@@ -168,7 +168,7 @@ def fit(self, X, y, sample_weight=None):
168168 y : array-like, shape (n_samples,)
169169 Target values.
170170
171- sample_weight : array-like, shape (n_samples,), optional
171+ sample_weight : array-like, shape (n_samples,), optional (default=None)
172172 Weights applied to individual samples (1. for unweighted).
173173
174174 .. versionadded:: 0.17
@@ -212,7 +212,7 @@ def _update_mean_variance(n_past, mu, var, X, sample_weight=None):
212212 var : array-like, shape (number of Gaussians,)
213213 Variances for Gaussians in original set.
214214
215- sample_weight : array-like, shape (n_samples,), optional
215+ sample_weight : array-like, shape (n_samples,), optional (default=None)
216216 Weights applied to individual samples (1. for unweighted).
217217
218218 Returns
@@ -282,13 +282,13 @@ def partial_fit(self, X, y, classes=None, sample_weight=None):
282282 y : array-like, shape (n_samples,)
283283 Target values.
284284
285- classes : array-like, shape (n_classes,)
285+ classes : array-like, shape (n_classes,), optional (default=None)
286286 List of all the classes that can possibly appear in the y vector.
287287
288288 Must be provided at the first call to partial_fit, can be omitted
289289 in subsequent calls.
290290
291- sample_weight : array-like, shape (n_samples,), optional
291+ sample_weight : array-like, shape (n_samples,), optional (default=None)
292292 Weights applied to individual samples (1. for unweighted).
293293
294294 .. versionadded:: 0.17
@@ -314,17 +314,17 @@ def _partial_fit(self, X, y, classes=None, _refit=False,
314314 y : array-like, shape (n_samples,)
315315 Target values.
316316
317- classes : array-like, shape (n_classes,)
317+ classes : array-like, shape (n_classes,), optional (default=None)
318318 List of all the classes that can possibly appear in the y vector.
319319
320320 Must be provided at the first call to partial_fit, can be omitted
321321 in subsequent calls.
322322
323- _refit: bool
323+ _refit: bool, optional (default=False)
324324 If true, act as though this were the first time we called
325325 _partial_fit (ie, throw away any past fitting and start over).
326326
327- sample_weight : array-like, shape (n_samples,), optional
327+ sample_weight : array-like, shape (n_samples,), optional (default=None)
328328 Weights applied to individual samples (1. for unweighted).
329329
330330 Returns
@@ -480,13 +480,13 @@ def partial_fit(self, X, y, classes=None, sample_weight=None):
480480 y : array-like, shape = [n_samples]
481481 Target values.
482482
483- classes : array-like, shape = [n_classes]
483+ classes : array-like, shape = [n_classes], optional (default=None)
484484 List of all the classes that can possibly appear in the y vector.
485485
486486 Must be provided at the first call to partial_fit, can be omitted
487487 in subsequent calls.
488488
489- sample_weight : array-like, shape = [n_samples], optional
489+ sample_weight : array-like, shape = [n_samples], optional (default=None)
490490 Weights applied to individual samples (1. for unweighted).
491491
492492 Returns
@@ -551,7 +551,7 @@ def fit(self, X, y, sample_weight=None):
551551 y : array-like, shape = [n_samples]
552552 Target values.
553553
554- sample_weight : array-like, shape = [n_samples], optional
554+ sample_weight : array-like, shape = [n_samples], optional (default=None)
555555 Weights applied to individual samples (1. for unweighted).
556556
557557 Returns
@@ -620,11 +620,11 @@ class MultinomialNB(BaseDiscreteNB):
620620 Additive (Laplace/Lidstone) smoothing parameter
621621 (0 for no smoothing).
622622
623- fit_prior : boolean
623+ fit_prior : boolean, optional (default=True)
624624 Whether to learn class prior probabilities or not.
625625 If false, a uniform prior will be used.
626626
627- class_prior : array-like, size (n_classes,)
627+ class_prior : array-like, size (n_classes,), optional (default=None)
628628 Prior probabilities of the classes. If specified the priors are not
629629 adjusted according to the data.
630630
@@ -723,15 +723,15 @@ class BernoulliNB(BaseDiscreteNB):
723723 Additive (Laplace/Lidstone) smoothing parameter
724724 (0 for no smoothing).
725725
726- binarize : float or None, optional
726+ binarize : float or None, optional (default=0.0)
727727 Threshold for binarizing (mapping to booleans) of sample features.
728728 If None, input is presumed to already consist of binary vectors.
729729
730- fit_prior : boolean
730+ fit_prior : boolean, optional (default=True)
731731 Whether to learn class prior probabilities or not.
732732 If false, a uniform prior will be used.
733733
734- class_prior : array-like, size=[n_classes,]
734+ class_prior : array-like, size=[n_classes,], optional (default=None)
735735 Prior probabilities of the classes. If specified the priors are not
736736 adjusted according to the data.
737737
0 commit comments