|
| 1 | +/* |
| 2 | + * This file is part of the Micro Python project, http://micropython.org/ |
| 3 | + * |
| 4 | + * These math functions are taken from newlib-nano-2, the newlib/libm/math |
| 5 | + * directory, available from https://github.com/32bitmicro/newlib-nano-2. |
| 6 | + * |
| 7 | + * Appropriate copyright headers are reproduced below. |
| 8 | + */ |
| 9 | + |
| 10 | +/* erf_lgamma.c -- float version of er_lgamma.c. |
| 11 | + * Conversion to float by Ian Lance Taylor, Cygnus Support, [email protected]. |
| 12 | + */ |
| 13 | + |
| 14 | +/* |
| 15 | + * ==================================================== |
| 16 | + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
| 17 | + * |
| 18 | + * Developed at SunPro, a Sun Microsystems, Inc. business. |
| 19 | + * Permission to use, copy, modify, and distribute this |
| 20 | + * software is freely granted, provided that this notice |
| 21 | + * is preserved. |
| 22 | + * ==================================================== |
| 23 | + * |
| 24 | + */ |
| 25 | + |
| 26 | +#include "fdlibm.h" |
| 27 | + |
| 28 | +#define __ieee754_logf logf |
| 29 | + |
| 30 | +#ifdef __STDC__ |
| 31 | +static const float |
| 32 | +#else |
| 33 | +static float |
| 34 | +#endif |
| 35 | +two23= 8.3886080000e+06, /* 0x4b000000 */ |
| 36 | +half= 5.0000000000e-01, /* 0x3f000000 */ |
| 37 | +one = 1.0000000000e+00, /* 0x3f800000 */ |
| 38 | +pi = 3.1415927410e+00, /* 0x40490fdb */ |
| 39 | +a0 = 7.7215664089e-02, /* 0x3d9e233f */ |
| 40 | +a1 = 3.2246702909e-01, /* 0x3ea51a66 */ |
| 41 | +a2 = 6.7352302372e-02, /* 0x3d89f001 */ |
| 42 | +a3 = 2.0580807701e-02, /* 0x3ca89915 */ |
| 43 | +a4 = 7.3855509982e-03, /* 0x3bf2027e */ |
| 44 | +a5 = 2.8905137442e-03, /* 0x3b3d6ec6 */ |
| 45 | +a6 = 1.1927076848e-03, /* 0x3a9c54a1 */ |
| 46 | +a7 = 5.1006977446e-04, /* 0x3a05b634 */ |
| 47 | +a8 = 2.2086278477e-04, /* 0x39679767 */ |
| 48 | +a9 = 1.0801156895e-04, /* 0x38e28445 */ |
| 49 | +a10 = 2.5214456400e-05, /* 0x37d383a2 */ |
| 50 | +a11 = 4.4864096708e-05, /* 0x383c2c75 */ |
| 51 | +tc = 1.4616321325e+00, /* 0x3fbb16c3 */ |
| 52 | +tf = -1.2148628384e-01, /* 0xbdf8cdcd */ |
| 53 | +/* tt = -(tail of tf) */ |
| 54 | +tt = 6.6971006518e-09, /* 0x31e61c52 */ |
| 55 | +t0 = 4.8383611441e-01, /* 0x3ef7b95e */ |
| 56 | +t1 = -1.4758771658e-01, /* 0xbe17213c */ |
| 57 | +t2 = 6.4624942839e-02, /* 0x3d845a15 */ |
| 58 | +t3 = -3.2788541168e-02, /* 0xbd064d47 */ |
| 59 | +t4 = 1.7970675603e-02, /* 0x3c93373d */ |
