1313from  collections  import  defaultdict 
1414import  matplotlib .pyplot  as  plt 
1515from  sklearn .datasets  import  fetch_lfw_people 
16- from  sklearn .decomposition  import  IncrementalPCA , RandomizedPCA ,  PCA 
16+ from  sklearn .decomposition  import  IncrementalPCA , PCA 
1717
1818
1919def  plot_results (X , y , label ):
@@ -37,7 +37,6 @@ def plot_feature_times(all_times, batch_size, all_components, data):
3737    plot_results (all_components , all_times ['pca' ], label = "PCA" )
3838    plot_results (all_components , all_times ['ipca' ],
3939                 label = "IncrementalPCA, bsize=%i"  %  batch_size )
40-     plot_results (all_components , all_times ['rpca' ], label = "RandomizedPCA" )
4140    plt .legend (loc = "upper left" )
4241    plt .suptitle ("Algorithm runtime vs. n_components\n  \  
4342                  LFW, size %i x %i"  %  data .shape )
@@ -50,7 +49,6 @@ def plot_feature_errors(all_errors, batch_size, all_components, data):
5049    plot_results (all_components , all_errors ['pca' ], label = "PCA" )
5150    plot_results (all_components , all_errors ['ipca' ],
5251                 label = "IncrementalPCA, bsize=%i"  %  batch_size )
53-     plot_results (all_components , all_errors ['rpca' ], label = "RandomizedPCA" )
5452    plt .legend (loc = "lower left" )
5553    plt .suptitle ("Algorithm error vs. n_components\n " 
5654                 "LFW, size %i x %i"  %  data .shape )
@@ -61,7 +59,6 @@ def plot_feature_errors(all_errors, batch_size, all_components, data):
6159def  plot_batch_times (all_times , n_features , all_batch_sizes , data ):
6260    plt .figure ()
6361    plot_results (all_batch_sizes , all_times ['pca' ], label = "PCA" )
64-     plot_results (all_batch_sizes , all_times ['rpca' ], label = "RandomizedPCA" )
6562    plot_results (all_batch_sizes , all_times ['ipca' ], label = "IncrementalPCA" )
6663    plt .legend (loc = "lower left" )
6764    plt .suptitle ("Algorithm runtime vs. batch_size for n_components %i\n  \  
@@ -92,11 +89,9 @@ def fixed_batch_size_comparison(data):
9289    all_errors  =  defaultdict (list )
9390    for  n_components  in  all_features :
9491        pca  =  PCA (n_components = n_components )
95-         rpca  =  RandomizedPCA (n_components = n_components , random_state = 1999 )
9692        ipca  =  IncrementalPCA (n_components = n_components , batch_size = batch_size )
9793        results_dict  =  {k : benchmark (est , data ) for  k , est  in  [('pca' , pca ),
98-                                                                ('ipca' , ipca ),
99-                                                                ('rpca' , rpca )]}
94+                                                                ('ipca' , ipca )]}
10095
10196        for  k  in  sorted (results_dict .keys ()):
10297            all_times [k ].append (results_dict [k ]['time' ])
@@ -116,7 +111,8 @@ def variable_batch_size_comparison(data):
116111        all_times  =  defaultdict (list )
117112        all_errors  =  defaultdict (list )
118113        pca  =  PCA (n_components = n_components )
119-         rpca  =  RandomizedPCA (n_components = n_components , random_state = 1999 )
114+         rpca  =  PCA (n_components = n_components , svd_solver = 'randomized' ,
115+                    random_state = 1999 )
120116        results_dict  =  {k : benchmark (est , data ) for  k , est  in  [('pca' , pca ),
121117                                                               ('rpca' , rpca )]}
122118
@@ -138,8 +134,6 @@ def variable_batch_size_comparison(data):
138134            all_errors ['ipca' ].append (results_dict ['ipca' ]['error' ])
139135
140136        plot_batch_times (all_times , n_components , batch_sizes , data )
141-         # RandomizedPCA error is always worse (approx 100x) than other PCA 
142-         # tests 
143137        plot_batch_errors (all_errors , n_components , batch_sizes , data )
144138
145139faces  =  fetch_lfw_people (resize = .2 , min_faces_per_person = 5 )
0 commit comments