|
| 1 | +using FluentAssertions; |
| 2 | +using NUnit.Framework; |
| 3 | + |
| 4 | +namespace MLTests |
| 5 | +{ |
| 6 | + public class GradientMulInOneOutTests |
| 7 | + { |
| 8 | + private double WeightsSum(double[] vecA, double[] vecB) |
| 9 | + { |
| 10 | + double result = 0; |
| 11 | + for (int i = 0; i < vecA.Length; i++) |
| 12 | + { |
| 13 | + result = result + vecA[i] * vecB[i]; |
| 14 | + } |
| 15 | + return result; |
| 16 | + } |
| 17 | + |
| 18 | + private double[] WeightsSub(double[] vecA, double sub) |
| 19 | + { |
| 20 | + var result = new double[vecA.Length]; |
| 21 | + for (int i = 0; i < vecA.Length; i++) |
| 22 | + { |
| 23 | + result[i] = vecA[i] - sub; |
| 24 | + } |
| 25 | + return result; |
| 26 | + |
| 27 | + } |
| 28 | + |
| 29 | + private double[] WeightsMul(double[] vecA, double[] vecB) |
| 30 | + { |
| 31 | + var result = new double[vecA.Length]; |
| 32 | + for (int i = 0; i < vecA.Length; i++) |
| 33 | + { |
| 34 | + result[i] = vecA[i] * vecB[i]; |
| 35 | + } |
| 36 | + return result; |
| 37 | + } |
| 38 | + |
| 39 | + private double[] GetLearnByGradientMul(double[] weights, double[] input, double predictionGoal, double alpha, double iterations) |
| 40 | + { |
| 41 | + var result = weights.ToArray(); |
| 42 | + for(int iteration = 0; iteration < iterations; ++iteration) |
| 43 | + { |
| 44 | + var prediction = WeightsSum(input, result); |
| 45 | + var error = Math.Pow(prediction - predictionGoal, 2); |
| 46 | + var delta = prediction - predictionGoal; |
| 47 | + var deltaWeight = delta * prediction; |
| 48 | + result = WeightsSub(result, alpha * deltaWeight); |
| 49 | + } |
| 50 | + return result; |
| 51 | + } |
| 52 | + |
| 53 | + [Test] |
| 54 | + public void ShouldGradientLearnByMultipleInputOneOutput() |
| 55 | + { |
| 56 | + var weights = new double[] { 0.1, 0.2, -0.1 }; |
| 57 | + var alpha = 0.01; |
| 58 | + var iterations = 1; |
| 59 | + |
| 60 | + var toes = new double[] { 8.5, 9.5, 9.9, 9.0 }; |
| 61 | + var wlrec = new double[] { 0.65, 0.8, 0.8, 0.9 }; |
| 62 | + var nfans = new double[] { 1.2, 1.3, 0.5, 1.0 }; |
| 63 | + |
| 64 | + var winOrLoseData = new double[] {1, 1, 0, -1}; |
| 65 | + |
| 66 | + var predictionGoal = winOrLoseData[0]; |
| 67 | + var input = new double[] { toes[0], wlrec[0], nfans[0] }; |
| 68 | + |
| 69 | + var result = GetLearnByGradientMul(weights, input, predictionGoal, alpha, iterations); |
| 70 | + |
| 71 | + result.SequenceEqual(new double[] { 0.101204, 0.20120400000000002, -0.098796000000000009 }).Should().Be(true); |
| 72 | + |
| 73 | + //var learnWeights = |
| 74 | + } |
| 75 | + } |
| 76 | +} |
0 commit comments