|  | 
|  | 1 | +{ | 
|  | 2 | + "cells": [ | 
|  | 3 | +  { | 
|  | 4 | +   "cell_type": "code", | 
|  | 5 | +   "execution_count": 37, | 
|  | 6 | +   "metadata": {}, | 
|  | 7 | +   "outputs": [], | 
|  | 8 | +   "source": [ | 
|  | 9 | +    "from nltk.tokenize import RegexpTokenizer\n", | 
|  | 10 | +    "from stop_words import get_stop_words\n", | 
|  | 11 | +    "from nltk.stem.porter import PorterStemmer\n", | 
|  | 12 | +    "from gensim import corpora, models\n", | 
|  | 13 | +    "import gensim" | 
|  | 14 | +   ] | 
|  | 15 | +  }, | 
|  | 16 | +  { | 
|  | 17 | +   "cell_type": "code", | 
|  | 18 | +   "execution_count": 44, | 
|  | 19 | +   "metadata": { | 
|  | 20 | +    "collapsed": true | 
|  | 21 | +   }, | 
|  | 22 | +   "outputs": [], | 
|  | 23 | +   "source": [ | 
|  | 24 | +    "tokenizer = RegexpTokenizer(r'\\w+')\n", | 
|  | 25 | +    "\n", | 
|  | 26 | +    "# create English stop words list\n", | 
|  | 27 | +    "en_stop = get_stop_words('en')\n", | 
|  | 28 | +    "\n", | 
|  | 29 | +    "# Create p_stemmer of class PorterStemmer\n", | 
|  | 30 | +    "p_stemmer = PorterStemmer()\n", | 
|  | 31 | +    "    \n", | 
|  | 32 | +    "# create sample documents\n", | 
|  | 33 | +    "doc_a = \"Brocolli is good to eat. My brother likes to eat good brocolli, but not my mother.\"\n", | 
|  | 34 | +    "doc_b = \"My mother spends a lot of time driving my brother around to baseball practice.\"\n", | 
|  | 35 | +    "doc_c = \"Some health experts suggest that driving may cause increased tension and blood pressure.\"\n", | 
|  | 36 | +    "doc_d = \"I often feel pressure to perform well at school, but my mother never seems to drive my brother to do better.\"\n", | 
|  | 37 | +    "doc_e = \"Health professionals say that brocolli is good for your health.\" \n", | 
|  | 38 | +    "\n", | 
|  | 39 | +    "# compile sample documents into a list\n", | 
|  | 40 | +    "doc_set = [doc_a, doc_b, doc_c, doc_d, doc_e]\n", | 
|  | 41 | +    "\n", | 
|  | 42 | +    "# list for tokenized documents in loop\n", | 
|  | 43 | +    "texts = []\n", | 
|  | 44 | +    "\n", | 
|  | 45 | +    "# loop through document list\n", | 
|  | 46 | +    "for i in doc_set:\n", | 
|  | 47 | +    "    \n", | 
|  | 48 | +    "    # clean and tokenize document string\n", | 
|  | 49 | +    "    raw = i.lower()\n", | 
|  | 50 | +    "    tokens = tokenizer.tokenize(raw)\n", | 
|  | 51 | +    "\n", | 
|  | 52 | +    "    # remove stop words from tokens\n", | 
|  | 53 | +    "    stopped_tokens = [i for i in tokens if not i in en_stop]\n", | 
|  | 54 | +    "    \n", | 
|  | 55 | +    "    # stem tokens\n", | 
|  | 56 | +    "    stemmed_tokens = [p_stemmer.stem(i) for i in stopped_tokens]\n", | 
|  | 57 | +    "    \n", | 
|  | 58 | +    "    # add tokens to list\n", | 
|  | 59 | +    "    texts.append(stemmed_tokens)\n", | 
|  | 60 | +    "\n", | 
|  | 61 | +    "# turn our tokenized documents into a id <-> term dictionary\n", | 
|  | 62 | +    "dictionary = corpora.Dictionary(texts)\n", | 
|  | 63 | +    "    \n", | 
|  | 64 | +    "# convert tokenized documents into a document-term matrix\n", | 
|  | 65 | +    "corpus = [dictionary.doc2bow(text) for text in texts]\n", | 
|  | 66 | +    "\n", | 
|  | 67 | +    "# generate LDA model\n", | 
|  | 68 | +    "ldamodel = gensim.models.ldamodel.LdaModel(corpus, num_topics=2, id2word = dictionary, passes=20)" | 
|  | 69 | +   ] | 
|  | 70 | +  }, | 
|  | 71 | +  { | 
|  | 72 | +   "cell_type": "code", | 
|  | 73 | +   "execution_count": 45, | 
|  | 74 | +   "metadata": {}, | 
|  | 75 | +   "outputs": [ | 
|  | 76 | +    { | 
|  | 77 | +     "name": "stdout", | 
|  | 78 | +     "output_type": "stream", | 
|  | 79 | +     "text": [ | 
|  | 80 | +      "[(0, '0.072*\"drive\" + 0.043*\"health\" + 0.043*\"pressur\" + 0.043*\"caus\"'), (1, '0.081*\"brocolli\" + 0.081*\"good\" + 0.059*\"brother\" + 0.059*\"mother\"')]\n" | 
|  | 81 | +     ] | 
|  | 82 | +    } | 
|  | 83 | +   ], | 
|  | 84 | +   "source": [ | 
|  | 85 | +    "print(ldamodel.print_topics(num_topics=2, num_words=4))" | 
|  | 86 | +   ] | 
|  | 87 | +  }, | 
|  | 88 | +  { | 
|  | 89 | +   "cell_type": "code", | 
|  | 90 | +   "execution_count": 47, | 
|  | 91 | +   "metadata": {}, | 
|  | 92 | +   "outputs": [ | 
|  | 93 | +    { | 
|  | 94 | +     "name": "stdout", | 
|  | 95 | +     "output_type": "stream", | 
|  | 96 | +     "text": [ | 
|  | 97 | +      "[(0, '0.072*\"drive\" + 0.043*\"health\" + 0.043*\"pressur\"'), (1, '0.081*\"brocolli\" + 0.081*\"good\" + 0.059*\"brother\"')]\n" | 
|  | 98 | +     ] | 
|  | 99 | +    } | 
|  | 100 | +   ], | 
|  | 101 | +   "source": [ | 
|  | 102 | +    "print(ldamodel.print_topics(num_topics=3, num_words=3))" | 
|  | 103 | +   ] | 
|  | 104 | +  } | 
|  | 105 | + ], | 
|  | 106 | + "metadata": { | 
|  | 107 | +  "kernelspec": { | 
|  | 108 | +   "display_name": "Python 3", | 
|  | 109 | +   "language": "python", | 
|  | 110 | +   "name": "python3" | 
|  | 111 | +  }, | 
|  | 112 | +  "language_info": { | 
|  | 113 | +   "codemirror_mode": { | 
|  | 114 | +    "name": "ipython", | 
|  | 115 | +    "version": 3 | 
|  | 116 | +   }, | 
|  | 117 | +   "file_extension": ".py", | 
|  | 118 | +   "mimetype": "text/x-python", | 
|  | 119 | +   "name": "python", | 
|  | 120 | +   "nbconvert_exporter": "python", | 
|  | 121 | +   "pygments_lexer": "ipython3", | 
|  | 122 | +   "version": "3.6.1" | 
|  | 123 | +  } | 
|  | 124 | + }, | 
|  | 125 | + "nbformat": 4, | 
|  | 126 | + "nbformat_minor": 2 | 
|  | 127 | +} | 
0 commit comments