forked from postgres/postgres
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathintarray.sgml
340 lines (296 loc) · 11.5 KB
/
intarray.sgml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
<!-- doc/src/sgml/intarray.sgml -->
<sect1 id="intarray" xreflabel="intarray">
<title>intarray</title>
<indexterm zone="intarray">
<primary>intarray</primary>
</indexterm>
<para>
The <filename>intarray</> module provides a number of useful functions
and operators for manipulating null-free arrays of integers.
There is also support for indexed searches using some of the operators.
</para>
<para>
All of these operations will throw an error if a supplied array contains any
NULL elements.
</para>
<para>
Many of these operations are only sensible for one-dimensional arrays.
Although they will accept input arrays of more dimensions, the data is
treated as though it were a linear array in storage order.
</para>
<sect2>
<title><filename>intarray</> Functions and Operators</title>
<para>
The functions provided by the <filename>intarray</filename> module
are shown in <xref linkend="intarray-func-table">, the operators
in <xref linkend="intarray-op-table">.
</para>
<table id="intarray-func-table">
<title><filename>intarray</> Functions</title>
<tgroup cols="5">
<thead>
<row>
<entry>Function</entry>
<entry>Return Type</entry>
<entry>Description</entry>
<entry>Example</entry>
<entry>Result</entry>
</row>
</thead>
<tbody>
<row>
<entry><function>icount(int[])</function><indexterm><primary>icount</primary></indexterm></entry>
<entry><type>int</type></entry>
<entry>number of elements in array</entry>
<entry><literal>icount('{1,2,3}'::int[])</literal></entry>
<entry><literal>3</literal></entry>
</row>
<row>
<entry><function>sort(int[], text dir)</function><indexterm><primary>sort</primary></indexterm></entry>
<entry><type>int[]</type></entry>
<entry>sort array — <parameter>dir</> must be <literal>asc</> or <literal>desc</></entry>
<entry><literal>sort('{1,2,3}'::int[], 'desc')</literal></entry>
<entry><literal>{3,2,1}</literal></entry>
</row>
<row>
<entry><function>sort(int[])</function></entry>
<entry><type>int[]</type></entry>
<entry>sort in ascending order</entry>
<entry><literal>sort(array[11,77,44])</literal></entry>
<entry><literal>{11,44,77}</literal></entry>
</row>
<row>
<entry><function>sort_asc(int[])</function><indexterm><primary>sort_asc</primary></indexterm></entry>
<entry><type>int[]</type></entry>
<entry>sort in ascending order</entry>
<entry><literal></literal></entry>
<entry><literal></literal></entry>
</row>
<row>
<entry><function>sort_desc(int[])</function><indexterm><primary>sort_desc</primary></indexterm></entry>
<entry><type>int[]</type></entry>
<entry>sort in descending order</entry>
<entry><literal></literal></entry>
<entry><literal></literal></entry>
</row>
<row>
<entry><function>uniq(int[])</function><indexterm><primary>uniq</primary></indexterm></entry>
<entry><type>int[]</type></entry>
<entry>remove adjacent duplicates</entry>
<entry><literal>uniq(sort('{1,2,3,2,1}'::int[]))</literal></entry>
<entry><literal>{1,2,3}</literal></entry>
</row>
<row>
<entry><function>idx(int[], int item)</function><indexterm><primary>idx</primary></indexterm></entry>
<entry><type>int</type></entry>
<entry>index of first element matching <parameter>item</> (0 if none)</entry>
<entry><literal>idx(array[11,22,33,22,11], 22)</literal></entry>
<entry><literal>2</literal></entry>
</row>
<row>
<entry><function>subarray(int[], int start, int len)</function><indexterm><primary>subarray</primary></indexterm></entry>
<entry><type>int[]</type></entry>
<entry>portion of array starting at position <parameter>start</>, <parameter>len</> elements</entry>
<entry><literal>subarray('{1,2,3,2,1}'::int[], 2, 3)</literal></entry>
<entry><literal>{2,3,2}</literal></entry>
</row>
<row>
<entry><function>subarray(int[], int start)</function></entry>
<entry><type>int[]</type></entry>
<entry>portion of array starting at position <parameter>start</></entry>
<entry><literal>subarray('{1,2,3,2,1}'::int[], 2)</literal></entry>
<entry><literal>{2,3,2,1}</literal></entry>
</row>
<row>
<entry><function>intset(int)</function><indexterm><primary>intset</primary></indexterm></entry>
<entry><type>int[]</type></entry>
<entry>make single-element array</entry>
<entry><literal>intset(42)</literal></entry>
<entry><literal>{42}</literal></entry>
</row>
</tbody>
</tgroup>
</table>
<table id="intarray-op-table">
<title><filename>intarray</> Operators</title>
<tgroup cols="3">
<thead>
<row>
<entry>Operator</entry>
<entry>Returns</entry>
<entry>Description</entry>
</row>
</thead>
<tbody>
<row>
<entry><literal>int[] && int[]</literal></entry>
<entry><type>boolean</type></entry>
<entry>overlap — <literal>true</> if arrays have at least one common element</entry>
</row>
<row>
<entry><literal>int[] @> int[]</literal></entry>
<entry><type>boolean</type></entry>
<entry>contains — <literal>true</> if left array contains right array</entry>
</row>
<row>
<entry><literal>int[] <@ int[]</literal></entry>
<entry><type>boolean</type></entry>
<entry>contained — <literal>true</> if left array is contained in right array</entry>
</row>
<row>
<entry><literal># int[]</literal></entry>
<entry><type>int</type></entry>
<entry>number of elements in array</entry>
</row>
<row>
<entry><literal>int[] # int</literal></entry>