| 60 | +t5 = -1.0314224288e-02, /* 0xbc28fcfe */ |
| 61 | +t6 = 6.1005386524e-03, /* 0x3bc7e707 */ |
| 62 | +t7 = -3.6845202558e-03, /* 0xbb7177fe */ |
| 63 | +t8 = 2.2596477065e-03, /* 0x3b141699 */ |
| 64 | +t9 = -1.4034647029e-03, /* 0xbab7f476 */ |
| 65 | +t10 = 8.8108185446e-04, /* 0x3a66f867 */ |
| 66 | +t11 = -5.3859531181e-04, /* 0xba0d3085 */ |
| 67 | +t12 = 3.1563205994e-04, /* 0x39a57b6b */ |
| 68 | +t13 = -3.1275415677e-04, /* 0xb9a3f927 */ |
| 69 | +t14 = 3.3552918467e-04, /* 0x39afe9f7 */ |
| 70 | +u0 = -7.7215664089e-02, /* 0xbd9e233f */ |
| 71 | +u1 = 6.3282704353e-01, /* 0x3f2200f4 */ |
| 72 | +u2 = 1.4549225569e+00, /* 0x3fba3ae7 */ |
| 73 | +u3 = 9.7771751881e-01, /* 0x3f7a4bb2 */ |
| 74 | +u4 = 2.2896373272e-01, /* 0x3e6a7578 */ |
| 75 | +u5 = 1.3381091878e-02, /* 0x3c5b3c5e */ |
| 76 | +v1 = 2.4559779167e+00, /* 0x401d2ebe */ |
| 77 | +v2 = 2.1284897327e+00, /* 0x4008392d */ |
| 78 | +v3 = 7.6928514242e-01, /* 0x3f44efdf */ |
| 79 | +v4 = 1.0422264785e-01, /* 0x3dd572af */ |
| 80 | +v5 = 3.2170924824e-03, /* 0x3b52d5db */ |
| 81 | +s0 = -7.7215664089e-02, /* 0xbd9e233f */ |
| 82 | +s1 = 2.1498242021e-01, /* 0x3e5c245a */ |
| 83 | +s2 = 3.2577878237e-01, /* 0x3ea6cc7a */ |
| 84 | +s3 = 1.4635047317e-01, /* 0x3e15dce6 */ |
| 85 | +s4 = 2.6642270386e-02, /* 0x3cda40e4 */ |
| 86 | +s5 = 1.8402845599e-03, /* 0x3af135b4 */ |
| 87 | +s6 = 3.1947532989e-05, /* 0x3805ff67 */ |
| 88 | +r1 = 1.3920053244e+00, /* 0x3fb22d3b */ |
| 89 | +r2 = 7.2193557024e-01, /* 0x3f38d0c5 */ |
| 90 | +r3 = 1.7193385959e-01, /* 0x3e300f6e */ |
| 91 | +r4 = 1.8645919859e-02, /* 0x3c98bf54 */ |
| 92 | +r5 = 7.7794247773e-04, /* 0x3a4beed6 */ |
| 93 | +r6 = 7.3266842264e-06, /* 0x36f5d7bd */ |
| 94 | +w0 = 4.1893854737e-01, /* 0x3ed67f1d */ |
| 95 | +w1 = 8.3333335817e-02, /* 0x3daaaaab */ |
| 96 | +w2 = -2.7777778450e-03, /* 0xbb360b61 */ |
| 97 | +w3 = 7.9365057172e-04, /* 0x3a500cfd */ |
| 98 | +w4 = -5.9518753551e-04, /* 0xba1c065c */ |
| 99 | +w5 = 8.3633989561e-04, /* 0x3a5b3dd2 */ |
| 100 | +w6 = -1.6309292987e-03; /* 0xbad5c4e8 */ |
| 101 | + |
| 102 | +#ifdef __STDC__ |
| 103 | +static const float zero= 0.0000000000e+00; |
| 104 | +#else |
| 105 | +static float zero= 0.0000000000e+00; |
| 106 | +#endif |
| 107 | + |
| 108 | +#ifdef __STDC__ |
| 109 | + static float sin_pif(float x) |
| 110 | +#else |
| 111 | + static float sin_pif(x) |
| 112 | + float x; |
| 113 | +#endif |
| 114 | +{ |
| 115 | + float y,z; |
| 116 | + __int32_t n,ix; |
| 117 | + |
| 118 | + GET_FLOAT_WORD(ix,x); |
