@@ -112,6 +112,7 @@ from the command line. This image directory MUST contain the pre-defined images
112112```
113113python Scripts/prediction/generate_annotation.py --exp <path_to_corresponding_experiment> --reload <path_to_checkpoint> --output_dir <path_to_store_predictions>
114114```
115+ - If you are testing a RL checkpoint, then the experiment file would correspond be the RL experiment file, and similarly for other stages of the model
115116- You can check predicted/GT masks for every instance in the output_dir
116117- To get scores, run
117118```
@@ -127,7 +128,7 @@ python Scripts/get_scores.py --pred <path_to_preds> --output <path_to_file_to_sa
127128- Our processed annotation files are included in the download file you get after signing up
128129- From the root directory, run the following command with appropriate paths to get the annotation files ready for your machine
129130```
130- python Scripts/data/change_paths.py --city_dir <path_to_downloaded_leftImg8bit_folder> --json_dir <path_to_downloaded_annotation_file> --output_dir <output_dir>
131+ python Scripts/data/change_paths.py --city_dir <path_to_downloaded_leftImg8bit_folder> --json_dir <path_to_downloaded_annotation_file> --out_dir <output_dir>
131132```
132133
133134### Custom Dataset
@@ -144,7 +145,7 @@ To train on your custom datasets, you have one of two options:
144145- Edit the experiment file at Experiments/mle.json and change paths for your machine
145146- From the root directory, run
146147```
147- python Scripts/train/train_ce.py --exp Experiments/mle.json --reload <optional_if_resuming_training>
148+ python Scripts/train/train_ce.py --exp Experiments/mle.json --resume <optional_if_resuming_training>
148149```
149150- You can view progress on Tensorboard (logs are at <experiment\_ dir>/logs/)
150151
@@ -153,7 +154,7 @@ python Scripts/train/train_ce.py --exp Experiments/mle.json --reload <optional_i
153154- In the experiment file, set xe\_ initializer to the best MLE model
154155- From the root directory, run
155156```
156- python Scripts/train/train_rl.py --exp Experiments/mle.json --reload <optional_if_resuming_training>
157+ python Scripts/train/train_rl.py --exp Experiments/mle.json --resume <optional_if_resuming_training>
157158```
158159- ** Note** - You might have to play with hyperparameters a bit to achieve stable training, especially temperature, lr and lr\_ decay
159160
@@ -162,13 +163,13 @@ python Scripts/train/train_rl.py --exp Experiments/mle.json --reload <optional_i
162163- In the experiment file, set xe\_ initializer to the best RL model
163164- From the root directory, run
164165```
165- python Scripts/train/train_evaluator.py --exp Experiments/evaluator.json --reload <optional_if_resuming_training>
166+ python Scripts/train/train_evaluator.py --exp Experiments/evaluator.json --resume <optional_if_resuming_training>
166167```
167168
168169### Training GGNN
169170- Edit the experiment file at Experiments/ggnn.json and change paths for your machine
170171- In the experiment file, set xe\_ initializer to the best Evaluator model
171172- From the root directory, run
172173```
173- python Scripts/train/train_ggnn.py --exp Experiments/ggnn.json --reload <optional_if_resuming_training>
174+ python Scripts/train/train_ggnn.py --exp Experiments/ggnn.json --resume <optional_if_resuming_training>
174175```
0 commit comments