@@ -669,6 +669,11 @@ class RandomForestClassifier(ForestClassifier):
669669 ``min_samples_leaf`` samples.
670670 Note: this parameter is tree-specific.
671671
672+ min_weight_fraction_leaf : float, optional (default=0.)
673+ The minimum weighted fraction of the input samples required to be at a
674+ leaf node.
675+ Note: this parameter is tree-specific.
676+
672677 max_leaf_nodes : int or None, optional (default=None)
673678 Grow trees with ``max_leaf_nodes`` in best-first fashion.
674679 Best nodes are defined as relative reduction in impurity.
@@ -736,6 +741,7 @@ def __init__(self,
736741 max_depth = None ,
737742 min_samples_split = 2 ,
738743 min_samples_leaf = 1 ,
744+ min_weight_fraction_leaf = 0. ,
739745 max_features = "auto" ,
740746 max_leaf_nodes = None ,
741747 bootstrap = True ,
@@ -749,8 +755,9 @@ def __init__(self,
749755 base_estimator = DecisionTreeClassifier (),
750756 n_estimators = n_estimators ,
751757 estimator_params = ("criterion" , "max_depth" , "min_samples_split" ,
752- "min_samples_leaf" , "max_features" ,
753- "max_leaf_nodes" , "random_state" ),
758+ "min_samples_leaf" , "min_weight_fraction_leaf" ,
759+ "max_features" , "max_leaf_nodes" ,
760+ "random_state" ),
754761 bootstrap = bootstrap ,
755762 oob_score = oob_score ,
756763 n_jobs = n_jobs ,
@@ -761,6 +768,7 @@ def __init__(self,
761768 self .max_depth = max_depth
762769 self .min_samples_split = min_samples_split
763770 self .min_samples_leaf = min_samples_leaf
771+ self .min_weight_fraction_leaf = min_weight_fraction_leaf
764772 self .max_features = max_features
765773 self .max_leaf_nodes = max_leaf_nodes
766774
@@ -827,6 +835,11 @@ class RandomForestRegressor(ForestRegressor):
827835 ``min_samples_leaf`` samples.
828836 Note: this parameter is tree-specific.
829837
838+ min_weight_fraction_leaf : float, optional (default=0.)
839+ The minimum weighted fraction of the input samples required to be at a
840+ leaf node.
841+ Note: this parameter is tree-specific.
842+
830843 max_leaf_nodes : int or None, optional (default=None)
831844 Grow trees with ``max_leaf_nodes`` in best-first fashion.
832845 Best nodes are defined as relative reduction in impurity.
@@ -883,6 +896,7 @@ def __init__(self,
883896 max_depth = None ,
884897 min_samples_split = 2 ,
885898 min_samples_leaf = 1 ,
899+ min_weight_fraction_leaf = 0. ,
886900 max_features = "auto" ,
887901 max_leaf_nodes = None ,
888902 bootstrap = True ,
@@ -896,8 +910,9 @@ def __init__(self,
896910 base_estimator = DecisionTreeRegressor (),
897911 n_estimators = n_estimators ,
898912 estimator_params = ("criterion" , "max_depth" , "min_samples_split" ,
899- "min_samples_leaf" , "max_features" ,
900- "max_leaf_nodes" , "random_state" ),
913+ "min_samples_leaf" , "min_weight_fraction_leaf" ,
914+ "max_features" , "max_leaf_nodes" ,
915+ "random_state" ),
901916 bootstrap = bootstrap ,
902917 oob_score = oob_score ,
903918 n_jobs = n_jobs ,
@@ -908,6 +923,7 @@ def __init__(self,
908923 self .max_depth = max_depth
909924 self .min_samples_split = min_samples_split
910925 self .min_samples_leaf = min_samples_leaf
926+ self .min_weight_fraction_leaf = min_weight_fraction_leaf
911927 self .max_features = max_features
912928 self .max_leaf_nodes = max_leaf_nodes
913929
@@ -975,6 +991,11 @@ class ExtraTreesClassifier(ForestClassifier):
975991 ``min_samples_leaf`` samples.
976992 Note: this parameter is tree-specific.
977993
994+ min_weight_fraction_leaf : float, optional (default=0.)
995+ The minimum weighted fraction of the input samples required to be at a
996+ leaf node.
997+ Note: this parameter is tree-specific.
