@@ -82,8 +82,8 @@ def __init__(self, block, layers, num_classes=10):
8282        self .bn  =  nn .BatchNorm2d (16 )
8383        self .relu  =  nn .ReLU (inplace = True )
8484        self .layer1  =  self .make_layer (block , 16 , layers [0 ])
85-         self .layer2  =  self .make_layer (block , 32 , layers [0 ], 2 )
86-         self .layer3  =  self .make_layer (block , 64 , layers [1 ], 2 )
85+         self .layer2  =  self .make_layer (block , 32 , layers [1 ], 2 )
86+         self .layer3  =  self .make_layer (block , 64 , layers [2 ], 2 )
8787        self .avg_pool  =  nn .AvgPool2d (8 )
8888        self .fc  =  nn .Linear (64 , num_classes )
8989
@@ -112,7 +112,7 @@ def forward(self, x):
112112        out  =  self .fc (out )
113113        return  out 
114114
115- model  =  ResNet (ResidualBlock , [2 , 2 , 2 ,  2 ]).to (device )
115+ model  =  ResNet (ResidualBlock , [2 , 2 , 2 ]).to (device )
116116
117117
118118# Loss and optimizer 
@@ -166,4 +166,4 @@ def update_lr(optimizer, lr):
166166    print ('Accuracy of the model on the test images: {} %' .format (100  *  correct  /  total ))
167167
168168# Save the model checkpoint 
169- torch .save (model .state_dict (), 'resnet.ckpt' )
169+ torch .save (model .state_dict (), 'resnet.ckpt' )
0 commit comments