Skip to content

Commit 2bf07b2

Browse files
committed
Merge pull request scikit-learn#4683 from yanlend/patch-1
Typos in comments corrected
2 parents e61520f + 6f26cf0 commit 2bf07b2

File tree

1 file changed

+13
-13
lines changed

1 file changed

+13
-13
lines changed

sklearn/manifold/spectral_embedding_.py

Lines changed: 13 additions & 13 deletions
Original file line numberDiff line numberDiff line change
@@ -23,7 +23,7 @@
2323

2424

2525
def _graph_connected_component(graph, node_id):
26-
"""Find the largest graph connected components the contains one
26+
"""Find the largest graph connected components that contains one
2727
given node
2828
2929
Parameters
@@ -38,8 +38,8 @@ def _graph_connected_component(graph, node_id):
3838
Returns
3939
-------
4040
connected_components_matrix : array-like, shape: (n_samples,)
41-
An array of bool value indicates the indexes of the nodes
42-
belong to the largest connected components of the given query
41+
An array of bool value indicating the indexes of the nodes
42+
belonging to the largest connected components of the given query
4343
node
4444
"""
4545
connected_components_matrix = np.zeros(
@@ -121,11 +121,11 @@ def _set_diag(laplacian, value):
121121
def spectral_embedding(adjacency, n_components=8, eigen_solver=None,
122122
random_state=None, eigen_tol=0.0,
123123
norm_laplacian=True, drop_first=True):
124-
"""Project the sample on the first eigen vectors of the graph Laplacian.
124+
"""Project the sample on the first eigenvectors of the graph Laplacian.
125125
126126
The adjacency matrix is used to compute a normalized graph Laplacian
127-
whose spectrum (especially the eigen vectors associated to the
128-
smallest eigen values) has an interpretation in terms of minimal
127+
whose spectrum (especially the eigenvectors associated to the
128+
smallest eigenvalues) has an interpretation in terms of minimal
129129
number of cuts necessary to split the graph into comparably sized
130130
components.
131131
@@ -135,7 +135,7 @@ def spectral_embedding(adjacency, n_components=8, eigen_solver=None,
135135
heat kernel of a euclidean distance matrix or a k-NN matrix).
136136
137137
However care must taken to always make the affinity matrix symmetric
138-
so that the eigen vector decomposition works as expected.
138+
so that the eigenvector decomposition works as expected.
139139
140140
Parameters
141141
----------
@@ -152,7 +152,7 @@ def spectral_embedding(adjacency, n_components=8, eigen_solver=None,
152152
153153
random_state : int seed, RandomState instance, or None (default)
154154
A pseudo random number generator used for the initialization of the
155-
lobpcg eigen vectors decomposition when eigen_solver == 'amg'.
155+
lobpcg eigenvectors decomposition when eigen_solver == 'amg'.
156156
By default, arpack is used.
157157
158158
eigen_tol : float, optional, default=0.0
@@ -326,7 +326,7 @@ class SpectralEmbedding(BaseEstimator):
326326
327327
random_state : int seed, RandomState instance, or None, default : None
328328
A pseudo random number generator used for the initialization of the
329-
lobpcg eigen vectors decomposition when eigen_solver == 'amg'.
329+
lobpcg eigenvectors decomposition when eigen_solver == 'amg'.
330330
331331
affinity : string or callable, default : "nearest_neighbors"
332332
How to construct the affinity matrix.
@@ -383,11 +383,11 @@ def _pairwise(self):
383383
return self.affinity == "precomputed"
384384

385385
def _get_affinity_matrix(self, X, Y=None):
386-
"""Caclulate the affinity matrix from data
386+
"""Calculate the affinity matrix from data
387387
Parameters
388388
----------
389389
X : array-like, shape (n_samples, n_features)
390-
Training vector, where n_samples in the number of samples
390+
Training vector, where n_samples is the number of samples
391391
and n_features is the number of features.
392392
393393
If affinity is "precomputed"
@@ -432,7 +432,7 @@ def fit(self, X, y=None):
432432
Parameters
433433
----------
434434
X : array-like, shape (n_samples, n_features)
435-
Training vector, where n_samples in the number of samples
435+
Training vector, where n_samples is the number of samples
436436
and n_features is the number of features.
437437
438438
If affinity is "precomputed"
@@ -469,7 +469,7 @@ def fit_transform(self, X, y=None):
469469
Parameters
470470
----------
471471
X: array-like, shape (n_samples, n_features)
472-
Training vector, where n_samples in the number of samples
472+
Training vector, where n_samples is the number of samples
473473
and n_features is the number of features.
474474
475475
If affinity is "precomputed"

0 commit comments

Comments
 (0)