Skip to content

Commit be832bd

Browse files
trying to remove usage of mc inplace of pm
1 parent 8cfe7ab commit be832bd

File tree

17 files changed

+960
-625
lines changed

17 files changed

+960
-625
lines changed

Chapter1_Introduction/Chapter1_Introduction.ipynb

Lines changed: 95 additions & 39 deletions
Large diffs are not rendered by default.

Chapter2_MorePyMC/MorePyMC.ipynb

Lines changed: 437 additions & 272 deletions
Large diffs are not rendered by default.

Chapter4_TheGreatestTheoremNeverTold/LawOfLargeNumbers.ipynb

Lines changed: 190 additions & 125 deletions
Large diffs are not rendered by default.

Chapter5_LossFunctions/LossFunctions.ipynb

Lines changed: 139 additions & 90 deletions
Large diffs are not rendered by default.

Chapter5_LossFunctions/draw_sky2.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -6,7 +6,7 @@ def draw_sky( galaxies ):
66
"""adapted from Vishal Goklani"""
77
size_multiplier = 45
88
fig = plt.figure(figsize=(10,10))
9-
fig.patch.set_facecolor("blue")
9+
#fig.patch.set_facecolor("blue")
1010
ax = fig.add_subplot(111, aspect='equal')
1111
n = galaxies.shape[0]
1212
for i in xrange(n):

Chapter7_BayesianMachineLearning/DontOverfit.ipynb

Lines changed: 9 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -322,9 +322,9 @@
322322
"cell_type": "code",
323323
"collapsed": false,
324324
"input": [
325-
"import pymc as mc\n",
325+
"import pymc as pm\n",
326326
"\n",
327-
"to_include = mc.Bernoulli( \"to_include\", 0.5, size= 200 )"
327+
"to_include = pm.Bernoulli( \"to_include\", 0.5, size= 200 )"
328328
],
329329
"language": "python",
330330
"metadata": {},
@@ -335,7 +335,7 @@
335335
"cell_type": "code",
336336
"collapsed": false,
337337
"input": [
338-
"coef = mc.Uniform( \"coefs\", 0, 1, size = 200 )"
338+
"coef = pm.Uniform( \"coefs\", 0, 1, size = 200 )"
339339
],
340340
"language": "python",
341341
"metadata": {},
@@ -346,7 +346,7 @@
346346
"cell_type": "code",
347347
"collapsed": false,
348348
"input": [
349-
"@mc.deterministic\n",
349+
"@pm.deterministic\n",
350350
"def Z( coef = coef, to_include = to_include, data = training_data ):\n",
351351
" ym = np.dot( to_include*training_data, coef )\n",
352352
" return ym - ym.mean()"
@@ -360,7 +360,7 @@
360360
"cell_type": "code",
361361
"collapsed": false,
362362
"input": [
363-
"@mc.deterministic\n",
363+
"@pm.deterministic\n",
364364
"def T( z = Z ):\n",
365365
" return 0.45*(np.sign(z) + 1.1)"
366366
],
@@ -373,10 +373,10 @@
373373
"cell_type": "code",
374374
"collapsed": false,
375375
"input": [
376-
"obs = mc.Bernoulli( \"obs\", T, value = training_labels, observed = True)\n",
376+
"obs = pm.Bernoulli( \"obs\", T, value = training_labels, observed = True)\n",
377377
"\n",
378-
"model = mc.Model( [to_include, coef, Z, T, obs] )\n",
379-
"map_ = mc.MAP( model )\n",
378+
"model = pm.Model( [to_include, coef, Z, T, obs] )\n",
379+
"map_ = pm.MAP( model )\n",
380380
"map_.fit()"
381381
],
382382
"language": "python",
@@ -396,7 +396,7 @@
396396
"cell_type": "code",
397397
"collapsed": false,
398398
"input": [
399-
"mcmc = mc.MCMC( model )"
399+
"mcmc = pm.MCMC( model )"
400400
],
401401
"language": "python",
402402
"metadata": {},
Lines changed: 8 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
1-
import pymc as mc
1+
import pymc as pm
22
import numpy as np
33

44
count_data = np.loadtxt("../../Chapter1_Introduction/data/txtdata.csv")
@@ -7,21 +7,21 @@
77
alpha = 1.0/count_data.mean() #recall count_data is
88
#the variable that holds our txt counts
99

10-
lambda_1 = mc.Exponential( "lambda_1", alpha )
11-
lambda_2 = mc.Exponential( "lambda_2", alpha )
10+
lambda_1 = pm.Exponential( "lambda_1", alpha )
11+
lambda_2 = pm.Exponential( "lambda_2", alpha )
1212

13-
tau = mc.DiscreteUniform( "tau", lower = 0, upper = n_count_data )
13+
tau = pm.DiscreteUniform( "tau", lower = 0, upper = n_count_data )
1414

15-
@mc.deterministic
15+
@pm.deterministic
1616
def lambda_( tau = tau, lambda_1 = lambda_1, lambda_2 = lambda_2 ):
1717
out = np.zeros( n_count_data )
1818
out[:tau] = lambda_1 #lambda before tau is lambda1
1919
out[tau:] = lambda_2 #lambda after tau is lambda1
2020
return out
2121

