| 
 | 1 | +"""  | 
 | 2 | +The implement of shufflenet_v2 by Keras  | 
 | 3 | +"""  | 
 | 4 | + | 
 | 5 | +import tensorflow as tf  | 
 | 6 | +from tensorflow.keras.layers import Conv2D, DepthwiseConv2D  | 
 | 7 | +from tensorflow.keras.layers import MaxPool2D, GlobalAveragePooling2D, Dense  | 
 | 8 | +from tensorflow.keras.layers import BatchNormalization, Activation  | 
 | 9 | + | 
 | 10 | + | 
 | 11 | +def channle_shuffle(inputs, group):  | 
 | 12 | +    """Shuffle the channel  | 
 | 13 | +    Args:  | 
 | 14 | +        inputs: 4D Tensor  | 
 | 15 | +        group: int, number of groups  | 
 | 16 | +    Returns:  | 
 | 17 | +        Shuffled 4D Tensor  | 
 | 18 | +    """  | 
 | 19 | +    in_shape = inputs.get_shape().as_list()  | 
 | 20 | +    h, w, in_channel = in_shape[1:]  | 
 | 21 | +    assert in_channel % group == 0  | 
 | 22 | +    l = tf.reshape(inputs, [-1, h, w, in_channel // group, group])  | 
 | 23 | +    l = tf.transpose(l, [0, 1, 2, 4, 3])  | 
 | 24 | +    l = tf.reshape(l, [-1, h, w, in_channel])  | 
 | 25 | + | 
 | 26 | +    return l  | 
 | 27 | + | 
 | 28 | +class Conv2D_BN_ReLU(tf.keras.Model):  | 
 | 29 | +    """Conv2D -> BN -> ReLU"""  | 
 | 30 | +    def __init__(self, channel, kernel_size=1, stride=1):  | 
 | 31 | +        super(Conv2D_BN_ReLU, self).__init__()  | 
 | 32 | + | 
 | 33 | +        self.conv = Conv2D(channel, kernel_size, strides=stride,  | 
 | 34 | +                            padding="SAME", use_bias=False)  | 
 | 35 | +        self.bn = BatchNormalization(axis=-1, momentum=0.9, epsilon=1e-5)  | 
 | 36 | +        self.relu = Activation("relu")  | 
 | 37 | + | 
 | 38 | +    def call(self, inputs, training=True):  | 
 | 39 | +        x = self.conv(inputs)  | 
 | 40 | +        x = self.bn(x, training=training)  | 
 | 41 | +        x = self.relu(x)  | 
 | 42 | +        return x  | 
 | 43 | + | 
 | 44 | +class DepthwiseConv2D_BN(tf.keras.Model):  | 
 | 45 | +    """DepthwiseConv2D -> BN"""  | 
 | 46 | +    def __init__(self, kernel_size=3, stride=1):  | 
 | 47 | +        super(DepthwiseConv2D_BN, self).__init__()  | 
 | 48 | + | 
 | 49 | +        self.dconv = DepthwiseConv2D(kernel_size, strides=stride,  | 
 | 50 | +                                     depth_multiplier=1,  | 
 | 51 | +                                     padding="SAME", use_bias=False)  | 
 | 52 | +        self.bn = BatchNormalization(axis=-1, momentum=0.9, epsilon=1e-5)  | 
 | 53 | + | 
 | 54 | +    def call(self, inputs, training=True):  | 
 | 55 | +        x = self.dconv(inputs)  | 
 | 56 | +        x = self.bn(x, training=training)  | 
 | 57 | +        return x  | 
 | 58 | + | 
 | 59 | + | 
 | 60 | +class ShufflenetUnit1(tf.keras.Model):  | 
 | 61 | +    def __init__(self, out_channel):  | 
 | 62 | +        """The unit of shufflenetv2 for stride=1  | 
 | 63 | +        Args:  | 
 | 64 | +            out_channel: int, number of channels  | 
 | 65 | +        """  | 
 | 66 | +        super(ShufflenetUnit1, self).__init__()  | 
 | 67 | + | 
 | 68 | +        assert out_channel % 2 == 0  | 
 | 69 | +        self.out_channel = out_channel  | 
 | 70 | + | 
 | 71 | +        self.conv1_bn_relu = Conv2D_BN_ReLU(out_channel // 2, 1, 1)  | 
 | 72 | +        self.dconv_bn = DepthwiseConv2D_BN(3, 1)  | 
 | 73 | +        self.conv2_bn_relu = Conv2D_BN_ReLU(out_channel // 2, 1, 1)  | 
 | 74 | + | 
 | 75 | +    def call(self, inputs, training=False):  | 
 | 76 | +        # split the channel  | 
 | 77 | +        shortcut, x = tf.split(inputs, 2, axis=3)  | 
 | 78 | + | 
 | 79 | +        x = self.conv1_bn_relu(x, training=training)  | 
 | 80 | +        x = self.dconv_bn(x, training=training)  | 
 | 81 | +        x = self.conv2_bn_relu(x, training=training)  | 
