Skip to content

[Bug] [CUDA] TVM failes to compile onnx model with cuda 11.8: InternalError: Check failed: (entry->context_stack.top().same_as(*this)) is false: #17854

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
coffezhou opened this issue Apr 18, 2025 · 0 comments
Labels
needs-triage PRs or issues that need to be investigated by maintainers to find the right assignees to address it type: bug

Comments

@coffezhou
Copy link

coffezhou commented Apr 18, 2025

Expected behavior

TVM should compile the model correctly with the CUDA backend.

Actual behavior

When compiling the model with the CUDA backend, TVM crashes as follows:

Traceback (most recent call last):
  File "/home/carla/Documents/test/test.py", line 140, in check_correctness
    ex = tvm.compile(tvm_model, target="cuda")
         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/carla/Documents/tvm/python/tvm/driver/build_module.py", line 104, in compile
    return tvm.relax.build(
           ^^^^^^^^^^^^^^^^
  File "/home/carla/Documents/tvm/python/tvm/relax/vm_build.py", line 259, in build
    return _vmlink(
           ^^^^^^^^
  File "/home/carla/Documents/tvm/python/tvm/relax/vm_build.py", line 154, in _vmlink
    lib = tvm.tir.build(tir_mod, target=target, pipeline=tir_pipeline)
          ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/carla/Documents/tvm/python/tvm/tir/build.py", line 186, in build
    return tir_to_runtime(host_mod, device_mod_dict, target_host)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/carla/Documents/tvm/python/tvm/tir/build.py", line 96, in tir_to_runtime
    device_modules.append(codegen_build(device_mod, target))
                          ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/carla/Documents/tvm/python/tvm/tir/build.py", line 80, in codegen_build
    return bf(mod, target)
           ^^^^^^^^^^^^^^^
  File "tvm/_ffi/_cython/./packed_func.pxi", line 339, in tvm._ffi._cy3.core.PackedFuncBase.__call__
  File "tvm/_ffi/_cython/./packed_func.pxi", line 270, in tvm._ffi._cy3.core.FuncCall
  File "tvm/_ffi/_cython/./packed_func.pxi", line 259, in tvm._ffi._cy3.core.FuncCall3
  File "tvm/_ffi/_cython/./base.pxi", line 185, in tvm._ffi._cy3.core.CHECK_CALL
  File "/home/carla/Documents/tvm/python/tvm/_ffi/base.py", line 468, in raise_last_ffi_error
    raise py_err
  File "/home/carla/Documents/tvm/src/target/opt/build_cuda_on.cc", line 161, in tvm::codegen::BuildCUDA(tvm::IRModule, tvm::Target)
    ptx = (*f)(code, target).operator std::string();
                  ^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "tvm/_ffi/_cython/./packed_func.pxi", line 56, in tvm._ffi._cy3.core.tvm_callback
  File "/home/carla/Documents/tvm/python/tvm/contrib/nvcc.py", line 204, in tvm_callback_cuda_compile
    ptx = compile_cuda(code, target_format="fatbin")
          ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/carla/Documents/tvm/python/tvm/contrib/nvcc.py", line 128, in compile_cuda
    raise RuntimeError(msg)
RuntimeError: 
#if (((__CUDACC_VER_MAJOR__ == 11) && (__CUDACC_VER_MINOR__ >= 4)) || \
     (__CUDACC_VER_MAJOR__ > 11))
#define TVM_ENABLE_L2_PREFETCH 1
#else
#define TVM_ENABLE_L2_PREFETCH 0
#endif

#ifdef _WIN32
  using uint = unsigned int;
  using uchar = unsigned char;
  using ushort = unsigned short;
  using int64_t = long long;
  using uint64_t = unsigned long long;
#else
  #define uint unsigned int
  #define uchar unsigned char
  #define ushort unsigned short
  #define int64_t long long
  #define uint64_t unsigned long long
#endif
extern "C" __global__ void __launch_bounds__(1024) add1_kernel(float* __restrict__ T_add, float* __restrict__ lv6, float* __restrict__ lv7, int64_t );
extern "C" __global__ void __launch_bounds__(1024) add1_kernel(float* __restrict__ T_add, float* __restrict__ lv6, float* __restrict__ lv7, int64_t ) {
  for (int64_t ax0_ax1_fused_0 = 0; ax0_ax1_fused_0 < ((( * (int64_t)3) + (int64_t)262143) >> (int64_t)18); ++ax0_ax1_fused_0) {
    if ((((ax0_ax1_fused_0 * (int64_t)262144) + (((int64_t)blockIdx.x) * (int64_t)1024)) + ((int64_t)threadIdx.x)) < ( * (int64_t)3)) {
      T_add[(((ax0_ax1_fused_0 * (int64_t)262144) + (((int64_t)blockIdx.x) * (int64_t)1024)) + ((int64_t)threadIdx.x))] = (lv6[(((ax0_ax1_fused_0 * (int64_t)262144) + (((int64_t)blockIdx.x) * (int64_t)1024)) + ((int64_t)threadIdx.x))] + lv7[(((ax0_ax1_fused_0 * (int64_t)262144) + (((int64_t)blockIdx.x) * (int64_t)1024)) + ((int64_t)threadIdx.x))]);
    }
  }
}


Compilation error:
/tmp/tmpjs6_cjiu/tvm_kernels.cu(24): error: operand of "*" must be a pointer but has type "long long"

/tmp/tmpjs6_cjiu/tvm_kernels.cu(25): error: operand of "*" must be a pointer but has type "long long"

2 errors detected in the compilation of "/tmp/tmpjs6_cjiu/tvm_kernels.cu".


