| 
 | 1 | +"""  | 
 | 2 | +2017/11/24 ref:https://github.com/Zehaos/MobileNet/blob/master/nets/mobilenet.py  | 
 | 3 | +"""  | 
 | 4 | + | 
 | 5 | +import tensorflow as tf  | 
 | 6 | +from tensorflow.python.training import moving_averages  | 
 | 7 | + | 
 | 8 | +UPDATE_OPS_COLLECTION = "_update_ops_"  | 
 | 9 | + | 
 | 10 | +# create variable  | 
 | 11 | +def create_variable(name, shape, initializer,  | 
 | 12 | +    dtype=tf.float32, trainable=True):  | 
 | 13 | +    return tf.get_variable(name, shape=shape, dtype=dtype,  | 
 | 14 | +            initializer=initializer, trainable=trainable)  | 
 | 15 | + | 
 | 16 | +# batchnorm layer  | 
 | 17 | +def bacthnorm(inputs, scope, epsilon=1e-05, momentum=0.99, is_training=True):  | 
 | 18 | +    inputs_shape = inputs.get_shape().as_list()  | 
 | 19 | +    params_shape = inputs_shape[-1:]  | 
 | 20 | +    axis = list(range(len(inputs_shape) - 1))  | 
 | 21 | + | 
 | 22 | +    with tf.variable_scope(scope):  | 
 | 23 | +        beta = create_variable("beta", params_shape,  | 
 | 24 | +                               initializer=tf.zeros_initializer())  | 
 | 25 | +        gamma = create_variable("gamma", params_shape,  | 
 | 26 | +                                initializer=tf.ones_initializer())  | 
 | 27 | +        # for inference  | 
 | 28 | +        moving_mean = create_variable("moving_mean", params_shape,  | 
 | 29 | +                            initializer=tf.zeros_initializer(), trainable=False)  | 
 | 30 | +        moving_variance = create_variable("moving_variance", params_shape,  | 
 | 31 | +                            initializer=tf.ones_initializer(), trainable=False)  | 
 | 32 | +    if is_training:  | 
 | 33 | +        mean, variance = tf.nn.moments(inputs, axes=axis)  | 
 | 34 | +        update_move_mean = moving_averages.assign_moving_average(moving_mean,  | 
 | 35 | +                                                mean, decay=momentum)  | 
 | 36 | +        update_move_variance = moving_averages.assign_moving_average(moving_variance,  | 
 | 37 | +                                                variance, decay=momentum)  | 
 | 38 | +        tf.add_to_collection(UPDATE_OPS_COLLECTION, update_move_mean)  | 
 | 39 | +        tf.add_to_collection(UPDATE_OPS_COLLECTION, update_move_variance)  | 
 | 40 | +    else:  | 
 | 41 | +        mean, variance = moving_mean, moving_variance  | 
 | 42 | +    return tf.nn.batch_normalization(inputs, mean, variance, beta, gamma, epsilon)  | 
 | 43 | + | 
 | 44 | +# depthwise conv2d layer  | 
 | 45 | +def depthwise_conv2d(inputs, scope, filter_size=3, channel_multiplier=1, strides=1):  | 
 | 46 | +    inputs_shape = inputs.get_shape().as_list()  | 
 | 47 | +    in_channels = inputs_shape[-1]  | 
 | 48 | +    with tf.variable_scope(scope):  | 
 | 49 | +        filter = create_variable("filter", shape=[filter_size, filter_size,  | 
 | 50 | +                                                  in_channels, channel_multiplier],  | 
 | 51 | +                       initializer=tf.truncated_normal_initializer(stddev=0.01))  | 
 | 52 | + | 
 | 53 | +    return tf.nn.depthwise_conv2d(inputs, filter, strides=[1, strides, strides, 1],  | 
 | 54 | +                                padding="SAME", rate=[1, 1])  | 
 | 55 | + | 
 | 56 | +# conv2d layer  | 
 | 57 | +def conv2d(inputs, scope, num_filters, filter_size=1, strides=1):  | 
 | 58 | +    inputs_shape = inputs.get_shape().as_list()  | 
 | 59 | +    in_channels = inputs_shape[-1]  | 
 | 60 | +    with tf.variable_scope(scope):  | 