998+
978999 max_leaf_nodes : int or None, optional (default=None)
9791000 Grow trees with ``max_leaf_nodes`` in best-first fashion.
9801001 Best nodes are defined as relative reduction in impurity.
@@ -1045,6 +1066,7 @@ def __init__(self,
10451066 max_depth = None ,
10461067 min_samples_split = 2 ,
10471068 min_samples_leaf = 1 ,
1069+ min_weight_fraction_leaf = 0. ,
10481070 max_features = "auto" ,
10491071 max_leaf_nodes = None ,
10501072 bootstrap = False ,
@@ -1058,8 +1080,8 @@ def __init__(self,
10581080 base_estimator = ExtraTreeClassifier (),
10591081 n_estimators = n_estimators ,
10601082 estimator_params = ("criterion" , "max_depth" , "min_samples_split" ,
1061- "min_samples_leaf" , "max_features " ,
1062- "max_leaf_nodes" , "random_state" ),
1083+ "min_samples_leaf" , "min_weight_fraction_leaf " ,
1084+ "max_features" , " max_leaf_nodes" , "random_state" ),
10631085 bootstrap = bootstrap ,
10641086 oob_score = oob_score ,
10651087 n_jobs = n_jobs ,
@@ -1070,6 +1092,7 @@ def __init__(self,
10701092 self .max_depth = max_depth
10711093 self .min_samples_split = min_samples_split
10721094 self .min_samples_leaf = min_samples_leaf
1095+ self .min_weight_fraction_leaf = min_weight_fraction_leaf
10731096 self .max_features = max_features
10741097 self .max_leaf_nodes = max_leaf_nodes
10751098
@@ -1137,6 +1160,11 @@ class ExtraTreesRegressor(ForestRegressor):
11371160 ``min_samples_leaf`` samples.
11381161 Note: this parameter is tree-specific.
11391162
1163+ min_weight_fraction_leaf : float, optional (default=0.)
1164+ The minimum weighted fraction of the input samples required to be at a
1165+ leaf node.
1166+ Note: this parameter is tree-specific.
1167+
11401168 max_leaf_nodes : int or None, optional (default=None)
11411169 Grow trees with ``max_leaf_nodes`` in best-first fashion.
11421170 Best nodes are defined as relative reduction in impurity.
@@ -1196,6 +1224,7 @@ def __init__(self,
11961224 max_depth = None ,
11971225 min_samples_split = 2 ,
11981226 min_samples_leaf = 1 ,
1227+ min_weight_fraction_leaf = 0. ,
11991228 max_features = "auto" ,
12001229 max_leaf_nodes = None ,
12011230 bootstrap = False ,
@@ -1209,8 +1238,9 @@ def __init__(self,
12091238 base_estimator = ExtraTreeRegressor (),
12101239 n_estimators = n_estimators ,
12111240 estimator_params = ("criterion" , "max_depth" , "min_samples_split" ,
1212- "min_samples_leaf" , "max_features" ,
1213- "max_leaf_nodes" , "random_state" ),
1241+ "min_samples_leaf" , "min_weight_fraction_leaf" ,
1242+ "max_features" , "max_leaf_nodes" ,
1243+ "random_state" ),
12141244 bootstrap = bootstrap ,
12151245 oob_score = oob_score ,
12161246 n_jobs = n_jobs ,
@@ -1221,6 +1251,7 @@ def __init__(self,
12211251 self .max_depth = max_depth
12221252 self .min_samples_split = min_samples_split
12231253 self .min_samples_leaf = min_samples_leaf
1254+ self .min_weight_fraction_leaf = min_weight_fraction_leaf
12241255 self .max_features = max_features
12251256 self .max_leaf_nodes = max_leaf_nodes
12261257
@@ -1268,6 +1299,11 @@ class RandomTreesEmbedding(BaseForest):
12681299 ``min_samples_leaf`` samples.
12691300 Note: this parameter is tree-specific.
12701301
1302+ min_weight_fraction_leaf : float, optional (default=0.)
1303+ The minimum weighted fraction of the input samples required to be at a
1304+ leaf node.
1305+ Note: this parameter is tree-specific.
1306+
12711307 max_leaf_nodes : int or None, optional (default=None)
12721308 Grow trees with ``max_leaf_nodes`` in best-first fashion.
12731309 Best nodes are defined as relative reduction in impurity.
@@ -1312,6 +1348,7 @@ def __init__(self,
13121348 max_depth = 5 ,
13131349 min_samples_split = 2 ,
13141350 min_samples_leaf = 1 ,
1351+ min_weight_fraction_leaf = 0. ,
13151352 max_leaf_nodes = None ,
13161353 sparse_output = True ,
13171354 n_jobs = 1 ,
@@ -1322,8 +1359,9 @@ def __init__(self,
13221359 base_estimator = ExtraTreeRegressor (),
13231360 n_estimators = n_estimators ,
13241361 estimator_params = ("criterion" , "max_depth" , "min_samples_split" ,
1325- "min_samples_leaf" , "max_features" ,
1326- "max_leaf_nodes" , "random_state" ),
1362+ "min_samples_leaf" , "min_weight_fraction_leaf" ,
1363+ "max_features" , "max_leaf_nodes" ,
1364+ "random_state" ),
13271365 bootstrap = False ,
13281366 oob_score = False ,
13291367 n_jobs = n_jobs ,
@@ -1334,6 +1372,7 @@ def __init__(self,
13341372 self .max_depth = max_depth
13351373 self .min_samples_split = min_samples_split
13361374 self .min_samples_leaf = min_samples_leaf
1375+ self .min_weight_fraction_leaf = min_weight_fraction_leaf
13371376 self .max_features = 1
13381377 self .max_leaf_nodes = max_leaf_nodes
13391378 self .sparse_output = sparse_output
0 commit comments