diff --git a/.vscode/settings.json b/.vscode/settings.json new file mode 100644 index 00000000..c7258fab --- /dev/null +++ b/.vscode/settings.json @@ -0,0 +1,3 @@ +{ + "python.dataScience.jupyterServerURI": "local" +} \ No newline at end of file diff --git a/Exercise1/exercise1.ipynb b/Exercise1/exercise1.ipynb index 0d245b5c..fe690a89 100755 --- a/Exercise1/exercise1.ipynb +++ b/Exercise1/exercise1.ipynb @@ -19,7 +19,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -108,7 +108,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -126,7 +126,7 @@ " Return the 5x5 identity matrix.\n", " \"\"\" \n", " # ======== YOUR CODE HERE ======\n", - " A = [] # modify this line\n", + " A = np.eye(5) # modify this line\n", " \n", " # ==============================\n", " return A" @@ -149,9 +149,24 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[1., 0., 0., 0., 0.],\n", + " [0., 1., 0., 0., 0.],\n", + " [0., 0., 1., 0., 0.],\n", + " [0., 0., 0., 1., 0.],\n", + " [0., 0., 0., 0., 1.]])" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "warmUpExercise()" ] @@ -173,9 +188,46 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Submitting Solutions | Programming Exercise linear-regression\n", + "\n" + ] + }, + { + "name": "stdin", + "output_type": "stream", + "text": [ + "Use token from last successful submission (raademang@gmail.com)? (Y/n): n\n", + "Login (email address): raade@uwindsor.ca\n", + "Token: TgHjgrekuNYxrJ0V\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Part Name | Score | Feedback\n", + " --------- | ----- | --------\n", + " Warm up exercise | 10 / 10 | Nice work!\n", + " Computing Cost (for one variable) | 0 / 40 | \n", + " Gradient Descent (for one variable) | 0 / 50 | \n", + " Feature Normalization | 0 / 0 | \n", + " Computing Cost (for multiple variables) | 0 / 0 | \n", + " Gradient Descent (for multiple variables) | 0 / 0 | \n", + " Normal Equations | 0 / 0 | \n", + " --------------------------------\n", + " | 10 / 100 | \n", + "\n" + ] + } + ], "source": [ "# appends the implemented function in part 1 to the grader object\n", "grader[1] = warmUpExercise\n", @@ -199,7 +251,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 71, "metadata": {}, "outputs": [], "source": [ @@ -236,7 +288,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ @@ -272,6 +324,10 @@ " # ====================== YOUR CODE HERE ======================= \n", " \n", "\n", + " pyplot.plot(x, y, 'ro', ms=10, mec='k')\n", + " pyplot.ylabel('Profit in $10,000')\n", + " pyplot.xlabel('Population of City in 10,000s')\n", + " \n", " # =============================================================\n" ] }, @@ -288,9 +344,22 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEHCAYAAACncpHfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO3de5wcVZ338c9vZhqYcdIhMElkUcCdR10VI2jUILoPrvsooxhWjBcChEtCIBd2MwZNgrvP4uNrQdTA7hq8QMYLCRHciBrZzLoYb+yG4AaUAQRl2kVEuSTqhonhFTrh9/xR1UlPp7ureqaru6f7+3696tU91VVdpzud+tU5dc7vmLsjIiKtp63eBRARkfpQABARaVEKACIiLUoBQESkRSkAiIi0KAUAEZEW1ZHUG5vZi4GbgBcCzwM3uPs/mdmVwMXAjnDTK9x9c7n36unp8RNOOCGpooqINKV77rlnp7tPLfV6YgEA2Acsd/d7zWwScI+Z3RG+dp27fzruG51wwgls3749kUKKiDQrM/tVudcTCwDu/gTwRPh8xMweAo5N6ngiIlKZmtwDMLMTgJOBu8NVS81syMy+aGZTalEGEREZLfEAYGbdwNeBZe7+DPA5oBc4iaCGsLrEfgvNbLuZbd+xY0exTUREZBwSDQBmliI4+d/s7rcBuPtT7r7f3Z8HbgTeUGxfd7/B3We6+8ypU0vewxARaTqZTIb+xYuZnk7T3tbG9HSa/sWLyWQyVT1OYgHAzAwYAB5y92vz1h+Tt9l7gAeSKoOIyEQzODjIrBkz6Fy7lq0jI+x1Z+vICJ1r1zJrxgwGBwerdixLKhuomb0ZuBO4n6AbKMAVwNkEzT8OPApcEt4wLmnmzJmuXkAi0uwymQyzZsxg