@@ -76,10 +76,10 @@ def train(self, training_data, epochs, mini_batch_size, eta,
76
76
def train_nested_autoencoder (
77
77
self , j , training_data , epochs , mini_batch_size , eta , lmbda ):
78
78
"""
79
- Train the nested autoencoder that starts at level ``j`` in the
80
- deep autoencoder. Note that ``training_data`` should be of
81
- the form ``(x, x)`` for appropriate inputs ``x`` at that
82
- layer. """
79
+ Train the nested autoencoder that starts at layer ``j`` in the
80
+ deep autoencoder. Note that ``training_data`` should be a
81
+ list with entries of the form ``(x, x)``, where the ``x`` are
82
+ encoded training inputs for layer ``j``. """
83
83
net = Network ([self .layers [j ], self .layers [j + 1 ], self .layers [j ]])
84
84
net .biases [0 ] = self .biases [j ]
85
85
net .biases [1 ] = self .biases [- j - 1 ]
@@ -100,7 +100,8 @@ def train_nested_autoencoder_repl(
100
100
data for the first layer of the network, and is a list of
101
101
entries ``x``."""
102
102
self .train_nested_autoencoder (
103
- j , double (
103
+ j ,
104
+ double (
104
105
[self .feedforward (x , start = 0 , end = j ) for x in training_data ]),
105
106
epochs , mini_batch_size , eta , lmbda )
106
107
0 commit comments