2|
251
+ [ ResNet V1 101] ( https://arxiv.org/abs/1512.03385 ) |[ Code] ( https://github.com/tensorflow/models/blob/master/research/ slim/nets/resnet_v1.py ) |[ resnet_v1_101_2016_08_28.tar.gz] ( http://download.tensorflow.org/models/resnet_v1_101_2016_08_28.tar.gz ) |76.4|92.9|
252
+ [ ResNet V1 152] ( https://arxiv.org/abs/1512.03385 ) |[ Code] ( https://github.com/tensorflow/models/blob/master/research/ slim/nets/resnet_v1.py ) |[ resnet_v1_152_2016_08_28.tar.gz] ( http://download.tensorflow.org/models/resnet_v1_152_2016_08_28.tar.gz ) |76.8|93.2|
253
+ [ ResNet V2 50] ( https://arxiv.org/abs/1603.05027 ) ^|[ Code] ( https://github.com/tensorflow/models/blob/master/research/ slim/nets/resnet_v2.py ) |[ resnet_v2_50_2017_04_14.tar.gz] ( http://download.tensorflow.org/models/resnet_v2_50_2017_04_14.tar.gz ) |75.6|92.8|
254
+ [ ResNet V2 101] ( https://arxiv.org/abs/1603.05027 ) ^|[ Code] ( https://github.com/tensorflow/models/blob/master/research/ slim/nets/resnet_v2.py ) |[ resnet_v2_101_2017_04_14.tar.gz] ( http://download.tensorflow.org/models/resnet_v2_101_2017_04_14.tar.gz ) |77.0|93.7|
255
+ [ ResNet V2 152] ( https://arxiv.org/abs/1603.05027 ) ^|[ Code] ( https://github.com/tensorflow/models/blob/master/research/ slim/nets/resnet_v2.py ) |[ resnet_v2_152_2017_04_14.tar.gz] ( http://download.tensorflow.org/models/resnet_v2_152_2017_04_14.tar.gz ) |77.8|94.1|
256
+ [ ResNet V2 200] ( https://arxiv.org/abs/1603.05027 ) |[ Code] ( https://github.com/tensorflow/models/blob/master/research/ slim/nets/resnet_v2.py ) |[ TBA] ( ) |79.9\* |95.2\* |
257
+ [ VGG 16] ( http://arxiv.org/abs/1409.1556.pdf ) |[ Code] ( https://github.com/tensorflow/models/blob/master/research/ slim/nets/vgg.py ) |[ vgg_16_2016_08_28.tar.gz] ( http://download.tensorflow.org/models/vgg_16_2016_08_28.tar.gz ) |71.5|89.8|
258
+ [ VGG 19] ( http://arxiv.org/abs/1409.1556.pdf ) |[ Code] ( https://github.com/tensorflow/models/blob/master/research/ slim/nets/vgg.py ) |[ vgg_19_2016_08_28.tar.gz] ( http://download.tensorflow.org/models/vgg_19_2016_08_28.tar.gz ) |71.1|89.8|
259
+ [ MobileNet_v1_1.0_224] ( https://arxiv.org/pdf/1704.04861.pdf ) |[ Code] ( https://github.com/tensorflow/models/blob/master/research/ slim/nets/mobilenet_v1.py ) |[ mobilenet_v1_1.0_224_2017_06_14.tar.gz] ( http://download.tensorflow.org/models/mobilenet_v1_1.0_224_2017_06_14.tar.gz ) |70.7|89.5|
260
+ [ MobileNet_v1_0.50_160] ( https://arxiv.org/pdf/1704.04861.pdf ) |[ Code] ( https://github.com/tensorflow/models/blob/master/research/ slim/nets/mobilenet_v1.py ) |[ mobilenet_v1_0.50_160_2017_06_14.tar.gz] ( http://download.tensorflow.org/models/mobilenet_v1_0.50_160_2017_06_14.tar.gz ) |59.9|82.5|
261
+ [ MobileNet_v1_0.25_128] ( https://arxiv.org/pdf/1704.04861.pdf ) |[ Code] ( https://github.com/tensorflow/models/blob/master/research/ slim/nets/mobilenet_v1.py ) |[ mobilenet_v1_0.25_128_2017_06_14.tar.gz] ( http://download.tensorflow.org/models/mobilenet_v1_0.25_128_2017_06_14.tar.gz ) |41.3|66.2|
262
262
263
263
^ ResNet V2 models use Inception pre-processing and input image size of 299 (use
264
264
` --preprocessing_name inception --eval_image_size 299 ` when using
265
265
` eval_image_classifier.py ` ). Performance numbers for ResNet V2 models are
266
266
reported on the ImageNet validation set.
267
267
268
- All 16 MobileNet Models reported in the [ MobileNet Paper] ( https://arxiv.org/abs/1704.04861 ) can be found [ here] ( https://github.com/tensorflow/models/tree/master/slim/nets/mobilenet_v1.md ) .
268
+ All 16 MobileNet Models reported in the [ MobileNet Paper] ( https://arxiv.org/abs/1704.04861 ) can be found [ here] ( https://github.com/tensorflow/models/tree/master/research/ slim/nets/mobilenet_v1.md ) .
269
269
270
270
(\* ): Results quoted from the [ paper] ( https://arxiv.org/abs/1603.05027 ) .
271
271
@@ -303,7 +303,7 @@ python train_image_classifier.py \
303
303
This process may take several days, depending on your hardware setup.
304
304
For convenience, we provide a way to train a model on multiple GPUs,
305
305
and/or multiple CPUs, either synchrononously or asynchronously.
306
- See [ model_deploy] ( https://github.com/tensorflow/models/blob/master/slim/deployment/model_deploy.py )
306
+ See [ model_deploy] ( https://github.com/tensorflow/models/blob/master/research/ slim/deployment/model_deploy.py )
307
307
for details.
308
308
309
309
### TensorBoard
@@ -350,7 +350,7 @@ one only want train a sub-set of layers, so the flag `--trainable_scopes` allows
350
350
to specify which subsets of layers should trained, the rest would remain frozen.
351
351
352
352
Below we give an example of
353
- [ fine-tuning inception-v3 on flowers] ( https://github.com/tensorflow/models/blob/master/slim/scripts/finetune_inception_v3_on_flowers.sh ) ,
353
+ [ fine-tuning inception-v3 on flowers] ( https://github.com/tensorflow/models/blob/master/research/ slim/scripts/finetune_inception_v3_on_flowers.sh ) ,
354
354
inception_v3 was trained on ImageNet with 1000 class labels, but the flowers
355
355
dataset only have 5 classes. Since the dataset is quite small we will only train
356
356
the new layers.
0 commit comments