 | 82 | + | 
 | 83 | +        x = tf.concat([shortcut, x], axis=3)  | 
 | 84 | +        x = channle_shuffle(x, 2)  | 
 | 85 | +        return x  | 
 | 86 | + | 
 | 87 | +class ShufflenetUnit2(tf.keras.Model):  | 
 | 88 | +    """The unit of shufflenetv2 for stride=2"""  | 
 | 89 | +    def __init__(self, in_channel, out_channel):  | 
 | 90 | +        super(ShufflenetUnit2, self).__init__()  | 
 | 91 | + | 
 | 92 | +        assert out_channel % 2 == 0  | 
 | 93 | +        self.in_channel = in_channel  | 
 | 94 | +        self.out_channel = out_channel  | 
 | 95 | + | 
 | 96 | +        self.conv1_bn_relu = Conv2D_BN_ReLU(out_channel // 2, 1, 1)  | 
 | 97 | +        self.dconv_bn = DepthwiseConv2D_BN(3, 2)  | 
 | 98 | +        self.conv2_bn_relu = Conv2D_BN_ReLU(out_channel - in_channel, 1, 1)  | 
 | 99 | + | 
 | 100 | +        # for shortcut  | 
 | 101 | +        self.shortcut_dconv_bn = DepthwiseConv2D_BN(3, 2)  | 
 | 102 | +        self.shortcut_conv_bn_relu = Conv2D_BN_ReLU(in_channel, 1, 1)  | 
 | 103 | + | 
 | 104 | +    def call(self, inputs, training=False):  | 
 | 105 | +        shortcut, x = inputs, inputs  | 
 | 106 | + | 
 | 107 | +        x = self.conv1_bn_relu(x, training=training)  | 
 | 108 | +        x = self.dconv_bn(x, training=training)  | 
 | 109 | +        x = self.conv2_bn_relu(x, training=training)  | 
 | 110 | + | 
 | 111 | +        shortcut = self.shortcut_dconv_bn(shortcut, training=training)  | 
 | 112 | +        shortcut = self.shortcut_conv_bn_relu(shortcut, training=training)  | 
 | 113 | + | 
 | 114 | +        x = tf.concat([shortcut, x], axis=3)  | 
 | 115 | +        x = channle_shuffle(x, 2)  | 
 | 116 | +        return x  | 
 | 117 | + | 
 | 118 | +class ShufflenetStage(tf.keras.Model):  | 
 | 119 | +    """The stage of shufflenet"""  | 
 | 120 | +    def __init__(self, in_channel, out_channel, num_blocks):  | 
 | 121 | +        super(ShufflenetStage, self).__init__()  | 
 | 122 | + | 
 | 123 | +        self.in_channel = in_channel  | 
 | 124 | +        self.out_channel = out_channel  | 
 | 125 | + | 
 | 126 | +        self.ops = []  | 
 | 127 | +        for i in range(num_blocks):  | 
 | 128 | +            if i == 0:  | 
 | 129 | +                op = ShufflenetUnit2(in_channel, out_channel)  | 
 | 130 | +            else:  | 
 | 131 | +                op = ShufflenetUnit1(out_channel)  | 
 | 132 | +            self.ops.append(op)  | 
 | 133 | + | 
 | 134 | +    def call(self, inputs, training=False):  | 
 | 135 | +        x = inputs  | 
 | 136 | +        for op in self.ops:  | 
 | 137 | +            x = op(x, training=training)  | 
 | 138 | +        return x  | 
 | 139 | + | 
 | 140 | + | 
 | 141 | +class ShuffleNetv2(tf.keras.Model):  | 
 | 142 | +    """Shufflenetv2"""  | 
 | 143 | +    def __init__(self, num_classes, first_channel=24, channels_per_stage=(116, 232, 464)):  | 
 | 144 | +        super(ShuffleNetv2, self).__init__()  | 
 | 145 | + | 
 | 146 | +        self.num_classes = num_classes  | 
 | 147 | + | 
 | 148 | +        self.conv1_bn_relu = Conv2D_BN_ReLU(first_channel, 3, 2)  | 
 | 149 | +        self.pool1 = MaxPool2D(3, strides=2, padding="SAME")  | 
 | 150 | +        self.stage2 = ShufflenetStage(first_channel, channels_per_stage[0], 4)  | 
 | 151 | +        self.stage3 = ShufflenetStage(channels_per_stage[0], channels_per_stage[1], 8)  | 
 | 152 | +        self.stage4 = ShufflenetStage(channels_per_stage[1], channels_per_stage[2], 4)  | 
 | 153 | +        self.conv5_bn_relu = Conv2D_BN_ReLU(1024, 1, 1)  | 
 | 154 | +        self.gap = GlobalAveragePooling2D()  | 
 | 155 | +        self.linear = Dense(num_classes)  | 
 | 156 | + | 
