@@ -611,11 +611,12 @@ def decision_function(self, X):
611611 Returns
612612 -------
613613 score : array, shape = [n_samples, k]
614- The decision function of the input samples. Classes are
615- ordered by arithmetical order. Binary classification is a
616- special cases with ``k == 1``, otherwise ``k==n_classes``.
617- For binary classification, values closer to -1 or 1 mean more
618- like the first or second class in ``classes_``, respectively.
614+ The decision function of the input samples. The order of
615+ outputs is the same of that of the `classes_` attribute.
616+ Binary classification is a special cases with ``k == 1``,
617+ otherwise ``k==n_classes``. For binary classification,
618+ values closer to -1 or 1 mean more like the first or second
619+ class in ``classes_``, respectively.
619620 """
620621 if not self .estimators_ :
621622 raise RuntimeError (
@@ -663,11 +664,12 @@ def staged_decision_function(self, X):
663664 Returns
664665 -------
665666 score : generator of array, shape = [n_samples, k]
666- The decision function of the input samples. Classes are
667- ordered by arithmetical order. Binary classification is a
668- special cases with ``k == 1``, otherwise ``k==n_classes``.
669- For binary classification, values closer to -1 or 1 mean more
670- like the first or second class in ``classes_``, respectively.
667+ The decision function of the input samples. The order of
668+ outputs is the same of that of the `classes_` attribute.
669+ Binary classification is a special cases with ``k == 1``,
670+ otherwise ``k==n_classes``. For binary classification,
671+ values closer to -1 or 1 mean more like the first or second
672+ class in ``classes_``, respectively.
671673 """
672674 if not self .estimators_ :
673675 raise RuntimeError (
@@ -717,8 +719,8 @@ def predict_proba(self, X):
717719 Returns
718720 -------
719721 p : array of shape = [n_samples]
720- The class probabilities of the input samples. Classes are
721- ordered by arithmetical order .
722+ The class probabilities of the input samples. The order of
723+ outputs is the same of that of the `classes_` attribute .
722724 """
723725 n_classes = self .n_classes_
724726 proba = None
@@ -760,8 +762,8 @@ def staged_predict_proba(self, X):
760762 Returns
761763 -------
762764 p : generator of array, shape = [n_samples]
763- The class probabilities of the input samples. Classes are
764- ordered by arithmetical order .
765+ The class probabilities of the input samples. The order of
766+ outputs is the same of that of the `classes_` attribute .
765767 """
766768 n_classes = self .n_classes_
767769 proba = None
@@ -798,8 +800,8 @@ def predict_log_proba(self, X):
798800 Returns
799801 -------
800802 p : array of shape = [n_samples]
801- The class log- probabilities of the input samples. Classes are
802- ordered by arithmetical order .
803+ The class probabilities of the input samples. The order of
804+ outputs is the same of that of the `classes_` attribute .
803805 """
804806 return np .log (self .predict_proba (X ))
805807
0 commit comments