0549nFLk9buA2V1dbBsaore3N/L9zOwed59Z6vUkewH9B2BFXirb519EpFWtWb2ai7PZoid/gFOABdks1193HdeuWTPu42kksIhIg9iwfj3zs9my2yzIZtmwbl1VjqcAICLSIHbu3s3xEdscF25XDQoAIiINoqe7m7JDd4HHwu2qQQFARKRBzD33XAZSqbLbrE2lmHveeVU5ngKAiEiDWLp8OTemUtxV4vW7CALAkv7+qhxPAUBEpEH09vZy08aNzO7qYlUqRQbIAhlgVSrF7K4ubtq4MVYX0DgUAEREGkhfXx/bhobYu3Ahp6bTdLa1cWo6zd6FC9k2NERfX1/VjpXYQLBq0kAwEYFgoNSa1avZsH49O3fvpqe7m7nnnsvS5curdlXcTKIGgqkGICITQi1TJLQK1QBEpOFVO0VCq1ANQEQmvEpSJEh8CgAi0vBqnSKhVSgAiEjDq3WKhFahACAiDa/WKRJahQKAiDS8WqRIqNUsXI1EAUBEGl7SKRJatYupAoCINLwkUyRkMhnmzZnDpj17uCqbpZdgpqxe4Kpslk179jBvzpymrAkoAIjIhJBUioRW7mKqgWAi0tKmp9NsHRmhXN0hA5yaTvPkrl21KlZVaCCYiEgZhV1MM0A/MB1oDx//GdgxMlKH0iVLAUBEWlp+F9NBYBbQCWwF9oaPXcAR7k13M1gBQERaWq6LaQaYB2wCroJRN4OvBr4LTXczWAFARFparovp3wIXQ0vdDFYAEJGWluti+i1gfsS2zZZvSAFARFpeX18fe81aLt+QAoCICK2Zb0gBQESE2uQbajQKACIiJJ9vqBElFgDM7MVm9n0ze8jMHjSzvwnXH2Vmd5jZI+HjlKTKICISV5L5hhpVkjWAfcByd38FwdiKJWb2SmAlsMXdXwpsCf8WEam7pPINNaqa5QIys28Ba8LlNHd/wsyOAX7g7i8vt69yAYmIVK4hcgGZ2QnAycDdwHR3fwIgfJxWizKIiMhoiQcAM+sGvg4sc/dnKthvoZltN7PtO3bsSK6AIiItKtEAYGYpgpP/ze5+W7j6qbDph/Dx6WL7uvsN7j7T3WdOnTo1yWKKiLSkJHsBGTAAPOTu1+a9tAk4P3x+PvCtpMogIiKldST43qcC5wH3m9lPw3VXAJ8AvmZm8wkG1r0vwTKIiEgJiQUAd/8PwEq8/LakjisiIvFoJLCISItSABARaVEKACIiLUoBQESkRSkAiIi0KAUAEZEqymQy9C9ezPR0mva2Nqan0/QvXtyQk8krAIiIVMng4CCzZsygc+1ato6MsNedrSMjdK5dy6wZMxgcHKx3EUepWTbQ8VA2UBFpdJlMhlkzZrBpzx5OKfL6XcDsri62DQ3VbE6BhsgGOpFNpOqciNTPmtWruTibLXryBzgFWJDNcv1119WyWGUpAJQx0apzIlI/G9avZ342W3abBdksG9atq1GJoqkJqIRGrM6JSONqb2tjr3vZ/DpZoLOtjX3799ekTGoCGqOJWJ0Tkfrp6e7mVxHbPBZu1ygUAEqYiNU5kWbXyPfk5p57LgOpVNlt1qZSzD3vvBqVKJoCQAk7d+/m+Ihtjgu3E5HkNfo9uaXLl3NjKsVdJV6/iyAALOnvr2WxylIAKGEiVudEmlUmk2HenDls2rOHq7JZegly2fcCV2WzbNqzh3lz5tS1JtDb28tNGzcyu6uLVakUGYI2/wywKpVidlcXN23c2FD3DBUASpiI1TmRZjVR7sn19fWxbWiIvQsXcmo6TWdbG6em0+xduJBtQ0P09fXVtXyF1AuoBPUCEmkc09Npto6MUO5/WgY4NZ3myV27alWshqdeQGM0EatzIs1K9+SSoQBQxkSrzok0K92TS4YCQITe3l6uXbOGJ3ftYt/+/Ty5axfXrlmjK3+RGtI9uWQoAIhIw5uIXSwnAgUAEWl4uieXDAUAEZkQdE+u+iK7gZqZAW8AjgUc+C3wY69h/1HNByATUSaTYc3q1WxYv56du3fT093N3HPPZeny5bpSlZoYVzdQM3s78AhwJfBO4F3Ax4BHwtdEpIhGT1sgAhE1ADN7COhz90cL1r8E2Ozur0i2eAHVAGQi0SBCaRTjHQjWATxeZP1vgPJ9skRa1ERJWyASVQNYBbwfuAX4dbj6xcAHga+5+9WJlxDVAGRiUdoCaRTjqgGEJ/hzACO4cHlT+PycqJO/mX3RzJ42swfy1l1pZr8xs5+Gyzsr+TAiE4HSFshEEdkN1N1/5u6fAP4e+Dt3/4S7/yzGe38ZOL3I+uvc/aRw2VxZcUVqYzwTjyhtgUwUUb2AjjOzW8zsaeBu4MfhVf0tZnZCuX3d/UfA76tWUpEaGW8PHqUtkIkiqgZwK/AN4Bh3f6m7vxQ4BvgmwX2BsVhqZkNhE9GUMb6HSCKqMfGI0hbIRBEVAHrc/VZ3PzCFvbvvd/dbgKPHcLzPEfxfOgl4AlhdakMzW2hm281s+44dO8ZwKJHKVaMHj9IWyEQR1QvoFoJmnK8wuhfQ+QTB4f1l3zxoJrrd3U+s5LVC6gUktVLNHjyZTIbrr7uODevWHRwJfN55LOnv18lfaiKqF1BUADgMmA+cSZAKwgjGBWwCBtx9b8TBTyDvJG9mx7j7E+HzfuCN7v7BqA+hACC10t7Wxl53OspskwU629rYt39/ma1E6i8qAJT7nePuzxE023xuDAf+KnAa0GNmjxP0IjrNzE4iyCn0KHBJpe8rkqSe7m5+FVEDUA8eaRZRvYA6zOwSMxsMb9zeFz6/1MzKdnNw97Pd/Rh3T7n7i9x9wN3Pc/dXu/sMd5+dqw1IdYyn66IE1INHWknUTeB1BDdsP8boZHCvAdYnWzSphJKPVYd68EgriQoAr3X3Re6+zd0fD5dt7r4IOLkWBZRo1ei62IqK1ZjWrF7NNZ/5jHrwSEuICgB/MLP3mdmB7cyszcw+APwh2aJJXEo+VrlyNaYVl13GNZ/5jCYekaYX1QvoBOAa4C84eMI/Evg+sNLd/zvh8gHqBRRFyccqo3TN0irGmwzuUXf/gLtPJUwG5+7TwnU1OflLNCUfq4xqTCKB2HMCu/vv3H0ngJnNNLNjkyuWVELJxyqzYf165mezZbdZkM2yYd26GpVIpD7GOin8ZcDtZnZrNQsjY6Oui5VRjUkkMKYA4O7nu/vJwIIql0fGQF0XK6Mak0ggMgCY2WQz+4CZfcjM+sPnRwK4+0jyRZQoSj5WGdWYRAJRI4HnAfcSpHToAl4AvBW4J3xNGkRfXx/bhobUdTEG1ZhEAlHdQH9OkLDtfwrWTwHudveXJVw+QN1ApfoGBweZN2cOC7JZFmSzHEfQ7LM2lWJtKsVNGzcqaMqEN65uoATZP4tFiOfD12SCa9X8QY1aY2rVfw+pE3cvuRDk/c8QZAO9Ilw+H667oNy+1Vxe97rXucQzPDzsyxYt8mmTJnmbmU+bNMmXLVrkw8PDh2y7efNm7+nq8lWplA+DZ8GHwVelUt7T1eWbN2+uwydoXfr3kGoDtnu5c3y5F4P9mQJ8EFgOXB4+nxK1XzWXiRwAKjkhj/cYkzs7vQv88vDEUe4EMjw87D1dXb4Vgp9BwbIVvKerq6rllNL07yFJGHcAaIRlogaAWlzR5Y5xaUeHHx2eKOKcQJYtWuSrUqmi2+aWlamU9y9ZMu4ySjT9e0gSEgsAwP1j3bfSZSIGgFpc0eUfYxn4qjInj8ITyLRJk3w4Yvth8OnpdLW+EilD/x6ShKgAENUN9KwSy3uBF1b9hkQTqUW+mfxjbCCYu7Oc/PQGGg3bWPTvIfUQ1Q00C9xM8Z5Ac9x9UlIFyzcRu4HWIkNn/jHagb2Un+Mzfy5bZRBtLPr3kCSMtxvoEPBpd7+wcAH+J2LfllaLK7r8Y/RARekNNBq2sejfQ+ohKgAsA54p8dp7qlyWplKLfDP5x5gLDERsn38C0WjYxqJ/D6mHqPkA7nT3x0q8NrHaZGqsFld0+cdYCtwIsU8gyh/UWPTvIXVR7g5xeH9gGvCC8Hkn8FHgE8AxUftWa1EvoHjH2AzeA74y7DHyXPi4oqOjZLfT4eFh71+yxKen097e1ubT02nvX7JE/c3rRP8eUk1UYSDY94DjwuefBL4ErAC+H7VvtZaJGADcD/bRXxmOA8idkFcmMA4gd4yHwC8CnwzeBn50V5dOICItKioARHUDPR/oBU4Ln38A2A48CRxvZvPMbEa1ayXNohb5ZgqPcWJbG/+aTnPRkiX8YniYnX/8I9euWaOmAxE5RFQ30OOB7wDnAZOBq4A5BIngNgLvBXa5e6L90iZiN1ARkXqL6gZarts47v4rM/sn4HYgBcxz98fM7Dhgp5e4QSwiIo0vckYwd/8cQTPQi9z99nD174CzkyyYSC0o/bK0slhzArv7bnffk/f3H71gkhiRiWZwcJBZM2bQuXYtW0dG2OvO1pEROteuZdaMGQwODta7iCKJGtOk8HGY2RfN7GkzeyBv3VFmdoeZPRI+Tknq+CLlZDIZ5s2Zw6Y9e7gqm6WXoD20F7gqm2XTnj3MmzNHNQFpaokFAODLwOkF61YCW9z9pcCW8G+RmqtFsj6RRle2F9C439zsBOB2dz8x/PvnwGnu/oSZHQP8wN1fHvU+6gUk1abka9IKxpsMLvcmZ4XNNrvM7BkzGzGzUjmCypnu7k8AhI/TyhxzoZltN7PtO3bsGMOhREpT+mWR+E1AnwRmu/tkd0+7+yR3TydZMHe/wd1nuvvMqVOnJnkoaUG1SNYn0ujiBoCn3P2hKhzvqbDph/Dx6Sq855io+19rqyRZn34r0qziBoDtZnarmZ2dPzPYGI63CTg/fH4+8K0xvMe4qfufxE2/fOJrX6vfijSvcomCcgtBArjC5YsR+3wVeIIgq+3jBDMWHk3Q++eR8PGoOMevZjK4WmTplIkhKlnfwMCAfisyoTGeZHB5QeKQGcHc/aKIfc5292PcPeXuL3L3AXf/nbu/zd1fGj7+fgwxa1zU/U9yopL13b99u34r0tSiksF9xN0/aWafoci8wO7+10kWLqea3UDV/U/i0m9FJrpxJYMDcjd+m6YTvrr/SVz6rUizi8oG+u3w8Su1KU7yerq7+VXEVZ26/wnotyLNL8lUEA2pFnP1SnPQb0WaXcsFgLjd/3KTp0vjqHV/fP1WpNnFTQVxapx1E0Fvby83bdzI7K4uVqVSZAj6qWaAVakUs7u6uGnjRk2h2GDqMXZDvxVpeuX6iOYW4N4465JakpgUfnh42PuXLPHp6bS3t7X59HRak6eP0fDwsC9btMinTZrkbWY+bdIkX7ZoUdW+y3qP3dBvRSYqIsYBRHUDPQV4E7AMyO/snAbe4+6vSSwy5VE20MY1ODjIvDlzuDibZX42y/HAr4CBVIobUylu2riRvr6+cR2jf/FiOteu5apstuQ2q1Ip9i5cyLVr1ozrWCLNZLzZQA8Dugl6C03KW54hmBxeWkCptvfvfe97NZlUZcP69cwvc/KHYEDWhnXrxnUckVYTaz4AMzve3aOSJyZGNYD6KXeFf707p7tz6/79JfevxpV5e1sbe93L9lnOAp1tbewrUxaRVjOuGoCZ/WP4dI2ZbSpcqlrSBjERMz8mVeaoaRP/bd8+tuzfT7mjVOPKXKmbRZIR1QR0U/j4aWB1kaWpTMQsoUmWOVbeJOD6Mu9RaqRsJUFL/fFFElLuDjHB/L0A15TbLukliV5Aherd02Qski7ztEmTfLjEe+eWYfDpUa+n06PeN5eFc1WYhTMbbrcqzMK5efPmmn5OkWZFRC+gqADwM+B/E+QEOhl4bf5Sbt9qLrUIAMsWLfJVqVTZk93KVMr7lyxJ5Phj6Uo53jJHHbPNzLMRAeA58PbwBL4MfBp4W/i4DPySjo5Rxx/ryTwqdXNh0BCR8QeAOcAgMAJ8v2D5Xrl9q7nUIgDEvtotuJqthlJXxCs7Ojzd0eGTOzuLnqDHU+Y4V+Fx378bvAt8efh37r1WhOsHBgYOHHc8QUv98UUqM64AcGAj+Ls42yW11CIAxL7aNTuwTzUGQMW5Ij4a/OGCE/TAwIAfXuSKu/CE/Rx4e1tbxcfs6eryC+bOjTxZfwj8BeE+ca7o6xloRVpNVACIOyHMx81stpl9OlzOqMb9h0bS3dERq6dJd3gzslo3X+PcaL0Y+AKj+9dfNn8+5wFbgb3hYycwi6DKll/mwt4xcSfFaTOLzIVzI3BeuE+598pNmqIUyyINpFx0yC3A1QRTOF4ULncAV8fZtxpLLWoAk1MpXxlxZboCfHIqVdWbkmO90foR8P5Sx86rCRRrTqnkKrxU2/vlZj4ZfHKRWke5K3rVAERqhyo1AQ0BbXl/twNDcfatxlKLAGDhibPsSR28zayqN4wrudEaFRQOHDsMDqUCUexjhk1HxdreJ6dSvoWg+amS96r3zXaRVlLNAHBU3t9HNVsAmDZpkg+EJ/mV4Qn2QE+TcP1AeGVaeBVbrAfMheBHd3fHOu5YagDFgkL+9pPDk3+x3jHVuArPBZFpVFYDUJdOkdqJCgBx5wO4GviJmX3ZzL4C3ANcVY0mqEYx99xzGU6l2EbQpn4qQZv6qeHf24BHwsFG+e3YgwTt7p2Mbo+fDjy7e3fkvYBYg5yAuQXrHgN6Smx/HEG3rW1DQ0UTsVVjYFVudO5cYKDsO41+L6VYFmkg5aJDEEAw4MXAMcBs4EzghVH7VXOptAYwlt45lVyZ5q6gh4nRbBRxNRvruEWusleGtYxife+3RFy9V+MqPNeUM9bvQF06RZJHlZqA7omzXVJLJQGg0lGmxfaNGmyUO/ktA18V0fwRpz271HE/Ep5cNxc5qaYJuoeuYnTf+1Vh889fnXHGmI4Zd2BVfhDZTPGms+XgR3d2apCWSJ1UKwBcD7w+zrZJLHEDQDWubONcmW7ZssXT7e3eSfk++Ln276nd3ZE1ksLjHt3V5en2dr+ko2PUSXVFR4cfEZ7ky44d6OyMvJou9lkvOuccv2Du3Fi1p/wgsgX8b8Cnht9JF/hZZ5xR9Sv6pCefEWkm1QoAPwP2EzTVDgH304A3gWvRw2Tz5s1+dGenX27mwwQDtC4MT8gGflRBMHguPCGOpUZSKhi947TT/PIq1DyKfbZKa0+1bMoZT+1OpBVVKwAcX2yJs281lrgBIOk+5sPDw37kYYcduPLONX0UNsPkeg1t5uB9gmr2eKnkc8a9Ym703jmNXj6RRjSuAAAcQTAd5BrgEqCj3PZJLXEDwFjSOVTiHaed5svzTrBxxg0soPiArWJX6nFP1pV8zrhXzI3eP7/RyyfSiMYbAG4F1ocn/28C/1Ru+6SWatcAuqDiK8Xh4WHv5GDTTpwbwB8Bn8ToewOFYwZ6CEYXDwwMxD5ZV/I5myVHT6OXT6QRjTcA3J/3vAO4t9z2cRfg0fA+wk+jCugVBIBlixb5h83KniRWgs8yq/hKcdmiRaNGvcYdAHV03t+lmoyWhyfr1TFP1nGuhi8381lR30XeFXOlo4NrrdHLJ9KIxhsA7i3391iXMAD0xN2+kl5AkVe9jO4nH7fZZdqkSaP648dOgZAXDOI0GZUKKoVNRVHt4V3h54x7xdzoV9iNXj6RRhQVAKJGAr/GzJ4JlxFgRu65mT0TPcystnp7e3mWYLTaKhg9yjRcfxPwFoJsk5Vk9Ny5e/eoUa89ECt76KTw+RqCrJ5jnV5xQTbLF66/nva2Nt508smcetppvLuzs+Ro2meBP48oX37WzUafdrHRyycyIZWLDkktwH8D9xKklFhYYpuFwHZg+3HHHRc74k2bNMm3ENx4nR5egU8P/x7Ou1I8uru7ol4luffNXcXHuQewoqPD0+3tvpUKcuZE1Cby7w1MOeIIP+uMM4p2waz0irnRe9k0evlEGhHV6AZa7QX4k/BxGnAf8Ofltq9kJHCc9vEVHR1+7JQpFfWlX7Zoka/s6DjQjn8JQft+1Akpd3M3TpPRQ1BykpdiwaHwpDeqOYtgbEKpAWqFn8+98addbPTyiTSahgwAowoAVwKXl9umkgAQt308HfeKvMgV8jBBjeJIRk+FWOqENDw8HMwjUOZYm8OAcjmHpnboAX8fB2sx+b2IJoO//sQTS/YiWkHpdBITMUdPo5dPpJE0XAAAXgBMynu+FTi93D6VJoMrdaW4oqPjQG+bSvPY57/virz0DFvA3wDeSdDvPndC2rJly6iby5NTqVE9lPJP5EZ0l80u8Ksp3otoQYz9jyaoYZQKUEqvINJ8GjEA/GnY7HMf8CDw0ah9xjIfwJYtW3zmq17lXXkn2GOnTPFL2tvdqTyPfU6cK9BiKQu2cDB/T2F30L8Or9TLleXDBLWWYif5ZTH2X07QvFRYXqVXEGleDRcAxrKMtQZQeFLLn75wvJk8S101b9mypWQT1OawDIUn8qNiBqMjS7w2nmCmG6sizavlAkC5k1p+s894cvmXu2pOt7f7irCWUWy5EEbdfB4mqKGMZVrIYp8rbnOWu9IriDS7lgsApU5qm2FUKgcnmOIxzaE3cT9E6ekUo66aj464Gi+8Wl9GBROrx3zPuDUADa4SaW5RASDulJATxob165mfzY5alwHmEUxllhvINQisIJjS8A8cnALydcDngZNe/3pe9rKXHfL+a1av5uJstuSArj/Agekii9kB/DPBlJHtwA3AWURPq/hZ4F0lXqt0Wsac/KktS8kfLCYiTaZcdGiUpZIaQLGcMbn2/lyzz9eIbv7pAu9ua/OBgQF3P9jm30X5SWDKXY1vDt83N3NWNnyvh2OWZ0GZq/SxNGepBiDS3Gi1GkBusvJ8G4D5QC9BKogFwIWUT8uwBHjV889z2fz59Pf3H0gZMcTBid87CSaEz5/2fS7BJO6FcrWQ7wJXh2XpIEgp0RGWq1QKi3cDHUccwTe7uriryHv3htv9JbCyoyP2ROtKryDS4spFh0ZZxnIPoLCfff4Ve1Q7fe7Kd2pYW4iTYG5Umoki25fqdZS/PjfArDCFxSUdHd6/ZEnkSNiBgYGKBkmpF5BIc6PVbgIPDw97+vDD/SiKT5jeQ/xeN23hCfrDEduuZPSkL+9rb/d0R8eoE3WpTJ+VNt9UeySs0iuINK+WDABTDj+8KqmSu6g8iVvuhL1ly5ZRJ+pyQSc3MGwF5VNKJEXpFUSaU8sFgDh92z8EPqvISbwwx05nQW2hcJtcs9JDBE025U7YUTdch8EvCoOOTsIiUg1RAaDpbgIX6wZaaDEwBAduqA4S3MztJLi5u5cgT/XicN1NJbbJ3Qh+M8GN3L0LF7JtaIi+vr5Djhl1w7UXmJZKccmSJezbv58nd+3i2jVrDrlxKyJSLRYEicY2c+ZM3759e6xt29va2OtOR5ltsgSz3R8FvBfYCHyb4r2C7gLeDhwesc3pHR3c+/DDJU/YmUyGWTNmsGnPnpLvMburi21DQzrpi0hVmNk97j6z1OtNVwMo1g200GMEAeCzBLPSRHUJfQVwUcQ2i4Drr7uu5DF7e3u5aeNGZnd1lZzFq1hXTRGRpDRdACjV1JIB+glG4L4MsLY2FrS38xBwacR7/jdwScQ2F+/bx4Z168pu09fXx7ahIfYuXMip6TSdbW2cmk6XbToSEUlK0zUBZTIZ3vjqV/PtZ589cMU+SDAI62KCAWHHE8zn+3kzPuvOPwI/A9YDvyeoHewnmKxgHkHqhr0Q2azU2dbGvv37K/14IiKJaLkmoN7eXt781rfSRzA69nsEJ/FNwFUcHIHbC3zKne8Cy4A9wDaCE/0QQW3BgN8StP/HaVbq6e6u+ucREUlK0wUAgLvuvJPbCE7mZwHnU779finB1X5+cLia4Kbv94C/AD4XcUylTBCRiaYpA8DO3bv5c+Bagqv3RRHbLyTIF1ToFIK8QdMJ8vsUy8NDuP7Gjg6W9PePrcAiInXQlAEgvyfQTsqnZ4Yw5XGJ1xYAtwAjwNuANxDUCnI9eFYCfUD2+ef5xS9+Mc6Si4jUTlMGgPyeQD3EbL8v8dpxBE1Je4H7gdMIsnMeQTCHwHMEg8b+be9e5s2ZQyaTKfo+mUyG/sWLmZ5O097WxvR0mv7Fi0tuLyKStKYMAEuXL+fGVIq7iDlZSrhdMY8BhwHHAmsIuoN+l2AQ2X8SNDP1EjYXZbNFxwIMDg4eSCe9dWSEve5sHRmhc+1aZs2YweDg4CH7iIgkrSkDQP6gq90Es26Va79fS5D/v5gbCe4R5BuIi2gAAA+RSURBVOf//x+CpqHrC7ZdkM0eMhYgk8kwb84cNu3Zw1XZ7KgbzVdls2zas6dszUFEJClNGQDg4KCr5885h90Ek6VczujJVlaG61cRnJAL3UVQe7gsfP0qgu6k5wGPAF8gmNZxOkG30SyHTp8YNYVkuZqDiEiSmjYA5KTTaY7o7OR54E7gJGASMAP4FEEvoY8RjAYunIlrNkEiuPzgcApwAfAbOGR2sDcDkw4/fNTx4ySnK1ZzEBFJWtMGgPx293uefZafAvuA5wmu1nMn7/8iyPr5VYKgcDjBSX4vwcCwYskZFhGkhxjVnEMwbuD5bHZUc44mXheRRtWUAaBYu/tvgIc5dE7e3KCvfwNyGYR+y8Gbu8WU6jZ6CkFOoA+eeeaBIBA3OZ1GEYtIrTVlAMhvd88lgTuT4Mq9XFv8xUA34+s2uggYfvDBA717kpx4XV1LRWQ8mjIA5Nrd8ydxOYLoEcGXEjQTXRGxXbluo8cRDBrL9e5595w5B7qkFnMXQQCodBSxupaKyLiVmy4sqQU4Hfg5MAysjNq+kikh3d3bzPzhgsnW28rMyZs/EXx7OC3j18pN0l5mnuD8+YFXplLev2RJ1SdeHx4e9p6urtgTyYtIa6LRpoQ0s3aCLvR9wCuBs83sldU8Rk93N9cQNOnkmnwqGRG8lKCf/ypG9wz6sBl9HNozKF9+7SDXu6fa8wCoa6mIVEW56JDEQnB++k7e36uAVeX2qbQGsGzRIp9ccJW+DHxVRA1gJXh/uN/U8Pn0vFrBReec41OOOKL8lXfecZ8LJ3ivtqgJ5g/URNLpqh9bRCYOGq0GQJBV4dd5fz8erquapcuX8wyjk8AtJRjVG2dE8HEEE8NcCzwJfDicrH1g/Xpuvu02Znd1HTKorNi4gaR696hrqYhUQz0CgBVZd8i0ZGa20My2m9n2HTt2VHSA3t5epnR2jmry6SU4Of8lwQjgcifv/F4+hTdpc805P3zVq5hJcIP5VIqPG0hqjgB1LRWRaqhHAHgceHHe3y8i6Ho/irvf4O4z3X3m1KlTKz7IvAsuYG3H6Ekc+4D3Az8kOGmXOnnfCLyL0pO19/b2csu3vkVHVxd3EtQSCscNjLV3TxxJdi0VkRZSrn0oiYVg/NUvgZcQJNq8D3hVuX0qvQfgHvSUmXL44Ye01w8X9A4q1o7fBX50d7f3L1lStidNtXv3VPLZ1AtIRKLQaPcA3H0fQZP8d4CHgK+5+4NJHGs/cAaje/MAvJWgKWg5BU1B4RX/xs2b2TkywrVr1oy68i9U7d49ceVnO12VShX9DIW1FhGRQhYEicY2c+ZM3759e0X79C9eTOfatczPZrmeYMrHnQRt+3MJAsMVZjycSrF73z56uruZe955LOnvnzAnzkwmw/XXXceGdevYuXv3hPwMIpIcM7vH3WeWfL1ZA8D0dJqtIyMl++tDcMX8xq4udv7xj+Mqn4hII4oKAE2ZCgLid5X8w549FefOUQ4eEWkGTRsA4naVnAQVjZhVDh4RaRZNGwDmnnsun4/YZi3wXog9GYumdxSRZtK0AWDp8uV8luiRvx8m/ohZ5eARkWbStAGgt7eXVGcn7+bQpG75I39TxB8xq+kdRaSZNG0AALjwggt4X0cHeyk98reSEbPKwSMizaSpA8DS5cvZeNhhvI8gXcM+RqdtqDRdg3LwiEgzaeoAUO0Rs8rBIyLNpKkDAFQ3XcPS5csTmd5RRKQemjIAFA7UetPJJ+PPP89/3nsv+/bv58lduyLz/BSjHDwi0kyaLgAkPVCrXgngRESqralyAWUyGWbNmMGmPXuK9tW/C5jd1cW2oSFdpYtI02upXEAaqCUiEl9TBQAN1BIRia+pAoAGaomIxNdUAUADtURE4muqAKCBWiIi8TVVANBALRGR+JoqAGiglohIfE0VAEADtURE4mqqgWAiInJQSw0EExGR+BQARERalAKAiEiLmhD3AMxsB0SO8SqlB9hZxeIkTeVN3kQrs8qbrIlWXohf5uPdfWqpFydEABgPM9te7iZIo1F5kzfRyqzyJmuilReqV2Y1AYmItCgFABGRFtUKAeCGehegQipv8iZamVXeZE208kKVytz09wBERKS4VqgBiIhIEU0TAMzsUTO738x+amaH5I2wwD+b2bCZDZnZa+tRzrAsLw/LmVueMbNlBducZma78rb5vzUu4xfN7GkzeyBv3VFmdoeZPRI+Timx7/nhNo+Y2fl1LvOnzOzh8N/8G2Z2ZIl9y/5+aljeK83sN3n/7u8sse/pZvbz8Pe8so7lvTWvrI+a2U9L7FuP7/fFZvZ9M3vIzB40s78J1zfk77hMeZP7Dbt7UyzAo0BPmdffCQwCBswC7q53mcNytQNPEvTXzV9/GnB7Hcv158BrgQfy1n0SWBk+XwlcU2S/o4Bfho9TwudT6ljmtwMd4fNripU5zu+nhuW9Erg8xm8mA/wpcBhwH/DKepS34PXVwP9toO/3GOC14fNJwC+AVzbq77hMeRP7DTdNDSCGM4GbPLANONLMjql3oYC3ARl3H+tAt0S4+4+A3xesPhP4Svj8K8BfFdn1HcAd7v57d/8DcAdwemIFzVOszO7+7+6+L/xzG/CiWpQljhLfcRxvAIbd/Zfu/hxwC8G/TaLKldfMDHg/8NWkyxGXuz/h7veGz0eAh4BjadDfcanyJvkbbqYA4MC/m9k9ZrawyOvHAr/O+/vxcF29fZDS/2lOMbP7zGzQzF5Vy0KVMN3dn4DgxwpMK7JNo37PABcR1AKLifr91NLSsLr/xRLNE434Hb8FeMrdHynxel2/XzM7ATgZuJsJ8DsuKG++qv6GO8ZawAZ0qrv/1symAXeY2cPhFUuOFdmnrl2gzOwwYDawqsjL9xI0C+0O24G/Cby0luUbo4b7ngHM7KPAPuDmEptE/X5q5XPAxwm+s48TNKtcVLBNI37HZ1P+6r9u36+ZdQNfB5a5+zNBZSV6tyLravIdF5Y3b33Vf8NNUwNw99+Gj08D3yCoJud7HHhx3t8vAn5bm9KV1Afc6+5PFb7g7s+4++7w+WYgZWY9tS5ggadyzWbh49NFtmm47zm8gXcGcI6HjaWFYvx+asLdn3L3/e7+PHBjiXI01HdsZh3AWcCtpbap1/drZimCk+nN7n5buLphf8clypvYb7gpAoCZvcDMJuWeE9w0eaBgs03APAvMAnblqoF1VPKqycxeGLarYmZvIPi3+l0Ny1bMJiDXG+J84FtFtvkO8HYzmxI2X7w9XFcXZnY6sAKY7e57SmwT5/dTEwX3pd5Tohz/BbzUzF4S1iI/SPBvUy9/CTzs7o8Xe7Fe32/4/2cAeMjdr817qSF/x6XKm+hvOMm72rVaCHpD3BcuDwIfDddfClwaPjfgeoLeE/cDM+tc5i6CE/rkvHX55V0afpb7CG78vKnG5fsq8ATBtMqPA/OBo4EtwCPh41HhtjOBtXn7XgQMh8uFdS7zMEFb7k/D5fPhtn8CbC73+6lTedeFv88hghPVMYXlDf9+J0EvkUw9yxuu/3Lud5u3bSN8v28maLYZyvv3f2ej/o7LlDex37BGAouItKimaAISEZHKKQCIiLQoBQARkRalACAi0qIUAEREWpQCgMRiZvvDLIMPmNm/mFlXld//AjNbE7HNaWb2pry/LzWzedUsR5FjfirMzPipIq/1mdn2MHvjw2b26cJyhZ/rTyo85loze2UF2/+Zmd1lZnvN7PKC1yKzhlqJ7JjhmJmiGXStThlfpcpq0R9Xy8RfgN15z28GPlTl978AWBOxzZVEZMpM4HM/AxxeZP2JBH3w/yz8uwNYXGS7H5DwmBOCXDavB/4h//shZtZQSmTHpEQGXeqY8VVLdRfVAGQs7gT+F4CZfSisFTxg4ZwGZnZCeEX8lfDKcWOuxmBBzvKe8PlMM/tB4Zub2bvN7G4z+4mZfdfMpluQHOtSoD+sibzFgtz5l4f7nGRm2+xgzvTcVewPzOwaM/uxmf3CzN5S5HgWXuk/YEE+9Q+E6zcBLwDuzq3L8xHgH9z9YQB33+funw33u9LMLjezOQSDi24Oy/wuM/tG3nH/j5ndVvC+uTLPDJ/vNrN/sCAp4DYzm164vbs/7e7/RTBAK1/crKGlsmOWyqBbNFOmmbWb2Zfzvsf+IseSBqIAIBWxIO9LH3C/mb0OuBB4I8EV4sVmdnK46cuBG9x9BsFV9OIKDvMfwCx3P5ngpPURd38U+Dxwnbuf5O53FuxzE7AiPN79wN/nvdbh7m8AlhWszzkLOAl4DUFag0+Z2THuPht4NjxeYZ6bE4F7yn0Id98IbCfI33ISsBl4hZlNDTe5EPhSufcgCEDb3P01wI+AiyO2zxc3o2Wp7Jil9i+1/iSC9MUnuvurif5sUmcKABJXpwWzPW0HHiPIWfJm4Bvu/kcPEtfdRpAWGODX7v6f4fP14bZxvQj4jpndD3wYKJsK28wmA0e6+w/DVV8hmLwkJ3eVfQ9wQpG3eDPwVQ+SsD0F/JCgSaWq3N0JUj2ca8GsTqdQOrVvznPA7eHzUuUvZbwZLUvtX2r9L4E/NbPPWJC/5pki20kDUQCQuHJXwie5+2Vhk0K5vLqFJ5rc3/s4+Ls7osS+nyG4H/Bq4JIy28W1N3zcT/EU6LHyAxd4EHjdGPb7EnAuQSLAf/GDE32Ukg0DB5QufylxM1qWyo5Zav+i68PmoNcQ3PdYAqytoKxSBwoAMh4/Av7KzLosyED4HoL7AwDHmdkp4fOzCZp1IJi2LnfifG+J950M/CZ8nt/DZIRgqrxR3H0X8Ie89v3zCK7iK/kcHwjbsKcS1B5+HLHPp4ArzOxlAGbWZmYfKrLdqDJ7kLL3t8DfEiRRS1LJrKFmdrWZvSfcrlR2zFIZdItmygzv7bS5+9eBvyOYPlIaWDNNCCM15u73mtmXOXiyXOvuPwlv2D4EnG9mXyDIuvi5cJuPAQNmdgWHznaUcyXwL2b2G4JMqC8J138b2GhmZwKXFexzPvD58GbzLwna1+P6BkFzzH0ENZWPuPuT5XZw96HwpvdXw2M68K9FNv1yWK5ngVPc/VmCXlRT3f1nFZSxJDN7IUHTXBp4PizXKz2Y/GQpwQm7Hfiiuz8Y7vZqDqaQ/gTwNTObT9C8975w/WYOZqPcQ/iduvvvzezjBAEG4P+F614DfMnMcheWxSY6kgaibKBSdWEAuN3dT6xzURqSBeMdfuLuA3Usw3fc/R31Or40BtUARGrIzO4B/ggsr2c5dPIXUA1ARKRl6SawiEiLUgAQEWlRCgAiIi1KAUBEpEUpAIiItCgFABGRFvX/AYH/yuNsMedbAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "plotData(X, y)" ] @@ -352,7 +421,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 72, "metadata": {}, "outputs": [], "source": [ @@ -377,7 +446,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 30, "metadata": {}, "outputs": [], "source": [ @@ -419,7 +488,17 @@ " J = 0\n", " \n", " # ====================== YOUR CODE HERE =====================\n", - "\n", + " \n", + " \n", + " for i in range(0, m):\n", + " x_row = X[i,:]\n", + " y_row = y[i]\n", + " \n", + " hypothesis = np.transpose(theta) @ x_row\n", + " \n", + " J = J + (hypothesis - y_row)**2\n", + " \n", + " J = J * 1/(2.0*m)\n", " \n", " # ===========================================================\n", " return J" @@ -434,9 +513,23 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "execution_count": 31, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "With theta = [0, 0] \n", + "Cost computed = 32.07\n", + "Expected cost value (approximately) 32.07\n", + "\n", + "With theta = [-1, 2]\n", + "Cost computed = 54.24\n", + "Expected cost value (approximately) 54.24\n" + ] + } + ], "source": [ "J = computeCost(X, y, theta=np.array([0.0, 0.0]))\n", "print('With theta = [0, 0] \\nCost computed = %.2f' % J)\n", @@ -457,9 +550,44 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Submitting Solutions | Programming Exercise linear-regression\n", + "\n" + ] + }, + { + "name": "stdin", + "output_type": "stream", + "text": [ + "Use token from last successful submission (raade@uwindsor.ca)? (Y/n): y\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Part Name | Score | Feedback\n", + " --------- | ----- | --------\n", + " Warm up exercise | 10 / 10 | Nice work!\n", + " Computing Cost (for one variable) | 40 / 40 | Nice work!