 | 157 | +    def call(self, inputs, training=False):  | 
 | 158 | +        x = self.conv1_bn_relu(inputs, training=training)  | 
 | 159 | +        x = self.pool1(x)  | 
 | 160 | +        x = self.stage2(x, training=training)  | 
 | 161 | +        x = self.stage3(x, training=training)  | 
 | 162 | +        x = self.stage4(x, training=training)  | 
 | 163 | +        x = self.conv5_bn_relu(x, training=training)  | 
 | 164 | +        x = self.gap(x)  | 
 | 165 | +        x = self.linear(x)  | 
 | 166 | +        return x  | 
 | 167 | + | 
 | 168 | + | 
 | 169 | +if __name__ =="__main__":  | 
 | 170 | +    """  | 
 | 171 | +    inputs = tf.placeholder(tf.float32, [None, 224, 224, 3])  | 
 | 172 | +
  | 
 | 173 | +    model = ShuffleNetv2(1000)  | 
 | 174 | +    outputs = model(inputs)  | 
 | 175 | +
  | 
 | 176 | +    print(model.summary())  | 
 | 177 | +
  | 
 | 178 | +    with tf.Session() as sess:  | 
 | 179 | +        pass  | 
 | 180 | +      | 
 | 181 | +
  | 
 | 182 | +    vars = []  | 
 | 183 | +    for v in tf.global_variables():  | 
 | 184 | +
  | 
 | 185 | +        vars.append((v.name, v))  | 
 | 186 | +        print(v.name)  | 
 | 187 | +    print(len(vars))  | 
 | 188 | +
  | 
 | 189 | +
  | 
 | 190 | +    import numpy as np  | 
 | 191 | +
  | 
 | 192 | +    path = "C:/models/ShuffleNetV2-1x.npz"  | 
 | 193 | +    weights = np.load(path)  | 
 | 194 | +    np_vars = []  | 
 | 195 | +    for k in weights:  | 
 | 196 | +        k_ = k.replace("beta", "gbeta")  | 
 | 197 | +        k_ = k_.replace("/dconv", "/conv10_dconv")  | 
 | 198 | +        k_ = k_.replace("shortcut_dconv", "shortcut_a_dconv")  | 
 | 199 | +        k_ = k_.replace("conv5", "su_conv5")  | 
 | 200 | +        k_ = k_.replace("linear", "t_linear")  | 
 | 201 | +        np_vars.append((k_, weights[k]))  | 
 | 202 | +    np_vars.sort(key=lambda x: x[0])  | 
 | 203 | +
  | 
 | 204 | +    for k, _ in np_vars:  | 
 | 205 | +        print(k)  | 
 | 206 | +
  | 
 | 207 | +    saver = tf.train.Saver(tf.global_variables())  | 
 | 208 | +    with tf.Session() as sess:  | 
 | 209 | +        sess.run(tf.global_variables_initializer())  | 
 | 210 | +
  | 
 | 211 | +        assign_ops = []  | 
 | 212 | +        for id in range(len(vars)):  | 
 | 213 | +            print(vars[id][0], np_vars[id][0])  | 
 | 214 | +            assign_ops.append(tf.assign(vars[id][1], np_vars[id][1]))  | 
 | 215 | +
  | 
 | 216 | +        sess.run(assign_ops)  | 
 | 217 | +        saver.save(sess, "./models/shufflene_v2_1.0.ckpt")  | 
 | 218 | +
  | 
 | 219 | +        model.save("./models/shufflenet_v2_1.0.hdf5")  | 
 | 220 | +      | 
 | 221 | +    """  | 
 | 222 | + | 
 | 223 | +    import numpy as np  | 
 | 224 | +    from tensorflow.keras.preprocessing import image  | 
 | 225 | +    from tensorflow.keras.applications.densenet import preprocess_input, decode_predictions  | 
 | 226 | + | 
 | 227 | +    img_path = './images/cat.jpg'  | 
 | 228 | +    img = image.load_img(img_path, target_size=(224, 224))  | 
 | 229 | +    x = image.img_to_array(img)  | 
 | 230 | +    x = np.expand_dims(x, axis=0)  | 
 | 231 | +    x = preprocess_input(x)  | 
 | 232 | + | 
 | 233 | +    inputs = tf.placeholder(tf.float32, [None, 224, 224, 3])  | 
 | 234 | +    model = ShuffleNetv2(1000)  | 
 | 235 | +    outputs = model(inputs, training=False)  | 
 | 236 | +    outputs = tf.nn.softmax(outputs)  | 
 | 237 | + | 
 | 238 | +    saver = tf.train.Saver()  | 
 | 239 | +    with tf.Session() as sess:  | 
 | 240 | +        saver.restore(sess, "./models/shufflene_v2_1.0.ckpt")  | 
 | 241 | +        preds = sess.run(outputs, feed_dict={inputs: x})  | 
 | 242 | +        print(decode_predictions(preds, top=3)[0])  | 
 | 243 | + | 
0 commit comments