Skip to content

Commit 1f5f7e1

Browse files
authored
Merge pull request krahets#196 from RiverTwilight/patch-1
code: added Typescript and Javascript examples
2 parents 0e49f00 + 5a24254 commit 1f5f7e1

File tree

6 files changed

+791
-32
lines changed

6 files changed

+791
-32
lines changed

.prettierrc

+4
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,4 @@
1+
{
2+
"tabWidth": 4,
3+
"useTabs": false
4+
}
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,155 @@
1+
/**
2+
* File: time_complexity.js
3+
* Created Time: 2023-01-02
4+
* Author: RiverTwilight ([email protected])
5+
*/
6+
7+
/* 常数阶 */
8+
function constant(n) {
9+
let count = 0;
10+
const size = 100000;
11+
for (let i = 0; i < size; i++) count++;
12+
return count;
13+
}
14+
15+
/* 线性阶 */
16+
function linear(n) {
17+
let count = 0;
18+
for (let i = 0; i < n; i++) count++;
19+
return count;
20+
}
21+
22+
/* 线性阶(遍历数组) */
23+
function arrayTraversal(nums) {
24+
let count = 0;
25+
// 循环次数与数组长度成正比
26+
for (let i = 0; i < nums.length; i++) {
27+
count++;
28+
}
29+
return count;
30+
}
31+
32+
/* 平方阶 */
33+
function quadratic(n) {
34+
let count = 0;
35+
// 循环次数与数组长度成平方关系
36+
for (let i = 0; i < n; i++) {
37+
for (let j = 0; j < n; j++) {
38+
count++;
39+
}
40+
}
41+
return count;
42+
}
43+
44+
/* 平方阶(冒泡排序) */
45+
function bubbleSort(nums) {
46+
let count = 0; // 计数器
47+
// 外循环:待排序元素数量为 n-1, n-2, ..., 1
48+
for (let i = nums.length - 1; i > 0; i--) {
49+
// 内循环:冒泡操作
50+
for (let j = 0; j < i; j++) {
51+
if (nums[j] > nums[j + 1]) {
52+
// 交换 nums[j] 与 nums[j + 1]
53+
let tmp = nums[j];
54+
nums[j] = nums[j + 1];
55+
nums[j + 1] = tmp;
56+
count += 3; // 元素交换包含 3 个单元操作
57+
}
58+
}
59+
}
60+
return count;
61+
}
62+
63+
/* 指数阶(循环实现) */
64+
function exponential(n) {
65+
let count = 0,
66+
base = 1;
67+
// cell 每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)
68+
for (let i = 0; i < n; i++) {
69+
for (let j = 0; j < base; j++) {
70+
count++;
71+
}
72+
base *= 2;
73+
}
74+
// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
75+
return count;
76+
}
77+
78+
/* 指数阶(递归实现) */
79+
function expRecur(n) {
80+
if (n == 1) return 1;
81+
return expRecur(n - 1) + expRecur(n - 1) + 1;
82+
}
83+
84+
/* 对数阶(循环实现) */
85+
function logarithmic(n) {
86+
let count = 0;
87+
while (n > 1) {
88+
n = n / 2;
89+
count++;
90+
}
91+
return count;
92+
}
93+
94+
/* 对数阶(递归实现) */
95+
function logRecur(n) {
96+
if (n <= 1) return 0;
97+
return logRecur(n / 2) + 1;
98+
}
99+
100+
/* 线性对数阶 */
101+
function linearLogRecur(n) {
102+
if (n <= 1) return 1;
103+
let count = linearLogRecur(n / 2) + linearLogRecur(n / 2);
104+
for (let i = 0; i < n; i++) {
105+
count++;
106+
}
107+
return count;
108+
}
109+
110+
/* 阶乘阶(递归实现) */
111+
function factorialRecur(n) {
112+
if (n == 0) return 1;
113+
let count = 0;
114+
// 从 1 个分裂出 n 个
115+
for (let i = 0; i < n; i++) {
116+
count += factorialRecur(n - 1);
117+
}
118+
return count;
119+
}
120+
121+
/* Driver Code */
122+
// 可以修改 n 运行,体会一下各种复杂度的操作数量变化趋势
