Skip to content

Commit a0d6d53

Browse files
committed
DOC Add missing parameter defaults for Naive Bayes classes
1 parent fe03879 commit a0d6d53

File tree

1 file changed

+15
-15
lines changed

1 file changed

+15
-15
lines changed

sklearn/naive_bayes.py

Lines changed: 15 additions & 15 deletions
Original file line numberDiff line numberDiff line change
@@ -168,7 +168,7 @@ def fit(self, X, y, sample_weight=None):
168168
y : array-like, shape (n_samples,)
169169
Target values.
170170
171-
sample_weight : array-like, shape (n_samples,), optional
171+
sample_weight : array-like, shape (n_samples,), optional (default=None)
172172
Weights applied to individual samples (1. for unweighted).
173173
174174
.. versionadded:: 0.17
@@ -212,7 +212,7 @@ def _update_mean_variance(n_past, mu, var, X, sample_weight=None):
212212
var : array-like, shape (number of Gaussians,)
213213
Variances for Gaussians in original set.
214214
215-
sample_weight : array-like, shape (n_samples,), optional
215+
sample_weight : array-like, shape (n_samples,), optional (default=None)
216216
Weights applied to individual samples (1. for unweighted).
217217
218218
Returns
@@ -282,13 +282,13 @@ def partial_fit(self, X, y, classes=None, sample_weight=None):
282282
y : array-like, shape (n_samples,)
283283
Target values.
284284
285-
classes : array-like, shape (n_classes,)
285+
classes : array-like, shape (n_classes,), optional (default=None)
286286
List of all the classes that can possibly appear in the y vector.
287287
288288
Must be provided at the first call to partial_fit, can be omitted
289289
in subsequent calls.
290290
291-
sample_weight : array-like, shape (n_samples,), optional
291+
sample_weight : array-like, shape (n_samples,), optional (default=None)
292292
Weights applied to individual samples (1. for unweighted).
293293
294294
.. versionadded:: 0.17
@@ -314,17 +314,17 @@ def _partial_fit(self, X, y, classes=None, _refit=False,
314314
y : array-like, shape (n_samples,)
315315
Target values.
316316
317-
classes : array-like, shape (n_classes,)
317+
classes : array-like, shape (n_classes,), optional (default=None)
318318
List of all the classes that can possibly appear in the y vector.
319319
320320
Must be provided at the first call to partial_fit, can be omitted
321321
in subsequent calls.
322322
323-
_refit: bool
323+
_refit: bool, optional (default=False)
324324
If true, act as though this were the first time we called
325325
_partial_fit (ie, throw away any past fitting and start over).
326326
327-
sample_weight : array-like, shape (n_samples,), optional
327+
sample_weight : array-like, shape (n_samples,), optional (default=None)
328328
Weights applied to individual samples (1. for unweighted).
329329
330330
Returns
@@ -480,13 +480,13 @@ def partial_fit(self, X, y, classes=None, sample_weight=None):
480480
y : array-like, shape = [n_samples]
481481
Target values.
482482
483-
classes : array-like, shape = [n_classes]
483+
classes : array-like, shape = [n_classes], optional (default=None)
484484
List of all the classes that can possibly appear in the y vector.
485485
486486
Must be provided at the first call to partial_fit, can be omitted
487487
in subsequent calls.
488488
489-
sample_weight : array-like, shape = [n_samples], optional
489+
sample_weight : array-like, shape = [n_samples], optional (default=None)
490490
Weights applied to individual samples (1. for unweighted).
491491
492492
Returns
@@ -551,7 +551,7 @@ def fit(self, X, y, sample_weight=None):
551551
y : array-like, shape = [n_samples]
552552
Target values.
553553
554-
sample_weight : array-like, shape = [n_samples], optional
554+
sample_weight : array-like, shape = [n_samples], optional (default=None)
555555
Weights applied to individual samples (1. for unweighted).
556556
557557
Returns
@@ -620,11 +620,11 @@ class MultinomialNB(BaseDiscreteNB):
620620
Additive (Laplace/Lidstone) smoothing parameter
621621
(0 for no smoothing).
622622
623-
fit_prior : boolean
623+
fit_prior : boolean, optional (default=True)
624624
Whether to learn class prior probabilities or not.
625625
If false, a uniform prior will be used.
626626
627-
class_prior : array-like, size (n_classes,)
627+
class_prior : array-like, size (n_classes,), optional (default=None)
628628
Prior probabilities of the classes. If specified the priors are not
629629
adjusted according to the data.
630630
@@ -723,15 +723,15 @@ class BernoulliNB(BaseDiscreteNB):
723723
Additive (Laplace/Lidstone) smoothing parameter
724724
(0 for no smoothing).
725725
726-
binarize : float or None, optional
726+
binarize : float or None, optional (default=0.0)
727727
Threshold for binarizing (mapping to booleans) of sample features.
728728
If None, input is presumed to already consist of binary vectors.
729729
730-
fit_prior : boolean
730+
fit_prior : boolean, optional (default=True)
731731
Whether to learn class prior probabilities or not.
732732
If false, a uniform prior will be used.
733733
734-
class_prior : array-like, size=[n_classes,]
734+
class_prior : array-like, size=[n_classes,], optional (default=None)
735735
Prior probabilities of the classes. If specified the priors are not
736736
adjusted according to the data.
737737

0 commit comments

Comments
 (0)