| 119 | + ix &= 0x7fffffff; |
| 120 | + |
| 121 | + if(ix<0x3e800000) return __kernel_sinf(pi*x,zero,0); |
| 122 | + y = -x; /* x is assume negative */ |
| 123 | + |
| 124 | + /* |
| 125 | + * argument reduction, make sure inexact flag not raised if input |
| 126 | + * is an integer |
| 127 | + */ |
| 128 | + z = floorf(y); |
| 129 | + if(z!=y) { /* inexact anyway */ |
| 130 | + y *= (float)0.5; |
| 131 | + y = (float)2.0*(y - floorf(y)); /* y = |x| mod 2.0 */ |
| 132 | + n = (__int32_t) (y*(float)4.0); |
| 133 | + } else { |
| 134 | + if(ix>=0x4b800000) { |
| 135 | + y = zero; n = 0; /* y must be even */ |
| 136 | + } else { |
| 137 | + if(ix<0x4b000000) z = y+two23; /* exact */ |
| 138 | + GET_FLOAT_WORD(n,z); |
| 139 | + n &= 1; |
| 140 | + y = n; |
| 141 | + n<<= 2; |
| 142 | + } |
| 143 | + } |
| 144 | + switch (n) { |
| 145 | + case 0: y = __kernel_sinf(pi*y,zero,0); break; |
| 146 | + case 1: |
| 147 | + case 2: y = __kernel_cosf(pi*((float)0.5-y),zero); break; |
| 148 | + case 3: |
| 149 | + case 4: y = __kernel_sinf(pi*(one-y),zero,0); break; |
| 150 | + case 5: |
| 151 | + case 6: y = -__kernel_cosf(pi*(y-(float)1.5),zero); break; |
| 152 | + default: y = __kernel_sinf(pi*(y-(float)2.0),zero,0); break; |
| 153 | + } |
| 154 | + return -y; |
| 155 | +} |
| 156 | + |
| 157 | + |
| 158 | +#ifdef __STDC__ |
| 159 | + float __ieee754_lgammaf_r(float x, int *signgamp) |
| 160 | +#else |
| 161 | + float __ieee754_lgammaf_r(x,signgamp) |
| 162 | + float x; int *signgamp; |
| 163 | +#endif |
| 164 | +{ |
| 165 | + float t,y,z,nadj = 0.0,p,p1,p2,p3,q,r,w; |
| 166 | + __int32_t i,hx,ix; |
| 167 | + |
| 168 | + GET_FLOAT_WORD(hx,x); |
| 169 | + |
| 170 | + /* purge off +-inf, NaN, +-0, and negative arguments */ |
| 171 | + *signgamp = 1; |
| 172 | + ix = hx&0x7fffffff; |
| 173 | + if(ix>=0x7f800000) return x*x; |
| 174 | + if(ix==0) return one/zero; |
| 175 | + if(ix<0x1c800000) { /* |x|<2**-70, return -log(|x|) */ |
| 176 | + if(hx<0) { |
| 177 | + *signgamp = -1; |
| 178 | + return -__ieee754_logf(-x); |
| 179 | + } else return -__ieee754_logf(x); |
| 180 | + } |
| 181 | + if(hx<0) { |
| 182 | + if(ix>=0x4b000000) /* |x|>=2**23, must be -integer */ |
| 183 | + return one/zero; |
| 184 | + t = sin_pif(x); |
| 185 | + if(t==zero) return one/zero; /* -integer */ |
| 186 | + nadj = __ieee754_logf(pi/fabsf(t*x)); |
| 187 | + if(t<zero) *signgamp = -1; |
| 188 | + x = -x; |
| 189 | + } |
| 190 | + |
| 191 | + /* purge off 1 and 2 */ |