<entry><type>int</type></entry>
<entry>index (same as <function>idx</> function)</entry>
</row>
<row>
<entry><literal>int[] + int</literal></entry>
<entry><type>int[]</type></entry>
<entry>push element onto array (add it to end of array)</entry>
</row>
<row>
<entry><literal>int[] + int[] </literal></entry>
<entry><type>int[]</type></entry>
<entry>array concatenation (right array added to the end of left one)</entry>
</row>
<row>
<entry><literal>int[] - int</literal></entry>
<entry><type>int[]</type></entry>
<entry>remove entries matching right argument from array</entry>
</row>
<row>
<entry><literal>int[] - int[]</literal></entry>
<entry><type>int[]</type></entry>
<entry>remove elements of right array from left</entry>
</row>
<row>
<entry><literal>int[] | int</literal></entry>
<entry><type>int[]</type></entry>
<entry>union of arguments</entry>
</row>
<row>
<entry><literal>int[] | int[]</literal></entry>
<entry><type>int[]</type></entry>
<entry>union of arrays</entry>
</row>
<row>
<entry><literal>int[] & int[]</literal></entry>
<entry><type>int[]</type></entry>
<entry>intersection of arrays</entry>
</row>
<row>
<entry><literal>int[] @@ query_int</literal></entry>
<entry><type>boolean</type></entry>
<entry><literal>true</> if array satisfies query (see below)</entry>
</row>
<row>
<entry><literal>query_int ~~ int[]</literal></entry>
<entry><type>boolean</type></entry>
<entry><literal>true</> if array satisfies query (commutator of <literal>@@</>)</entry>
</row>
</tbody>
</tgroup>
</table>
<para>
(Before PostgreSQL 8.2, the containment operators <literal>@></> and
<literal><@</> were respectively called <literal>@</> and <literal>~</>.
These names are still available, but are deprecated and will eventually be
retired. Notice that the old names are reversed from the convention
formerly followed by the core geometric data types!)
</para>
<para>
The operators <literal>&&</>, <literal>@></> and
<literal><@</> are equivalent to <productname>PostgreSQL</>'s built-in
operators of the same names, except that they work only on integer arrays
that do not contain nulls, while the built-in operators work for any array
type. This restriction makes them faster than the built-in operators
in many cases.
</para>
<para>
The <literal>@@</> and <literal>~~</> operators test whether an array
satisfies a <firstterm>query</>, which is expressed as a value of a
specialized data type <type>query_int</>. A <firstterm>query</>
consists of integer values that are checked against the elements of
the array, possibly combined using the operators <literal>&</>
(AND), <literal>|</> (OR), and <literal>!</> (NOT). Parentheses
can be used as needed. For example,
the query <literal>1&(2|3)</> matches arrays that contain 1
and also contain either 2 or 3.
</para>
</sect2>
<sect2>
<title>Index Support</title>
<para>
<filename>intarray</> provides index support for the
<literal>&&</>, <literal>@></>, <literal><@</>,
and <literal>@@</> operators, as well as regular array equality.
</para>
<para>
Two GiST index operator classes are provided:
<literal>gist__int_ops</> (used by default) is suitable for
small- to medium-size data sets, while
<literal>gist__intbig_ops</> uses a larger signature and is more
suitable for indexing large data sets (i.e., columns containing
a large number of distinct array values).
The implementation uses an RD-tree data structure with
built-in lossy compression.
</para>
<para>
There is also a non-default GIN operator class
<literal>gin__int_ops</> supporting the same operators.
</para>
<para>
The choice between GiST and GIN indexing depends on the relative
performance characteristics of GiST and GIN, which are discussed elsewhere.
</para>
</sect2>
<sect2>
<title>Example</title>
<programlisting>
-- a message can be in one or more <quote>sections</>
CREATE TABLE message (mid INT PRIMARY KEY, sections INT[], ...);
-- create specialized index
CREATE INDEX message_rdtree_idx ON message USING GIST (sections gist__int_ops);
-- select messages in section 1 OR 2 - OVERLAP operator
SELECT message.mid FROM message WHERE message.sections && '{1,2}';
-- select messages in sections 1 AND 2 - CONTAINS operator
SELECT message.mid FROM message WHERE message.sections @> '{1,2}';
-- the same, using QUERY operator
SELECT message.mid FROM message WHERE message.sections @@ '1&2'::query_int;
</programlisting>
</sect2>
<sect2>
<title>Benchmark</title>
<para>
The source directory <filename>contrib/intarray/bench</> contains a
benchmark test suite, which can be run against an installed
<productname>PostgreSQL</> server. (It also requires <filename>DBD::Pg</>
to be installed.) To run:
</para>
<programlisting>
cd .../contrib/intarray/bench
createdb TEST
psql -c "CREATE EXTENSION intarray" TEST
./create_test.pl | psql TEST
./bench.pl
</programlisting>
<para>
The <filename>bench.pl</> script has numerous options, which
are displayed when it is run without any arguments.
</para>
</sect2>
<sect2>
<title>Authors</title>
<para>
All work was done by Teodor Sigaev (<email>[email protected]</email>) and
Oleg Bartunov (<email>[email protected]</email>). See
<ulink url="http://www.sai.msu.su/~megera/postgres/gist/"></ulink> for
additional information. Andrey Oktyabrski did a great work on adding new
functions and operations.
</para>
</sect2>
</sect1>