123+
const n = 8;
124+
console.log("输入数据大小 n = " + n);
125+
126+
let count = constant(n);
127+
console.log("常数阶的计算操作数量 = " + count);
128+
129+
count = linear(n);
130+
console.log("线性阶的计算操作数量 = " + count);
131+
count = arrayTraversal(new Array(n));
132+
console.log("线性阶(遍历数组)的计算操作数量 = " + count);
133+
134+
count = quadratic(n);
135+
console.log("平方阶的计算操作数量 = " + count);
136+
let nums = new Array(n);
137+
for (let i = 0; i < n; i++) nums[i] = n - i; // [n,n-1,...,2,1]
138+
count = bubbleSort(nums);
139+
console.log("平方阶(冒泡排序)的计算操作数量 = " + count);
140+
141+
count = exponential(n);
142+
console.log("指数阶(循环实现)的计算操作数量 = " + count);
143+
count = expRecur(n);
144+
console.log("指数阶(递归实现)的计算操作数量 = " + count);
145+
146+
count = logarithmic(n);
147+
console.log("对数阶(循环实现)的计算操作数量 = " + count);
148+
count = logRecur(n);
149+
console.log("对数阶(递归实现)的计算操作数量 = " + count);
150+
151+
count = linearLogRecur(n);
152+
console.log("线性对数阶(递归实现)的计算操作数量 = " + count);
153+
154+
count = factorialRecur(n);
155+
console.log("阶乘阶(递归实现)的计算操作数量 = " + count);
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,45 @@
1+
/*
2+
* File: worst_best_time_complexity.js
3+
* Created Time: 2023-01-05
4+
* Author: RiverTwilight ([email protected])
5+
*/
6+
7+
/* 生成一个数组,元素为 { 1, 2, ..., n },顺序被打乱 */
8+
function randomNumbers(n) {
9+
let nums = Array(n);
10+
// 生成数组 nums = { 1, 2, 3, ..., n }
11+
for (let i = 0; i < n; i++) {
12+
nums[i] = i + 1;
13+
}
14+
// 随机打乱数组元素
15+
for (let i = 0; i < n; i++) {
16+
let r = Math.floor(Math.random() * (i + 1));
17+
let temp = nums[i];
18+
nums[i] = nums[r];
19+
nums[r] = temp;
20+
}
21+
return nums;
22+
}
23+
24+
/* 查找数组 nums 中数字 1 所在索引 */
25+
function findOne(nums) {
26+
for (let i = 0; i < nums.length; i++) {
27+
if (nums[i] === 1) {
28+
return i;
29+
}
30+
}
31+
return -1;
32+
}
33+
34+
/* Driver Code */
35+
function main() {
36+
for (let i = 0; i < 10; i++) {
37+
let n = 100;
38+
let nums = randomNumbers(n);
39+
let index = findOne(nums);
40+
console.log(
41+
"\n数组 [ 1, 2, ..., n ] 被打乱后 = [" + nums.join(", ") + "]"
42+
);
43+
console.log("数字 1 的索引为 " + index);
44+
}
45+
}
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,155 @@
1+
/**
2+
* File: time_complexity.ts
3+
* Created Time: 2023-01-02
4+
* Author: RiverTwilight ([email protected])
5+
*/
6+
7+
/* 常数阶 */
8+
function constant(n: number): number {
9+
let count = 0;
10+
const size = 100000;
11+
for (let i = 0; i < size; i++) count++;
12+
return count;
13+
}
14+
15+
/* 线性阶 */
16+
function linear(n: number): number {
17+
let count = 0;
18+
for (let i = 0; i < n; i++) count++;
19+
return count;
20+
}
21+
22+
/* 线性阶(遍历数组) */
23+
function arrayTraversal(nums: number[]): number {
24+
let count = 0;
25+
// 循环次数与数组长度成正比
26+
for (let i = 0; i < nums.length; i++) {
27+
count++;
28+
}
29+
return count;
30+
}
31+
32+
/* 平方阶 */
33+
function quadratic(n: number): number {
34+
let count = 0;
35+
// 循环次数与数组长度成平方关系
36+
for (let i = 0; i < n; i++) {
37+
