|
| 1 | +using NUnit.Framework; |
| 2 | + |
| 3 | +namespace MLTests |
| 4 | +{ |
| 5 | + public class GradientMulInMulOutTests |
| 6 | + { |
| 7 | + private double[] MulVV(double[] vecA, double[] vecB) |
| 8 | + { |
| 9 | + var result = new double[vecA.Length]; |
| 10 | + for (int i = 0; i < vecA.Length; i++) |
| 11 | + { |
| 12 | + result[i] = vecA[i] * vecB[i]; |
| 13 | + } |
| 14 | + return result; |
| 15 | + } |
| 16 | + private double MulScalarVV(double[] vecA, double[] vecB) |
| 17 | + { |
| 18 | + double result = 0; |
| 19 | + for (int i = 0; i < vecA.Length; i++) |
| 20 | + { |
| 21 | + result = result + vecA[i] * vecB[i]; |
| 22 | + } |
| 23 | + return result; |
| 24 | + } |
| 25 | + |
| 26 | + public double[] MulScalarVM(double[] vecA, double[][] matrixA) |
| 27 | + { |
| 28 | + var result = new double[vecA.Length]; |
| 29 | + for (var index = 0; index < result.Length; ++index) |
| 30 | + { |
| 31 | + result[index] = MulScalarVV(vecA, matrixA[index]); |
| 32 | + } |
| 33 | + return result; |
| 34 | + } |
| 35 | + |
| 36 | + private double[] SubVV(double[] vecA, double[] vecB) |
| 37 | + { |
| 38 | + var result = new double[vecA.Length]; |
| 39 | + for (int i = 0; i < vecA.Length; i++) |
| 40 | + { |
| 41 | + result[i] = vecA[i] - vecB[i]; |
| 42 | + } |
| 43 | + return result; |
| 44 | + |
| 45 | + } |
| 46 | + |
| 47 | + private double[] SubVE(double[] vecA, double element) |
| 48 | + { |
| 49 | + var result = new double[vecA.Length]; |
| 50 | + for (int i = 0; i < vecA.Length; i++) |
| 51 | + { |
| 52 | + result[i] = vecA[i] - element; |
| 53 | + } |
| 54 | + return result; |
| 55 | + |
| 56 | + } |
| 57 | + |
| 58 | + private double[] GradientLearnMulInOut(double[][] weights, double[] input, double[] predictionGoal, double alpha, int iterations) |
| 59 | + { |
| 60 | + var result = weights.Select(a => a.ToArray()).ToArray(); |
| 61 | + for(var i = 0; i < iterations; ++i) |
| 62 | + { |
| 63 | + var prediction = MulScalarVM(input, result); |
| 64 | + var deltas = SubVV(prediction, predictionGoal); |
| 65 | + var derivatives = MulVV(deltas, input); |
| 66 | + result[0] = SubVE(result[0], derivatives[0] * alpha); |
| 67 | + result[1] = SubVE(result[1], derivatives[1] * alpha); |
| 68 | + result[2] = SubVE(result[2], derivatives[2] * alpha); |
| 69 | + } |
| 70 | + |
| 71 | + return MulScalarVM(input, result); |
| 72 | + } |
| 73 | + |
| 74 | + [Test] |
| 75 | + public void ShouldGradientLearnFromMulInToMulOut() |
| 76 | + { |
| 77 | + var weights = new double[][] { |
| 78 | + new double[] {0.1, 0.1, -0.3}, |
| 79 | + new double[] {0.1, 0.2, 0.0}, |
| 80 | + new double[] {0.0, 1.3, 0.1}, |
| 81 | + }; |
| 82 | + var alpha = 0.01; |
| 83 | + var iterations = 100; |
| 84 | + |
| 85 | + var toes = new double[] { 8.5, 9.5, 9.9, 9.0 }; |
| 86 | + var wlrec = new double[] { 0.65, 0.8, 0.8, 0.9 }; |
| 87 | + var nfans = new double[] { 1.2, 1.3, 0.5, 1.0 }; |
| 88 | + |
| 89 | + var hurt = new double[] { 0.1, 0.0, 0.0, 0.1 }; |
| 90 | + var win = new double[] { 1.0, 1.0, 0.0, 1.0 }; |
| 91 | + var sad = new double[] { 0.1, 0.0, 0.1, 0.2 }; |
| 92 | + |
| 93 | + var input = new double[] { toes[0], wlrec[0], nfans[0] }; |
| 94 | + var predictionGoal = new double[] { hurt[0], win[0], sad[0] }; |
| 95 | + |
| 96 | + var result = GradientLearnMulInOut(weights, input, predictionGoal, alpha, iterations); |
| 97 | + |
| 98 | + Assert.That(Math.Round(result[0], 2), Is.EqualTo(predictionGoal[0])); |
| 99 | + Assert.That(Math.Round(result[1], 2), Is.EqualTo(predictionGoal[1])); |
| 100 | + Assert.That(Math.Round(result[2], 2), Is.EqualTo(predictionGoal[2])); |
| 101 | + } |
| 102 | + } |
| 103 | +} |
0 commit comments