 | 61 | +        filter = create_variable("filter", shape=[filter_size, filter_size,  | 
 | 62 | +                                                  in_channels, num_filters],  | 
 | 63 | +                        initializer=tf.truncated_normal_initializer(stddev=0.01))  | 
 | 64 | +    return tf.nn.conv2d(inputs, filter, strides=[1, strides, strides, 1],  | 
 | 65 | +                        padding="SAME")  | 
 | 66 | + | 
 | 67 | +# avg pool layer  | 
 | 68 | +def avg_pool(inputs, pool_size, scope):  | 
 | 69 | +    with tf.variable_scope(scope):  | 
 | 70 | +        return tf.nn.avg_pool(inputs, [1, pool_size, pool_size, 1],  | 
 | 71 | +                strides=[1, pool_size, pool_size, 1], padding="VALID")  | 
 | 72 | + | 
 | 73 | +# fully connected layer  | 
 | 74 | +def fc(inputs, n_out, scope, use_bias=True):  | 
 | 75 | +    inputs_shape = inputs.get_shape().as_list()  | 
 | 76 | +    n_in = inputs_shape[-1]  | 
 | 77 | +    with tf.variable_scope(scope):  | 
 | 78 | +        weight = create_variable("weight", shape=[n_in, n_out],  | 
 | 79 | +                    initializer=tf.random_normal_initializer(stddev=0.01))  | 
 | 80 | +        if use_bias:  | 
 | 81 | +            bias = create_variable("bias", shape=[n_out,],  | 
 | 82 | +                                   initializer=tf.zeros_initializer())  | 
 | 83 | +            return tf.nn.xw_plus_b(inputs, weight, bias)  | 
 | 84 | +        return tf.matmul(inputs, weight)  | 
 | 85 | + | 
 | 86 | + | 
 | 87 | +class MobileNet(object):  | 
 | 88 | +    def __init__(self, inputs, num_classes=1000, is_training=True,  | 
 | 89 | +                 width_multiplier=1, scope="MobileNet"):  | 
 | 90 | +        """  | 
 | 91 | +        The implement of MobileNet(ref:https://arxiv.org/abs/1704.04861)  | 
 | 92 | +        :param inputs: 4-D Tensor of [batch_size, height, width, channels]  | 
 | 93 | +        :param num_classes: number of classes  | 
 | 94 | +        :param is_training: Boolean, whether or not the model is training  | 
 | 95 | +        :param width_multiplier: float, controls the size of model  | 
 | 96 | +        :param scope: Optional scope for variables  | 
 | 97 | +        """  | 
 | 98 | +        self.inputs = inputs  | 
 | 99 | +        self.num_classes = num_classes  | 
 | 100 | +        self.is_training = is_training  | 
 | 101 | +        self.width_multiplier = width_multiplier  | 
 | 102 | + | 
 | 103 | +        # construct model  | 
 | 104 | +        with tf.variable_scope(scope):  | 
 | 105 | +            # conv1  | 
 | 106 | +            net = conv2d(inputs, "conv_1", round(32 * width_multiplier), filter_size=3,  | 
 | 107 | +                         strides=2)  # ->[N, 112, 112, 32]  | 
 | 108 | +            net = tf.nn.relu(bacthnorm(net, "conv_1/bn", is_training=self.is_training))  | 
 | 109 | +            net = self._depthwise_separable_conv2d(net, 64, self.width_multiplier,  | 
 | 110 | +                                "ds_conv_2") # ->[N, 112, 112, 64]  | 
 | 111 | +            net = self._depthwise_separable_conv2d(net, 128, self.width_multiplier,  | 
 | 112 | +                                "ds_conv_3", downsample=True) # ->[N, 56, 56, 128]  | 
 | 113 | +            net = self._depthwise_separable_conv2d(net, 128, self.width_multiplier,  | 
 | 114 | +                                "ds_conv_4") # ->[N, 56, 56, 128]  | 
 | 115 | +            net = self._depthwise_separable_conv2d(net, 256, self.width_multiplier,  | 
 | 116 | +                                "ds_conv_5", downsample=True) # ->[N, 28, 28, 256]  | 