for (let j = 0; j < n; j++) {
38+
count++;
39+
}
40+
}
41+
return count;
42+
}
43+
44+
/* 平方阶(冒泡排序) */
45+
function bubbleSort(nums: number[]): number {
46+
let count = 0; // 计数器
47+
// 外循环:待排序元素数量为 n-1, n-2, ..., 1
48+
for (let i = nums.length - 1; i > 0; i--) {
49+
// 内循环:冒泡操作
50+
for (let j = 0; j < i; j++) {
51+
if (nums[j] > nums[j + 1]) {
52+
// 交换 nums[j] 与 nums[j + 1]
53+
let tmp = nums[j];
54+
nums[j] = nums[j + 1];
55+
nums[j + 1] = tmp;
56+
count += 3; // 元素交换包含 3 个单元操作
57+
}
58+
}
59+
}
60+
return count;
61+
}
62+
63+
/* 指数阶(循环实现) */
64+
function exponential(n: number): number {
65+
let count = 0,
66+
base = 1;
67+
// cell 每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)
68+
for (let i = 0; i < n; i++) {
69+
for (let j = 0; j < base; j++) {
70+
count++;
71+
}
72+
base *= 2;
73+
}
74+
// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
75+
return count;
76+
}
77+
78+
/* 指数阶(递归实现) */
79+
function expRecur(n: number): number {
80+
if (n == 1) return 1;
81+
return expRecur(n - 1) + expRecur(n - 1) + 1;
82+
}
83+
84+
/* 对数阶(循环实现) */
85+
function logarithmic(n: number): number {
86+
let count = 0;
87+
while (n > 1) {
88+
n = n / 2;
89+
count++;
90+
}
91+
return count;
92+
}
93+
94+
/* 对数阶(递归实现) */
95+
function logRecur(n: number): number {
96+
if (n <= 1) return 0;
97+
return logRecur(n / 2) + 1;
98+
}
99+
100+
/* 线性对数阶 */
101+
function linearLogRecur(n: number): number {
102+
if (n <= 1) return 1;
103+
let count = linearLogRecur(n / 2) + linearLogRecur(n / 2);
104+
for (let i = 0; i < n; i++) {
105+
count++;
106+
}
107+
return count;
108+
}
109+
110+
/* 阶乘阶(递归实现) */
111+
function factorialRecur(n: number): number {
112+
if (n == 0) return 1;
113+
let count = 0;
114+
// 从 1 个分裂出 n 个
115+
for (let i = 0; i < n; i++) {
116+
count += factorialRecur(n - 1);
117+
}
118+
return count;
119+
}
120+
121+
/* Driver Code */
122+
// 可以修改 n 运行,体会一下各种复杂度的操作数量变化趋势
123+
const n = 8;
124+
console.log("输入数据大小 n = " + n);
125+
126+
let count = constant(n);
127+
console.log("常数阶的计算操作数量 = " + count);
128+
129+
count = linear(n);
130+
console.log("线性阶的计算操作数量 = " + count);
131+
count = arrayTraversal(new Array(n));
132+
console.log("线性阶(遍历数组)的计算操作数量 = " + count);
133+
134+
count = quadratic(n);
135+
console.log("平方阶的计算操作数量 = " + count);
136+
var nums = new Array(n);
137+
for (let i = 0; i < n; i++) nums[i] = n - i; // [n,n-1,...,2,1]
138+
count = bubbleSort(nums);
139+
console.log("平方阶(冒泡排序)的计算操作数量 = " + count);
140+
141+
count = exponential(n);
142+
console.log("指数阶(循环实现)的计算操作数量 = " + count);
143+
count = expRecur(n);
144+
console.log("指数阶(递归实现)的计算操作数量 = " + count);
145+
146+
count = logarithmic(n);
147+
console.log("对数阶(循环实现)的计算操作数量 = " + count);
148+
count = logRecur(n);
149+
console.log("对数阶(递归实现)的计算操作数量 = " + count);
150+
151+
count = linearLogRecur(n);
152+
console.log("线性对数阶(递归实现)的计算操作数量 = " + count);
153+
154+
count = factorialRecur(n);
155+
console.log("阶乘阶(递归实现)的计算操作数量 = " + count);

0 commit comments

Comments
 (0)