| 192 | + if (ix==0x3f800000||ix==0x40000000) r = 0; |
| 193 | + /* for x < 2.0 */ |
| 194 | + else if(ix<0x40000000) { |
| 195 | + if(ix<=0x3f666666) { /* lgamma(x) = lgamma(x+1)-log(x) */ |
| 196 | + r = -__ieee754_logf(x); |
| 197 | + if(ix>=0x3f3b4a20) {y = one-x; i= 0;} |
| 198 | + else if(ix>=0x3e6d3308) {y= x-(tc-one); i=1;} |
| 199 | + else {y = x; i=2;} |
| 200 | + } else { |
| 201 | + r = zero; |
| 202 | + if(ix>=0x3fdda618) {y=(float)2.0-x;i=0;} /* [1.7316,2] */ |
| 203 | + else if(ix>=0x3F9da620) {y=x-tc;i=1;} /* [1.23,1.73] */ |
| 204 | + else {y=x-one;i=2;} |
| 205 | + } |
| 206 | + switch(i) { |
| 207 | + case 0: |
| 208 | + z = y*y; |
| 209 | + p1 = a0+z*(a2+z*(a4+z*(a6+z*(a8+z*a10)))); |
| 210 | + p2 = z*(a1+z*(a3+z*(a5+z*(a7+z*(a9+z*a11))))); |
| 211 | + p = y*p1+p2; |
| 212 | + r += (p-(float)0.5*y); break; |
| 213 | + case 1: |
| 214 | + z = y*y; |
| 215 | + w = z*y; |
| 216 | + p1 = t0+w*(t3+w*(t6+w*(t9 +w*t12))); /* parallel comp */ |
| 217 | + p2 = t1+w*(t4+w*(t7+w*(t10+w*t13))); |
| 218 | + p3 = t2+w*(t5+w*(t8+w*(t11+w*t14))); |
| 219 | + p = z*p1-(tt-w*(p2+y*p3)); |
| 220 | + r += (tf + p); break; |
| 221 | + case 2: |
| 222 | + p1 = y*(u0+y*(u1+y*(u2+y*(u3+y*(u4+y*u5))))); |
| 223 | + p2 = one+y*(v1+y*(v2+y*(v3+y*(v4+y*v5)))); |
| 224 | + r += (-(float)0.5*y + p1/p2); |
| 225 | + } |
| 226 | + } |
| 227 | + else if(ix<0x41000000) { /* x < 8.0 */ |
| 228 | + i = (__int32_t)x; |
| 229 | + t = zero; |
| 230 | + y = x-(float)i; |
| 231 | + p = y*(s0+y*(s1+y*(s2+y*(s3+y*(s4+y*(s5+y*s6)))))); |
| 232 | + q = one+y*(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6))))); |
| 233 | + r = half*y+p/q; |
| 234 | + z = one; /* lgamma(1+s) = log(s) + lgamma(s) */ |
| 235 | + switch(i) { |
| 236 | + case 7: z *= (y+(float)6.0); /* FALLTHRU */ |
| 237 | + case 6: z *= (y+(float)5.0); /* FALLTHRU */ |
| 238 | + case 5: z *= (y+(float)4.0); /* FALLTHRU */ |
| 239 | + case 4: z *= (y+(float)3.0); /* FALLTHRU */ |
| 240 | + case 3: z *= (y+(float)2.0); /* FALLTHRU */ |
| 241 | + r += __ieee754_logf(z); break; |
| 242 | + } |
| 243 | + /* 8.0 <= x < 2**58 */ |
| 244 | + } else if (ix < 0x5c800000) { |
| 245 | + t = __ieee754_logf(x); |
| 246 | + z = one/x; |
| 247 | + y = z*z; |
| 248 | + w = w0+z*(w1+y*(w2+y*(w3+y*(w4+y*(w5+y*w6))))); |
| 249 | + r = (x-half)*(t-one)+w; |
| 250 | + } else |
| 251 | + /* 2**58 <= x <= inf */ |
| 252 | + r = x*(__ieee754_logf(x)-one); |
| 253 | + if(hx<0) r = nadj - r; |
| 254 | + return r; |
| 255 | +} |
0 commit comments