During handling of the above exception, another exception occurred:

Traceback (most recent call last):
  File "/home/carla/Documents/test_tvm/test-tvm-llm/test_tvm.py", line 189, in <module>
    main()
  File "/home/carla/Documents/test_tvm/test-tvm-llm/test_tvm.py", line 178, in main
    check_correctness(onnx_model)
  File "/home/carla/Documents/test_tvm/test-tvm-llm/test_tvm.py", line 136, in check_correctness
    with tvm.target.Target("cuda"):
  File "/home/carla/Documents/tvm/python/tvm/target/target.py", line 145, in __exit__
    _ffi_api.TargetExitScope(self)
  File "tvm/_ffi/_cython/./packed_func.pxi", line 339, in tvm._ffi._cy3.core.PackedFuncBase.__call__
  File "tvm/_ffi/_cython/./packed_func.pxi", line 270, in tvm._ffi._cy3.core.FuncCall
  File "tvm/_ffi/_cython/./packed_func.pxi", line 259, in tvm._ffi._cy3.core.FuncCall3
  File "tvm/_ffi/_cython/./base.pxi", line 185, in tvm._ffi._cy3.core.CHECK_CALL
  File "/home/carla/Documents/tvm/python/tvm/_ffi/base.py", line 468, in raise_last_ffi_error
    raise py_err
  File "/home/carla/Documents/tvm/src/target/target.cc", line 52, in tvm::TargetInternal::ExitScope(tvm::Target)
    static void ExitScope(Target target) { target.ExitWithScope(); }
                    ^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/carla/Documents/tvm/src/target/target.cc", line 744, in tvm::Target::ExitWithScope()
    ICHECK(entry->context_stack.top().same_as(*this));
                    ^^^^^^^^^^^^^^^^^^^^^^^^^^^
tvm.error.InternalError: Traceback (most recent call last):
  1: tvm::TargetInternal::ExitScope(tvm::Target)
        at /home/carla/Documents/tvm/src/target/target.cc:52
  0: tvm::Target::ExitWithScope()
        at /home/carla/Documents/tvm/src/target/target.cc:744
  File "/home/carla/Documents/tvm/src/target/target.cc", line 744
InternalError: Check failed: (entry->context_stack.top().same_as(*this)) is false: 

Environment

OS: Ubuntu 20.04
TVM: 0.21.dev0(c00f52a)
CUDA: 11.8

Steps to reproduce

This bug can be reproduced by the following code with the model in the attachment. As shown in the code, the model can be executed by onnxruntime and also be compiled by tvm with cpu backend. However, tvm failed to compile this model with CUDA backend.

import sys

import numpy as np
import onnx
import onnxruntime

import tvm
from tvm import relax
from tvm.relax.frontend.onnx import from_onnx

import argparse
import pickle

            
def main():
    onnx_model = onnx.load("a2.onnx")
    
    with open("inputs.pkl", "rb") as fp:
        inputs = pickle.load(fp)
    
    try:
        ort_session = onnxruntime.InferenceSession(
            onnx_model.SerializeToString(), providers=["CPUExecutionProvider"]
        )
        ort_output = ort_session.run([], inputs)
    except Exception as e:
        print(e)
        sys.exit(1)
        
    # Convert the onnx model into relax through the onnx importer.
    tvm_model = from_onnx(onnx_model, keep_params_in_input=True)
    # Convert operators for inference mode.
    tvm_model = relax.transform.DecomposeOpsForInference()(tvm_model)
    # Legalize any relax ops into tensorir.
    tvm_model = relax.transform.LegalizeOps()(tvm_model)

    # Separate model from parameters.
    tvm_model, params = relax.frontend.detach_params(tvm_model)
    
    # Prepare inputs.
    input_list = [
        inputs[key.name_hint] for key in tvm_model["main"].params if key.name_hint in inputs
    ]
    if params:
        input_list += params["main"]
        
    # Compile the relax graph into a VM then run.
    #----------------------cpu-----------------------
    with tvm.transform.PassContext(opt_level=3):
        target = tvm.target.Target("llvm", host="llvm")
        relax_pipeline = relax.pipeline.get_default_pipeline(target)
        
        ex = relax.build(tvm_model, target="llvm", relax_pipeline=relax_pipeline)
        vm = relax.VirtualMachine(ex, tvm.cpu())
    
        # Run model and check outputs.
        vm.set_input("main", *input_list)
        vm.invoke_stateful("main")
        tvm_cpu_output = vm.get_outputs("main")
    #----------------------cpu-----------------------
    
    #----------------------cuda-----------------------
    with tvm.target.Target("cuda"):
        tvm_model = tvm.tir.transform.DefaultGPUSchedule()(tvm_model) 

        with tvm.transform.PassContext(opt_level=3):
            ex = tvm.compile(tvm_model, target="cuda")
            vm1 = relax.VirtualMachine(ex, tvm.cuda())
            
        vm1.set_input("main", *input_list)
        vm1.invoke_stateful("main")
        tvm_gpu_output = vm1.get_outputs("main")
    #----------------------cuda-----------------------
    
    
if __name__ == "__main__":
    main()

testcase.zip

Triage

  • needs-triage
@coffezhou coffezhou added needs-triage PRs or issues that need to be investigated by maintainers to find the right assignees to address it type: bug labels Apr 18, 2025
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
needs-triage PRs or issues that need to be investigated by maintainers to find the right assignees to address it type: bug
Projects
None yet
Development

No branches or pull requests

1 participant