 | 117 | +            net = self._depthwise_separable_conv2d(net, 256, self.width_multiplier,  | 
 | 118 | +                                "ds_conv_6") # ->[N, 28, 28, 256]  | 
 | 119 | +            net = self._depthwise_separable_conv2d(net, 512, self.width_multiplier,  | 
 | 120 | +                                "ds_conv_7", downsample=True) # ->[N, 14, 14, 512]  | 
 | 121 | +            net = self._depthwise_separable_conv2d(net, 512, self.width_multiplier,  | 
 | 122 | +                                "ds_conv_8") # ->[N, 14, 14, 512]  | 
 | 123 | +            net = self._depthwise_separable_conv2d(net, 512, self.width_multiplier,  | 
 | 124 | +                                "ds_conv_9")  # ->[N, 14, 14, 512]  | 
 | 125 | +            net = self._depthwise_separable_conv2d(net, 512, self.width_multiplier,  | 
 | 126 | +                                "ds_conv_10")  # ->[N, 14, 14, 512]  | 
 | 127 | +            net = self._depthwise_separable_conv2d(net, 512, self.width_multiplier,  | 
 | 128 | +                                "ds_conv_11")  # ->[N, 14, 14, 512]  | 
 | 129 | +            net = self._depthwise_separable_conv2d(net, 512, self.width_multiplier,  | 
 | 130 | +                                "ds_conv_12")  # ->[N, 14, 14, 512]  | 
 | 131 | +            net = self._depthwise_separable_conv2d(net, 1024, self.width_multiplier,  | 
 | 132 | +                                "ds_conv_13", downsample=True) # ->[N, 7, 7, 1024]  | 
 | 133 | +            net = self._depthwise_separable_conv2d(net, 1024, self.width_multiplier,  | 
 | 134 | +                                "ds_conv_14") # ->[N, 7, 7, 1024]  | 
 | 135 | +            net = avg_pool(net, 7, "avg_pool_15")  | 
 | 136 | +            net = tf.squeeze(net, [1, 2], name="SpatialSqueeze")  | 
 | 137 | +            self.logits = fc(net, self.num_classes, "fc_16")  | 
 | 138 | +            self.predictions = tf.nn.softmax(self.logits)  | 
 | 139 | + | 
 | 140 | +    def _depthwise_separable_conv2d(self, inputs, num_filters, width_multiplier,  | 
 | 141 | +                                    scope, downsample=False):  | 
 | 142 | +        """depthwise separable convolution 2D function"""  | 
 | 143 | +        num_filters = round(num_filters * width_multiplier)  | 
 | 144 | +        strides = 2 if downsample else 1  | 
 | 145 | + | 
 | 146 | +        with tf.variable_scope(scope):  | 
 | 147 | +            # depthwise conv2d  | 
 | 148 | +            dw_conv = depthwise_conv2d(inputs, "depthwise_conv", strides=strides)  | 
 | 149 | +            # batchnorm  | 
 | 150 | +            bn = bacthnorm(dw_conv, "dw_bn", is_training=self.is_training)  | 
 | 151 | +            # relu  | 
 | 152 | +            relu = tf.nn.relu(bn)  | 
 | 153 | +            # pointwise conv2d (1x1)  | 
 | 154 | +            pw_conv = conv2d(relu, "pointwise_conv", num_filters)  | 
 | 155 | +            # bn  | 
 | 156 | +            bn = bacthnorm(pw_conv, "pw_bn", is_training=self.is_training)  | 
 | 157 | +            return tf.nn.relu(bn)  | 
 | 158 | + | 
 | 159 | +if __name__ == "__main__":  | 
 | 160 | +    # test data  | 
 | 161 | +    inputs = tf.random_normal(shape=[4, 224, 224, 3])  | 
 | 162 | +    mobileNet = MobileNet(inputs)  | 
 | 163 | +    writer = tf.summary.FileWriter("./logs", graph=tf.get_default_graph())  | 
 | 164 | +    init = tf.global_variables_initializer()  | 
 | 165 | +    with tf.Session() as sess:  | 
 | 166 | +        sess.run(init)  | 
 | 167 | +        pred = sess.run(mobileNet.predictions)  | 
 | 168 | +        print(pred.shape)  | 
 | 169 | + | 
0 commit comments