@@ -35,12 +35,14 @@ def __init__(self, a=0):
3535 def fit (self , X , Y = None , sample_weight = None , class_prior = None ):
3636 if sample_weight is not None :
3737 assert_true (sample_weight .shape [0 ] == X .shape [0 ],
38- 'MockClassifier extra fit_param sample_weight.shape[0] is {0}, '
39- 'should be {1}' .format (sample_weight .shape [0 ], X .shape [0 ]))
38+ 'MockClassifier extra fit_param sample_weight.shape[0]'
39+ ' is {0}, should be {1}' .format (sample_weight .shape [0 ],
40+ X .shape [0 ]))
4041 if class_prior is not None :
4142 assert_true (class_prior .shape [0 ] == len (np .unique (y )),
42- 'MockClassifier extra fit_param class_prior.shape[0] is {0}, '
43- 'should be {1}' .format (class_prior .shape [0 ], len (np .unique (y ))))
43+ 'MockClassifier extra fit_param class_prior.shape[0]'
44+ ' is {0}, should be {1}' .format (class_prior .shape [0 ],
45+ len (np .unique (y ))))
4446 return self
4547
4648 def predict (self , T ):
@@ -144,26 +146,23 @@ def test_stratified_shuffle_split_init():
144146
145147
146148def test_stratified_shuffle_split_iter ():
147- ys = [
148- np .array ([1 , 1 , 1 , 1 , 2 , 2 , 2 , 3 , 3 , 3 , 3 , 3 ]),
149- np .array ([0 , 0 , 0 , 1 , 1 , 1 , 2 , 2 , 2 , 3 , 3 , 3 ]),
150- np .array ([0 , 1 , 2 , 3 , 0 , 1 , 2 , 3 , 0 , 1 , 2 , 3 , 0 , 1 , 2 ]),
151- np .array ([1 , 1 , 2 , 2 , 2 , 3 , 3 , 3 , 4 , 4 , 4 , 4 , 4 , 4 , 4 , 4 ]),
152- np .array ([- 1 ] * 800 + [1 ] * 50 )
153- ]
149+ ys = [np .array ([1 , 1 , 1 , 1 , 2 , 2 , 2 , 3 , 3 , 3 , 3 , 3 ]),
150+ np .array ([0 , 0 , 0 , 1 , 1 , 1 , 2 , 2 , 2 , 3 , 3 , 3 ]),
151+ np .array ([0 , 1 , 2 , 3 , 0 , 1 , 2 , 3 , 0 , 1 , 2 , 3 , 0 , 1 , 2 ]),
152+ np .array ([1 , 1 , 2 , 2 , 2 , 3 , 3 , 3 , 4 , 4 , 4 , 4 , 4 , 4 , 4 , 4 ]),
153+ np .array ([- 1 ] * 800 + [1 ] * 50 )
154+ ]
154155
155156 for y in ys :
156157 sss = cval .StratifiedShuffleSplit (y , 6 , test_size = 0.33 ,
157158 random_state = 0 , indices = True )
158159 for train , test in sss :
159160 assert_array_equal (unique (y [train ]), unique (y [test ]))
160161 # Checks if folds keep classes proportions
161- p_train = np .bincount (
162- unique (y [train ], return_inverse = True )[1 ]
163- ) / float (len (y [train ]))
164- p_test = np .bincount (
165- unique (y [test ], return_inverse = True )[1 ]
166- ) / float (len (y [test ]))
162+ p_train = (np .bincount (unique (y [train ], return_inverse = True )[1 ]) /
163+ float (len (y [train ])))
164+ p_test = (np .bincount (unique (y [test ], return_inverse = True )[1 ]) /
165+ float (len (y [test ])))
167166 assert_array_almost_equal (p_train , p_test , 1 )
168167 assert_equal (y [train ].size + y [test ].size , y .size )
169168 assert_array_equal (np .lib .arraysetops .intersect1d (train , test ), [])
@@ -245,27 +244,26 @@ class BrokenEstimator:
245244
246245def test_train_test_split_errors ():
247246 assert_raises (ValueError , cval .train_test_split )
247+ assert_raises (ValueError , cval .train_test_split , range (3 ), train_size = 1.1 )
248+ assert_raises (ValueError , cval .train_test_split , range (3 ), test_size = 0.6 ,
249+ train_size = 0.6 )
248250 assert_raises (ValueError , cval .train_test_split , range (3 ),
249- train_size = 1.1 )
251+ test_size = np . float32 ( 0.6 ), train_size = np . float32 ( 0.6 ) )
250252 assert_raises (ValueError , cval .train_test_split , range (3 ),
251- test_size = 0.6 , train_size = 0.6 )
252- assert_raises (ValueError , cval .train_test_split , range (3 ),
253- test_size = np .float32 (0.6 ), train_size = np .float32 (0.6 ))
254- assert_raises (ValueError , cval .train_test_split , range (3 ),
255- test_size = "wrong_type" )
