|
| 1 | +using Numpy; |
| 2 | +using NUnit.Framework; |
| 3 | + |
| 4 | +namespace MLTests |
| 5 | +{ |
| 6 | + public class NSteerLightReluTests |
| 7 | + { |
| 8 | + private NDarray Relu(NDarray layer) |
| 9 | + { |
| 10 | + var shape = layer.shape; |
| 11 | + var data = layer.GetData<double>(); |
| 12 | + var result = data.Select(num => num < 0f ? 0f : (float) num).ToArray(); |
| 13 | + return np.array(result).reshape(shape); |
| 14 | + } |
| 15 | + |
| 16 | + private NDarray ReluToDerivative(NDarray layer) |
| 17 | + { |
| 18 | + var shape = layer.shape; |
| 19 | + return np.array(layer.GetData<float>().Select(num => num > 0f ? 1f : 0f).ToArray()).reshape(shape); |
| 20 | + } |
| 21 | + |
| 22 | + [Test] |
| 23 | + public void ShouldLearnOnNoncorrelationData() |
| 24 | + { |
| 25 | + |
| 26 | + var streetLights = np.array(new float[,] { |
| 27 | + {1f, 0f, 1f}, |
| 28 | + {0f, 1f, 1f}, |
| 29 | + {0f, 0f, 1f}, |
| 30 | + {1f, 1f, 1f}, |
| 31 | + }); |
| 32 | + var stayOrWalk = np.array(new float[,] { { 1f, 1f, 0f, 0f } }).T; |
| 33 | + var alpha = 0.2f; |
| 34 | + var inputLayerSize = 3; |
| 35 | + var hiddenLayerSize = 4; |
| 36 | + var outputLayerSize = 1; |
| 37 | + |
| 38 | + var weights01 = 2 * np.random.rand(inputLayerSize, hiddenLayerSize) - 1; |
| 39 | + var weights12 = 2 * np.random.rand(hiddenLayerSize, outputLayerSize) - 1; |
| 40 | + |
| 41 | + /* |
| 42 | + var layer0 = streetLights[0]; |
| 43 | + var layer1 = Relu(np.dot(layer0, weights01)); |
| 44 | + var layer2 = np.dot(layer1, weights12); |
| 45 | + */ |
| 46 | + /* |
| 47 | + var prediction = weight*input |
| 48 | + var delta = prediction - predictionGoal; |
| 49 | + result = result + delta * alpha * input; |
| 50 | + */ |
| 51 | + |
| 52 | + var iterations = 60; |
| 53 | + for (var iteration = 0; iteration < iterations; iteration++) |
| 54 | + { |
| 55 | + for (var sampleId = 0; sampleId < streetLights.len; sampleId++) |
| 56 | + { |
| 57 | + var layer0 = streetLights[$"{sampleId}:{sampleId + 1}"]; |
| 58 | + var layer1 = Relu(np.dot(layer0, weights01)); |
| 59 | + var layer2 = np.dot(layer1, weights12); |
| 60 | + |
| 61 | + var layer2Delta = stayOrWalk[$"{sampleId}:{sampleId + 1}"] - layer2; |
| 62 | + var layer1Delta = layer2Delta.dot(weights12.T) * ReluToDerivative(layer1); |
| 63 | + |
| 64 | + weights12 = weights12 + alpha * layer1.T.dot(layer2Delta); |
| 65 | + weights01 = weights01 + alpha * layer0.T.dot(layer1Delta); |
| 66 | + |
| 67 | + //weights12 += alpha * layer1.T.dot(); |
| 68 | + } |
| 69 | + } |
| 70 | + |
| 71 | + var resLayer0 = streetLights[$"{2}:{2 + 1}"]; |
| 72 | + var resLayer1 = Relu(np.dot(resLayer0, weights01)); |
| 73 | + var resLayer2 = np.dot(resLayer1, weights12); |
| 74 | + } |
| 75 | + } |
| 76 | +} |
0 commit comments