@@ -38,7 +38,7 @@ Nearest neighbor and the curse of dimensionality
3838
3939.. topic :: Classifying irises:
4040
41- .. image :: ../.. /auto_examples/datasets/images/sphx_glr_plot_iris_dataset_001.png
41+ .. image :: /auto_examples/datasets/images/sphx_glr_plot_iris_dataset_001.png
4242 :target: ../../auto_examples/datasets/plot_iris_dataset.html
4343 :align: right
4444 :scale: 65
@@ -75,7 +75,7 @@ Scikit-learn documentation for more information about this type of classifier.)
7575
7676**KNN (k nearest neighbors) classification example **:
7777
78- .. image :: ../.. /auto_examples/neighbors/images/sphx_glr_plot_classification_001.png
78+ .. image :: /auto_examples/neighbors/images/sphx_glr_plot_classification_001.png
7979 :target: ../../auto_examples/neighbors/plot_classification.html
8080 :align: center
8181 :scale: 70
@@ -159,7 +159,7 @@ in its simplest form, fits a linear model to the data set by adjusting
159159a set of parameters in order to make the sum of the squared residuals
160160of the model as small as possible.
161161
162- .. image :: ../.. /auto_examples/linear_model/images/sphx_glr_plot_ols_001.png
162+ .. image :: /auto_examples/linear_model/images/sphx_glr_plot_ols_001.png
163163 :target: ../../auto_examples/linear_model/plot_ols.html
164164 :scale: 40
165165 :align: right
@@ -200,7 +200,7 @@ Shrinkage
200200If there are few data points per dimension, noise in the observations
201201induces high variance:
202202
203- .. image :: ../.. /auto_examples/linear_model/images/sphx_glr_plot_ols_ridge_variance_001.png
203+ .. image :: /auto_examples/linear_model/images/sphx_glr_plot_ols_ridge_variance_001.png
204204 :target: ../../auto_examples/linear_model/plot_ols_ridge_variance.html
205205 :scale: 70
206206 :align: right
@@ -229,7 +229,7 @@ regression coefficients to zero: any two randomly chosen set of
229229observations are likely to be uncorrelated. This is called :class: `Ridge `
230230regression:
231231
232- .. image :: ../.. /auto_examples/linear_model/images/sphx_glr_plot_ols_ridge_variance_002.png
232+ .. image :: /auto_examples/linear_model/images/sphx_glr_plot_ols_ridge_variance_002.png
233233 :target: ../../auto_examples/linear_model/plot_ols_ridge_variance.html
234234 :scale: 70
235235 :align: right
@@ -275,15 +275,15 @@ Sparsity
275275----------
276276
277277
278- .. |diabetes_ols_1 | image :: ../.. /auto_examples/linear_model/images/sphx_glr_plot_ols_3d_001.png
278+ .. |diabetes_ols_1 | image :: /auto_examples/linear_model/images/sphx_glr_plot_ols_3d_001.png
279279 :target: ../../auto_examples/linear_model/plot_ols_3d.html
280280 :scale: 65
281281
282- .. |diabetes_ols_3 | image :: ../.. /auto_examples/linear_model/images/sphx_glr_plot_ols_3d_003.png
282+ .. |diabetes_ols_3 | image :: /auto_examples/linear_model/images/sphx_glr_plot_ols_3d_003.png
283283 :target: ../../auto_examples/linear_model/plot_ols_3d.html
284284 :scale: 65
285285
286- .. |diabetes_ols_2 | image :: ../.. /auto_examples/linear_model/images/sphx_glr_plot_ols_3d_002.png
286+ .. |diabetes_ols_2 | image :: /auto_examples/linear_model/images/sphx_glr_plot_ols_3d_002.png
287287 :target: ../../auto_examples/linear_model/plot_ols_3d.html
288288 :scale: 65
289289
@@ -350,7 +350,7 @@ application of Occam's razor: *prefer simpler models*.
350350Classification
351351---------------
352352
353- .. image :: ../.. /auto_examples/linear_model/images/sphx_glr_plot_logistic_001.png
353+ .. image :: /auto_examples/linear_model/images/sphx_glr_plot_logistic_001.png
354354 :target: ../../auto_examples/linear_model/plot_logistic.html
355355 :scale: 65
356356 :align: right
@@ -377,7 +377,7 @@ function or **logistic** function:
377377
378378This is known as :class: `LogisticRegression `.
379379
380- .. image :: ../.. /auto_examples/linear_model/images/sphx_glr_plot_iris_logistic_001.png
380+ .. image :: /auto_examples/linear_model/images/sphx_glr_plot_iris_logistic_001.png
381381 :target: ../../auto_examples/linear_model/plot_iris_logistic.html
382382 :scale: 83
383383
@@ -425,11 +425,11 @@ the separating line (less regularization).
425425
426426.. currentmodule :: sklearn.svm
427427
428- .. |svm_margin_unreg | image :: ../.. /auto_examples/svm/images/sphx_glr_plot_svm_margin_001.png
428+ .. |svm_margin_unreg | image :: /auto_examples/svm/images/sphx_glr_plot_svm_margin_001.png
429429 :target: ../../auto_examples/svm/plot_svm_margin.html
430430 :scale: 70
431431
432- .. |svm_margin_reg | image :: ../.. /auto_examples/svm/images/sphx_glr_plot_svm_margin_002.png
432+ .. |svm_margin_reg | image :: /auto_examples/svm/images/sphx_glr_plot_svm_margin_002.png
433433 :target: ../../auto_examples/svm/plot_svm_margin.html
434434 :scale: 70
435435
@@ -476,11 +476,11 @@ build a decision function that is not linear but may be polynomial instead.
476476This is done using the *kernel trick * that can be seen as
477477creating a decision energy by positioning *kernels * on observations:
478478
479- .. |svm_kernel_linear | image :: ../.. /auto_examples/svm/images/sphx_glr_plot_svm_kernels_001.png
479+ .. |svm_kernel_linear | image :: /auto_examples/svm/images/sphx_glr_plot_svm_kernels_001.png
480480 :target: ../../auto_examples/svm/plot_svm_kernels.html
481481 :scale: 65
482482
483- .. |svm_kernel_poly | image :: ../.. /auto_examples/svm/images/sphx_glr_plot_svm_kernels_002.png
483+ .. |svm_kernel_poly | image :: /auto_examples/svm/images/sphx_glr_plot_svm_kernels_002.png
484484 :target: ../../auto_examples/svm/plot_svm_kernels.html
485485 :scale: 65
486486
@@ -518,7 +518,7 @@ creating a decision energy by positioning *kernels* on observations:
518518
519519
520520
521- .. |svm_kernel_rbf | image :: ../.. /auto_examples/svm/images/sphx_glr_plot_svm_kernels_003.png
521+ .. |svm_kernel_rbf | image :: /auto_examples/svm/images/sphx_glr_plot_svm_kernels_003.png
522522 :target: ../../auto_examples/svm/plot_svm_kernels.html
523523 :scale: 65
524524
@@ -551,7 +551,7 @@ creating a decision energy by positioning *kernels* on observations:
551551 ``svm_gui.py ``; add data points of both classes with right and left button,
552552 fit the model and change parameters and data.
553553
554- .. image :: ../.. /auto_examples/datasets/images/sphx_glr_plot_iris_dataset_001.png
554+ .. image :: /auto_examples/datasets/images/sphx_glr_plot_iris_dataset_001.png
555555 :target: ../../auto_examples/datasets/plot_iris_dataset.html
556556 :align: right
557557 :scale: 70
0 commit comments