| 
13 | 13 | from sklearn.gaussian_process import GaussianProcess  | 
14 | 14 | from sklearn.gaussian_process import regression_models as regression  | 
15 | 15 | from sklearn.gaussian_process import correlation_models as correlation  | 
 | 16 | +from sklearn.utils.testing import assert_greater  | 
16 | 17 | 
 
  | 
17 | 18 | 
 
  | 
18 | 19 | f = lambda x: x * np.sin(x)  | 
@@ -148,20 +149,19 @@ def test_random_starts():  | 
148 | 149 |     Test that an increasing number of random-starts of GP fitting only  | 
149 | 150 |     increases the reduced likelihood function of the optimal theta.  | 
150 | 151 |     """  | 
151 |  | -    n_input_dims = 3  | 
152 |  | -    n_samples = 100  | 
 | 152 | +    n_samples, n_features = 50, 3  | 
153 | 153 |     np.random.seed(0)  | 
154 |  | -    X = np.random.random(n_input_dims*n_samples).reshape(n_samples,  | 
155 |  | -                                                         n_input_dims) * 2 - 1  | 
156 |  | -    y = np.sin(X).sum(axis=1) + np.sin(3*X).sum(axis=1)  | 
 | 154 | +    rng = np.random.RandomState(0)  | 
 | 155 | +    X = rng.randn(n_samples, n_features) * 2 - 1  | 
 | 156 | +    y = np.sin(X).sum(axis=1) + np.sin(3 * X).sum(axis=1)  | 
157 | 157 |     best_likelihood = -np.inf  | 
158 |  | -    for random_start in range(1, 10):  | 
 | 158 | +    for random_start in range(1, 5):  | 
159 | 159 |         gp = GaussianProcess(regr="constant", corr="squared_exponential",  | 
160 |  | -                             theta0=[1e-0]*n_input_dims,  | 
161 |  | -                             thetaL=[1e-4]*n_input_dims,  | 
162 |  | -                             thetaU=[1e+1]*n_input_dims,  | 
 | 160 | +                             theta0=[1e-0] * n_features,  | 
 | 161 | +                             thetaL=[1e-4] * n_features,  | 
 | 162 | +                             thetaU=[1e+1] * n_features,  | 
163 | 163 |                              random_start=random_start, random_state=0,  | 
164 | 164 |                              verbose=False).fit(X, y)  | 
165 | 165 |         rlf = gp.reduced_likelihood_function()[0]  | 
166 |  | -        assert_true(rlf >= best_likelihood)  | 
 | 166 | +        assert_greater(rlf, best_likelihood - np.finfo(np.float32).eps)  | 
167 | 167 |         best_likelihood = rlf  | 
0 commit comments