@@ -74,18 +74,18 @@ def train(self, training_data, epochs, mini_batch_size, eta,
74
74
lmbda [- 1 ])
75
75
76
76
def train_nested_autoencoder (
77
- self , j , training_data , epochs , mini_batch_size , eta , lmbda ):
77
+ self , j , encoded_training_data , epochs , mini_batch_size , eta , lmbda ):
78
78
"""
79
79
Train the nested autoencoder that starts at layer ``j`` in the
80
- deep autoencoder. Note that ``training_data `` should be a
80
+ deep autoencoder. Note that ``encoded_training_data `` is a
81
81
list with entries of the form ``(x, x)``, where the ``x`` are
82
82
encoded training inputs for layer ``j``."""
83
83
net = Network ([self .layers [j ], self .layers [j + 1 ], self .layers [j ]])
84
84
net .biases [0 ] = self .biases [j ]
85
85
net .biases [1 ] = self .biases [- j - 1 ]
86
86
net .weights [0 ] = self .weights [j ]
87
87
net .weights [1 ] = self .weights [- j - 1 ]
88
- net .SGD (training_data , epochs , mini_batch_size , eta , lmbda )
88
+ net .SGD (encoded_training_data , epochs , mini_batch_size , eta , lmbda )
89
89
self .biases [j ] = net .biases [0 ]
90
90
self .biases [- j - 1 ] = net .biases [1 ]
91
91
self .weights [j ] = net .weights [0 ]
0 commit comments