5252
5353
5454def _check_reg_targets (y_true , y_pred , multioutput , dtype = "numeric" ):
55- """Check that y_true and y_pred belong to the same regression task
55+ """Check that y_true and y_pred belong to the same regression task.
5656
5757 Parameters
5858 ----------
@@ -81,9 +81,9 @@ def _check_reg_targets(y_true, y_pred, multioutput, dtype="numeric"):
8181 Custom output weights if ``multioutput`` is array-like or
8282 just the corresponding argument if ``multioutput`` is a
8383 correct keyword.
84+
8485 dtype: str or list, default="numeric"
8586 the dtype argument passed to check_array
86-
8787 """
8888 check_consistent_length (y_true , y_pred )
8989 y_true = check_array (y_true , ensure_2d = False , dtype = dtype )
@@ -126,7 +126,7 @@ def _check_reg_targets(y_true, y_pred, multioutput, dtype="numeric"):
126126def mean_absolute_error (y_true , y_pred , * ,
127127 sample_weight = None ,
128128 multioutput = 'uniform_average' ):
129- """Mean absolute error regression loss
129+ """Mean absolute error regression loss.
130130
131131 Read more in the :ref:`User Guide <mean_absolute_error>`.
132132
@@ -197,12 +197,14 @@ def mean_absolute_error(y_true, y_pred, *,
197197def mean_absolute_percentage_error (y_true , y_pred ,
198198 sample_weight = None ,
199199 multioutput = 'uniform_average' ):
200- """Mean absolute percentage error regression loss
200+ """Mean absolute percentage error regression loss.
201201
202202 Note here that we do not represent the output as a percentage in range
203203 [0, 100]. Instead, we represent it in range [0, 1/eps]. Read more in the
204204 :ref:`User Guide <mean_absolute_percentage_error>`.
205205
206+ .. versionadded:: 0.24
207+
206208 Parameters
207209 ----------
208210 y_true : array-like of shape (n_samples,) or (n_samples, n_outputs)
@@ -273,7 +275,7 @@ def mean_absolute_percentage_error(y_true, y_pred,
273275def mean_squared_error (y_true , y_pred , * ,
274276 sample_weight = None ,
275277 multioutput = 'uniform_average' , squared = True ):
276- """Mean squared error regression loss
278+ """Mean squared error regression loss.
277279
278280 Read more in the :ref:`User Guide <mean_squared_error>`.
279281
@@ -329,7 +331,6 @@ def mean_squared_error(y_true, y_pred, *,
329331 array([0.41666667, 1. ])
330332 >>> mean_squared_error(y_true, y_pred, multioutput=[0.3, 0.7])
331333 0.825...
332-
333334 """
334335 y_type , y_true , y_pred , multioutput = _check_reg_targets (
335336 y_true , y_pred , multioutput )
@@ -354,7 +355,7 @@ def mean_squared_error(y_true, y_pred, *,
354355def mean_squared_log_error (y_true , y_pred , * ,
355356 sample_weight = None ,
356357 multioutput = 'uniform_average' ):
357- """Mean squared logarithmic error regression loss
358+ """Mean squared logarithmic error regression loss.
358359
359360 Read more in the :ref:`User Guide <mean_squared_log_error>`.
360361
@@ -403,7 +404,6 @@ def mean_squared_log_error(y_true, y_pred, *,
403404 array([0.00462428, 0.08377444])
404405 >>> mean_squared_log_error(y_true, y_pred, multioutput=[0.3, 0.7])
405406 0.060...
406-
407407 """
408408 y_type , y_true , y_pred , multioutput = _check_reg_targets (
409409 y_true , y_pred , multioutput )
@@ -421,7 +421,7 @@ def mean_squared_log_error(y_true, y_pred, *,
421421@_deprecate_positional_args
422422def median_absolute_error (y_true , y_pred , * , multioutput = 'uniform_average' ,
423423 sample_weight = None ):
424- """Median absolute error regression loss
424+ """Median absolute error regression loss.
425425
426426 Median absolute error output is non-negative floating point. The best value
427427 is 0.0. Read more in the :ref:`User Guide <median_absolute_error>`.
@@ -473,7 +473,6 @@ def median_absolute_error(y_true, y_pred, *, multioutput='uniform_average',
473473 array([0.5, 1. ])
474474 >>> median_absolute_error(y_true, y_pred, multioutput=[0.3, 0.7])
475475 0.85
476-
477476 """
478477 y_type , y_true , y_pred , multioutput = _check_reg_targets (
479478 y_true , y_pred , multioutput )
@@ -497,7 +496,7 @@ def median_absolute_error(y_true, y_pred, *, multioutput='uniform_average',
497496def explained_variance_score (y_true , y_pred , * ,
498497 sample_weight = None ,
499498 multioutput = 'uniform_average' ):
500- """Explained variance regression score function
499+ """Explained variance regression score function.
501500
502501 Best possible score is 1.0, lower values are worse.
503502
@@ -549,7 +548,6 @@ def explained_variance_score(y_true, y_pred, *,
549548 >>> y_pred = [[0, 2], [-1, 2], [8, -5]]
550549 >>> explained_variance_score(y_true, y_pred, multioutput='uniform_average')
551550 0.983...
552-
553551 """
554552 y_type , y_true , y_pred , multioutput = _check_reg_targets (
555553 y_true , y_pred , multioutput )
0 commit comments