22-
observation = mc.Poisson( "obs", lambda_, value = count_data, observed = True)
23-
model = mc.Model( [observation, lambda_1, lambda_2, tau] )
22+
observation = pm.Poisson( "obs", lambda_, value = count_data, observed = True)
23+
model = pm.Model( [observation, lambda_1, lambda_2, tau] )
2424

2525

26-
mcmc = mc.MCMC(model)
26+
mcmc = pm.MCMC(model)
2727
mcmc.sample( 100000, 50000, 1 )

ExamplesFromChapters/Chapter2/ABtesting.py

Lines changed: 9 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -3,7 +3,7 @@
33
44
"""
55

6-
import pymc as mc
6+
import pymc as pm
77

88
#these two quantities are unknown to us.
99
true_p_A = 0.05
@@ -14,28 +14,28 @@
1414
N_B = 1000
1515

1616
#generate data
17-
observations_A = mc.rbernoulli( true_p_A, N_A )
18-
observations_B = mc.rbernoulli( true_p_B, N_B )
17+
observations_A = pm.rbernoulli( true_p_A, N_A )
18+
observations_B = pm.rbernoulli( true_p_B, N_B )
1919

2020

2121

2222
#set up the pymc model. Again assume Uniform priors for p_A and p_B
2323

24-
p_A = mc.Uniform("p_A", 0, 1)
25-
p_B = mc.Uniform("p_B", 0, 1)
24+
p_A = pm.Uniform("p_A", 0, 1)
25+
p_B = pm.Uniform("p_B", 0, 1)
2626

2727

2828
#define the deterministic delta function. This is our unknown of interest.
2929

30-
@mc.deterministic
30+
@pm.deterministic
3131
def delta( p_A = p_A, p_B = p_B ):
3232
return p_A - p_B
3333

3434

3535
#set of observations, in this case we have two observation datasets.
36-
obs_A = mc.Bernoulli( "obs_A", p_A, value = observations_A, observed = True )
37-
obs_B = mc.Bernoulli( "obs_B", p_B, value = observations_B, observed = True )
36+
obs_A = pm.Bernoulli( "obs_A", p_A, value = observations_A, observed = True )
37+
obs_B = pm.Bernoulli( "obs_B", p_B, value = observations_B, observed = True )
3838

3939
#to be explained in chapter 3.
40-
mcmc = mc.MCMC( [p_A, p_B, delta, obs_A, obs_B] )
40+
mcmc = pm.MCMC( [p_A, p_B, delta, obs_A, obs_B] )
4141
mcmc.sample( 20000, 1000)
Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -1,15 +1,15 @@
1-
import pymc as mc
1+
import pymc as pm
22

3-
p = mc.Uniform( "freq_cheating", 0, 1)
3+
p = pm.Uniform( "freq_cheating", 0, 1)
44

5-
@mc.deterministic
5+
@pm.deterministic
66
def p_skewed( p = p ):
77
return 0.5*p + 0.25
88

9-
yes_responses = mc.Binomial( "number_cheaters", 100, p_skewed, value = 35, observed = True )
9+
yes_responses = pm.Binomial( "number_cheaters", 100, p_skewed, value = 35, observed = True )
1010

11-
model = mc.Model( [yes_responses, p_skewed, p ] )
11+
model = pm.Model( [yes_responses, p_skewed, p ] )
1212

1313
### To Be Explained in Chapter 3!
14-
mcmc = mc.MCMC(model)
14+
mcmc = pm.MCMC(model)
1515
mcmc.sample( 50000, 25000 )
Lines changed: 8 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
1-
import pymc as mc
1+
import pymc as pm
22

33

44
challenger_data = np.genfromtxt("../../Chapter2_MorePyMC/data/challenger_data.csv", skip_header = 1, usecols=[1,2], missing_values="NA", delimiter=",")
@@ -9,20 +9,20 @@
99
temperature = challenger_data[:,0]
1010
D = challenger_data[:,1] #defect or not?
1111

12-
beta = mc.Normal( "beta", 0, 0.001, value = 0 )
13-
alpha = mc.Normal( "alpha", 0, 0.001, value = 0 )
12+
beta = pm.Normal( "beta", 0, 0.001, value = 0 )
13+
alpha = pm.Normal( "alpha", 0, 0.001, value = 0 )
1414

15-
@mc.deterministic
15+
@pm.deterministic
1616
def p( temp = temperature, alpha = alpha, beta = beta):
1717
return 1.0/( 1. + np.exp( beta*temperature + alpha) )
1818

1919

20-
observed = mc.Bernoulli( "bernoulli_obs", p, value = D, observed=True)
20+
observed = pm.Bernoulli( "bernoulli_obs", p, value = D, observed=True)
2121

22-
model = mc.Model( [observed, beta, alpha] )
22+
model = pm.Model( [observed, beta, alpha] )
2323

2424
#mysterious code to be explained in Chapter 3
25-
map_ = mc.MAP(model)
25+
map_ = pm.MAP(model)
2626
map_.fit()
27-
mcmc = mc.MCMC( model )
27+
mcmc = pm.MCMC( model )
2828
mcmc.sample( 260000, 220000, 2 )

0 commit comments

Comments
 (0)