@@ -160,7 +160,7 @@ def _test_ridge_loo(filter_):
160160    ret  =  []
161161
162162    ridge_gcv  =  _RidgeGCV (fit_intercept = False )
163-     ridge  =  Ridge (fit_intercept = False )
163+     ridge  =  Ridge (alpha = 1.0 ,  fit_intercept = False )
164164
165165    # generalized cross-validation (efficient leave-one-out) 
166166    decomp  =  ridge_gcv ._pre_compute (X_diabetes , y_diabetes )
@@ -187,8 +187,8 @@ def _test_ridge_loo(filter_):
187187    # generalized cross-validation (efficient leave-one-out, 
188188    # SVD variation) 
189189    decomp  =  ridge_gcv ._pre_compute_svd (X_diabetes , y_diabetes )
190-     errors3 , c  =  ridge_gcv ._errors_svd (1.0 , y_diabetes , * decomp )
191-     values3 , c  =  ridge_gcv ._values_svd (1.0 , y_diabetes , * decomp )
190+     errors3 , c  =  ridge_gcv ._errors_svd (ridge . alpha , y_diabetes , * decomp )
191+     values3 , c  =  ridge_gcv ._values_svd (ridge . alpha , y_diabetes , * decomp )
192192
193193    # check that efficient and SVD efficient LOO give same results 
194194    assert_almost_equal (errors , errors3 )
@@ -200,10 +200,16 @@ def _test_ridge_loo(filter_):
200200    ret .append (best_alpha )
201201
202202    # check that we get same best alpha with custom loss_func 
203-     ridge_gcv2  =  _RidgeGCV (fit_intercept = False , loss_func = mean_squared_error )
203+     ridge_gcv2  =  RidgeCV (fit_intercept = False , loss_func = mean_squared_error )
204204    ridge_gcv2 .fit (filter_ (X_diabetes ), y_diabetes )
205205    assert_equal (ridge_gcv2 .best_alpha , best_alpha )
206206
207+     # check that we get same best alpha with custom score_func 
208+     func  =  lambda  x , y : - mean_squared_error (x , y )
209+     ridge_gcv3  =  RidgeCV (fit_intercept = False , score_func = func )
210+     ridge_gcv3 .fit (filter_ (X_diabetes ), y_diabetes )
211+     assert_equal (ridge_gcv3 .best_alpha , best_alpha )
212+ 
207213    # check that we get same best alpha with sample weights 
208214    ridge_gcv .fit (filter_ (X_diabetes ), y_diabetes ,
209215                  sample_weight = np .ones (n_samples ))
@@ -347,9 +353,9 @@ def test_class_weights_cv():
347353    assert_array_equal (clf .predict ([[- .2 , 2 ]]), np .array ([- 1 ]))
348354
349355
350- def  test_ridgegcv_store_cv_values ():
356+ def  test_ridgecv_store_cv_values ():
351357    """ 
352-     Test _RidgeGCV 's store_cv_values attribute. 
358+     Test _RidgeCV 's store_cv_values attribute. 
353359    """ 
354360    rng  =  rng  =  np .random .RandomState (42 )
355361
0 commit comments