256- assert_raises (ValueError , cval .train_test_split , range (3 ),
257- test_size = 2 , train_size = 4 )
253+ test_size = "wrong_type" )
254+ assert_raises (ValueError , cval .train_test_split , range (3 ), test_size = 2 ,
255+ train_size = 4 )
258256 assert_raises (TypeError , cval .train_test_split , range (3 ),
259- some_argument = 1.1 )
257+ some_argument = 1.1 )
260258 assert_raises (ValueError , cval .train_test_split , range (3 ), range (42 ))
261259
262260
263261def test_train_test_split ():
264262 X = np .arange (100 ).reshape ((10 , 10 ))
265263 X_s = coo_matrix (X )
266264 y = range (10 )
267- X_train , X_test , X_s_train , X_s_test , y_train , y_test = \
268- cval . train_test_split ( X , X_s , y )
265+ split = cval . train_test_split ( X , X_s , y )
266+ X_train , X_test , X_s_train , X_s_test , y_train , y_test = split
269267 assert_array_equal (X_train , X_s_train .toarray ())
270268 assert_array_equal (X_test , X_s_test .toarray ())
271269 assert_array_equal (X_train [:, 0 ], y_train * 10 )
@@ -283,13 +281,13 @@ def test_cross_val_score_with_score_func_classification():
283281 # Correct classification score (aka. zero / one score) - should be the
284282 # same as the default estimator score
285283 zo_scores = cval .cross_val_score (clf , iris .data , iris .target ,
286- score_func = zero_one_score , cv = 5 )
284+ score_func = zero_one_score , cv = 5 )
287285 assert_array_almost_equal (zo_scores , [1. , 0.97 , 0.90 , 0.97 , 1. ], 2 )
288286
289287 # F1 score (class are balanced so f1_score should be equal to zero/one
290288 # score
291289 f1_scores = cval .cross_val_score (clf , iris .data , iris .target ,
292- score_func = f1_score , cv = 5 )
290+ score_func = f1_score , cv = 5 )
293291 assert_array_almost_equal (f1_scores , [1. , 0.97 , 0.90 , 0.97 , 1. ], 2 )
294292
295293
@@ -309,13 +307,13 @@ def test_cross_val_score_with_score_func_regression():
309307
310308 # Mean squared error
311309 mse_scores = cval .cross_val_score (reg , X , y , cv = 5 ,
312- score_func = mean_squared_error )
310+ score_func = mean_squared_error )
313311 expected_mse = np .array ([763.07 , 553.16 , 274.38 , 273.26 , 1681.99 ])
314312 assert_array_almost_equal (mse_scores , expected_mse , 2 )
315313
316314 # Explained variance
317315 ev_scores = cval .cross_val_score (reg , X , y , cv = 5 ,
318- score_func = explained_variance_score )
316+ score_func = explained_variance_score )
319317 assert_array_almost_equal (ev_scores , [0.94 , 0.97 , 0.97 , 0.99 , 0.92 ], 2 )
320318
321319
@@ -353,7 +351,7 @@ def test_permutation_score():
353351 y = np .mod (np .arange (len (y )), 3 )
354352
355353 score , scores , pvalue = cval .permutation_test_score (svm , X , y ,
356- zero_one_score , cv )
354+ zero_one_score , cv )
357355
358356 assert_less (score , 0.5 )
359357 assert_greater (pvalue , 0.4 )
@@ -411,11 +409,10 @@ def test_shufflesplit_errors():
411409 assert_raises (ValueError , cval .ShuffleSplit , 10 , test_size = 2.0 )
412410 assert_raises (ValueError , cval .ShuffleSplit , 10 , test_size = 1.0 )
413411 assert_raises (ValueError , cval .ShuffleSplit , 10 , test_size = 0.1 ,
414- train_size = 0.95 )
412+ train_size = 0.95 )
415413 assert_raises (ValueError , cval .ShuffleSplit , 10 , test_size = 11 )
416414 assert_raises (ValueError , cval .ShuffleSplit , 10 , test_size = 10 )
417- assert_raises (ValueError , cval .ShuffleSplit , 10 , test_size = 8 ,
418- train_size = 3 )
415+ assert_raises (ValueError , cval .ShuffleSplit , 10 , test_size = 8 , train_size = 3 )
419416 assert_raises (ValueError , cval .ShuffleSplit , 10 , train_size = 1j )
420417
421418
0 commit comments