\n", + " Gradient Descent (for one variable) | 0 / 50 | \n", + " Feature Normalization | 0 / 0 | \n", + " Computing Cost (for multiple variables) | 0 / 0 | \n", + " Gradient Descent (for multiple variables) | 0 / 0 | \n", + " Normal Equations | 0 / 0 | \n", + " --------------------------------\n", + " | 50 / 100 | \n", + "\n" + ] + } + ], "source": [ "grader[2] = computeCost\n", "grader.grade()" @@ -494,7 +622,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 80, "metadata": {}, "outputs": [], "source": [ @@ -544,11 +672,28 @@ " theta = theta.copy()\n", " \n", " J_history = [] # Use a python list to save cost in every iteration\n", - " \n", - " for i in range(num_iters):\n", + " \n", + " for k in range(num_iters):\n", " # ==================== YOUR CODE HERE =================================\n", " \n", - "\n", + " # All the theta_j will get updated simultaneously at the end\n", + " current_theta = theta.copy()\n", + " \n", + " for j in range(0, len(theta)):\n", + " inner_sum = 0\n", + " \n", + " for i in range(0, m):\n", + " x_row = X[i,:]\n", + " y_row = y[i]\n", + " xj = x_row[j]\n", + "\n", + " # Compute each step with the current value of theta, but do not update yet\n", + " hypothesis = np.transpose(current_theta) @ x_row\n", + " inner_sum += (hypothesis - y_row) * xj\n", + " \n", + " # Theta is going to get updated now, but it won't be used for the calculation until\n", + " # the next iteration\n", + " theta[j] -= (alpha/m) * inner_sum\n", " # =====================================================================\n", " \n", " # save the cost J in every iteration\n", @@ -566,9 +711,40 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "execution_count": 81, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Theta found by gradient descent: -3.6303, 1.1664\n", + "Expected theta values (approximately): [-3.6303, 1.1664]\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 81, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAVSElEQVR4nO3dfYxV9Z3H8c9HEB9YWbSgRdQi1ti0sQqZqCwbQ9v1CYydpm7XRtPq7krs09aS2pXQtLGRqEvjWtuNVu0224Vt2bqWNdVKSbdNWlPoDgXBrVBBLQIq0xLUWlTE7/5xz8XL5c7cc2fu0/nd9yuZzL3n/ObMlzNzP5z5ne851xEhAEDxHdbpAgAAzUGgA0AiCHQASASBDgCJINABIBFjO/WNJ02aFNOmTevUtweAQlq7du3vI2JyrXUdC/Rp06ZpYGCgU98eAArJ9u+GWseUCwAkgkAHgEQQ6ACQCAIdABJBoANAIgh0AEhEx9oWR2LFuh1asnKzdu7ZqxMnHqUbLjpD/TOmdrosAOgKhQn0Fet2aOEDG7V3335J0o49e7XwgY2SRKgDgAo05bJk5eYDYV62d99+LVm5uUMVAUB3KUyg79yzt6HlANBrChPoJ048qqHlANBrChPoN1x0ho46fMxBy446fIxuuOiMDlUEAN2lMCdFyyc+6XIBgNoKE+hSKdQJcACorTBTLgCA4RHoAJAIAh0AEkGgA0AiCHQASASBDgCJINABIBEEOgAkgkAHgEQQ6ACQCAIdABJBoANAIgh0AEhErkC3PdH2/bY32X7C9qyq9XNsv2h7ffbxpdaUCwAYSt7b535N0iMRcbntcZKOrjHm5xFxafNKAwA0om6g254g6XxJV0tSRLwu6fXWlgUAaFSeKZfpkgYlfdv2Otv32R5fY9ws24/Z/pHt99TakO35tgdsDwwODo6mbgBAlTyBPlbSTEl3RcQMSa9IurFqzK8lvSMizpL0dUkram0oIu6JiL6I6Js8efIoygYAVMsT6NslbY+INdnz+1UK+AMi4qWI+GP2+GFJh9ue1NRKAQDDqhvoEfG8pGdtn5Et+oCk31SOsf12284en5Nt9w9NrhUAMIy8XS6fkbQs63B5StI1tq+TpIi4W9Llkj5h+w1JeyVdERHRioIBALW5U7nb19cXAwMDHfneAFBUttdGRF+tdVwpCgCJINABIBEEOgAkgkAHgEQQ6ACQCAIdABJBoANAIgh0AEgEgQ4AiSDQASARBDoAJIJAB4BEEOgAkAgCHQASQaADQCIIdABIBIEOAIkg0AEgEQQ6ACSCQAeARBDoAJAIAh0AEkGgA0AiCHQASASBDgCJINABIBEEOgAkgkAHgEQQ6ACQCAIdABJBoANAIgh0AEgEgQ4AiSDQASARuQLd9kTb99veZPsJ27Oq1tv2nba32N5ge2ZrygUADGVsznFfk/RIRFxue5yko6vWXyLp9OzjXEl3ZZ8BAG1S9wjd9gRJ50v6liRFxOsRsadq2AclfSdKVkuaaHtK06sFAAwpz5TLdEmDkr5te53t+2yPrxozVdKzFc+3Z8sOYnu+7QHbA4ODgyMuGgBwqDyBPlbSTEl3RcQMSa9IurFqjGt8XRyyIOKeiOiLiL7Jkyc3XCwAYGh5An27pO0RsSZ7fr9KAV895uSK5ydJ2jn68gAAedU9KRoRz9t+1vYZEbFZ0gck/aZq2IOSPm37eyqdDH0xIp5rfrnSinU7tGTlZu3cs1cnTjxKN1x0hvpnHDK7AwA9J2+Xy2ckLcs6XJ6SdI3t6yQpIu6W9LCkuZK2SPqTpGtaUKtWrNuhhQ9s1N59+yVJO/bs1cIHNkoSoQ6g5+UK9IhYL6mvavHdFetD0qeaWFdNS1ZuPhDmZXv37deSlZsJdAA9r1BXiu7cs7eh5QDQSwoV6EceXrvcoZYDQC8pVBLu3fdmQ8sBoJcUKtCH88UVGztdAgB0VDKBvnT1tk6XAAAdVahAr3U5aiWO0gH0skIF+pXnnTLseo7SAfSyQgX6zf1n1h3DUTqAXlWoQJek2acdN+x6jtIB9KrCBfqya2fVHbNi3Y42VAIA3aVwgS5J48eNGXb9guXr21QJAHSPQgb64g8NP5f+pjhKB9B7Chno/TOm6oixw5d+PUfpAHpMIQNdkm778HvrjqHjBUAvKWyg98+YqrGHDX+pER0vAHpJYQNdkr7612fVHcNROoBeUehA758xVacfP37YMRylA+gVhQ50SVq1YE7dMRylA+gFhQ90iatHAUBKJNDzXD165b2/bEMlANA5SQS6VP8o/dGtu9tUCQB0RjKBnuco/YLbf9b6QgCgQ5IJdKn+UfqTu17hlgAAkpVUoOc5Sr/h+9wSAECakgp0Sbqqzrsa7XuTG3cBSFNygZ7nXY24cReAFCUX6FL9o3SJi40ApCfJQM9zlM7FRgBSk2SgS/mO0rnYCEBKkg30m/vPVJ2763KxEYCkJBvoknT7R86uO4aLjQCkIulAz3N7XS42ApCKpANdynd7XdoYAaQg+UCXaGME0BtyBbrtZ2xvtL3e9kCN9XNsv5itX2/7S80vdeRoYwTQCxo5Qn9fRJwdEX1DrP95tv7siPhKM4prpjxH6e9a9HAbKgGA1uiJKRcpXxvjq/uDrhcAhZU30EPSj22vtT1/iDGzbD9m+0e239Ok+poqTxsjXS8AiipvoM+OiJmSLpH0KdvnV63/taR3RMRZkr4uaUWtjdieb3vA9sDg4OCIix6pPG2MEl0vAIopV6BHxM7s8y5JP5B0TtX6lyLij9njhyUdbntSje3cExF9EdE3efLkURc/EqsWzNGRY+rMvYjbAgAonrqBbnu87WPKjyVdKOnxqjFvt+3s8TnZdv/Q/HKbY9PiuXXHPLp1N1MvAAolzxH6CZJ+YfsxSb+S9FBEPGL7OtvXZWMul/R4NuZOSVdERLSm5ObI0/XC1AuAInGncrevry8GBg5paW+r6Qsf0pt1/vmzTzsu11vbAUA72F47VPt4z7Qt1pKn64WpFwBF0dOBTtcLgJT0dKBLpa6X+j0v3GYXQPfr+UCXpH/+Gy44AlB8BLqYegGQBgI9k3fq5dzFq1peCwCMBIFeIc/Uywsvv85VpAC6EoFeoX/GVM0+7bi642hlBNCNCPQqy66dpQlHjKk7jvl0AN2GQK9hw00X5xr33i8/0uJKACA/An0Iee718tJr++lPB9A1CPQh3Nx/pk44ZlzdcU/ueoWTpAC6AoE+jDWLLsh173ROkgLoBgR6HXnunS5xkhRA5xHoOdyRoz9dkk698aEWVwIAQyPQc8jbnx6S3rXo4dYXBAA1EOg5Lbt2Vq6TpK/uD24PAKAjCPQG5D1J+sLLr9POCKDtCPQGbVo8N9dNvGhnBNBuBPoIPH3rvFzjHt26W19csbHF1QBACYE+Qnk7X5au3kaPOoC2INBHKG/ni0SPOoD2INBHIW/niyRNo0cdQIsR6KO0ZtEFuW63K3HhEYDWItCbYMNNF+dqZwxJ71xIqANoDQK9STYtnquxOfoZ3whCHUBrEOhNtOWWebl61N+I0pw63S8AmolAb7K8PepSqfuFPnUAzUKgt8AzDYT60tXbCHUATUGgt0jeC48kQh1AcxDoLdI/Y2qu9yUtW7p6G/d+ATAqBHoL3dx/ZkNH6o9u3c2tdwGMGIHeYv0zpuqZW/N1v0ilW+++98uPtLQmAGki0Nvk6Vvn5epTl6SXXtvPOx8BaBiB3kZbbskf6q/uD24VAKAhuQLd9jO2N9peb3ugxnrbvtP2FtsbbM9sfqlpaCTUQ1yABCC/Ro7Q3xcRZ0dEX411l0g6PfuYL+muZhSXqi23zMt175ey65ev5y3tANTVrCmXD0r6TpSsljTR9pQmbTtJmxbPzX3rXan0lnbcAwbAcPIGekj6se21tufXWD9V0rMVz7dnyw5ie77tAdsDg4ODjVebmDWLLtDpx4/PPZ57wAAYTt5Anx0RM1WaWvmU7fOr1teaP4hDFkTcExF9EdE3efLkBktN06oFc3K/81EZUzAAaskV6BGxM/u8S9IPJJ1TNWS7pJMrnp8kaWczCuwFy66d1dAFSBJTMAAOVTfQbY+3fUz5saQLJT1eNexBSR/Lul3Ok/RiRDzX9GoT1ugFSNJbUzDcBwaAlO8I/QRJv7D9mKRfSXooIh6xfZ3t67IxD0t6StIWSfdK+mRLqu0BT986r6GTpVLpPjBcXQrAEYdMdbdFX19fDAwc0tKOzIp1O3T98vUNf91V552im/vPbEFFALqB7bVDtI9zpWi3GskUjMTROtDLCPQu9/St8zThiDENfc1Lr+1nbh3oQQR6AWy46eKG7q1etnT1Np1K3zrQM5hDL5h3LnxIb4zgRzbhiDHacNPFzS8IQFsxh56QLbfMa+jq0rLyNAzvigSki0AvoFUL5jR8IVLZo1t3M78OJIpAL6hyF8xIjtal0vw694UB0kKgF9xojtal0n1hOHEKpIFAT0D5aL3Rm3yVhQh2IAV0uSTogtt/pid3vTKqbXDFKdCdhutyIdAT9q5FD+vV/aP7+RLsQHehbbFHbVo8d0QXJFUqnzyl3RHofhyh94gr7/2lHt26e9TbOeGYcVqz6IImVARgJJhywQHNmF8vYzoGaD8CHYdoZrCffvx4rVowpynbAjA8Ah1DamawS9Ls047TsmtnNW17AA5GoKOuZs2xV2JKBmg+Ah25tSLYD7N0+0fOVv+MqU3dLtCLCHQ07IsrNmrp6m1N3y7hDowOgY5ROXfxKr3w8ust2TbTMkBjCHQ0RSumYyrR4w7UR6CjqVas26EFy9frzRZ/H9ohgUMR6GiZVs2110JLJECgo01aPSVTjSka9CICHW3X7AuW8uIkK1JHoKOjOhXuZYQ8UkKgo2u0c859OEzXoKgIdHStVva4jwRBj25HoKMQVqzboeuXr+90GUOijRLdgEBHIXXL9ExetFWiHQh0JKPbpmgaRehjtAh0JKvdve/twk3MMBQCHT0l1ZDPg78A0kegAyr+dE27cPK3uzUl0G2PkTQgaUdEXFq17mpJSyTtyBZ9IyLuG257BDq6BUHffrSHjtxwgT62ge18VtITkiYMsX55RHy60eKAThsqWLq9jbLIXnj5dU278aFOlzEi3Xzlca5At32SpHmSFkta0NKKgC7RP2PqsCcli9ZWieZYunpb037uzf7PIe8R+h2SviDpmGHGfNj2+ZJ+K+lzEfFs9QDb8yXNl6RTTjmlwVKB7nJz/5l1X4yEPoZT/t1oVqjXnUO3famkuRHxSdtzJH2+xhz62yT9MSJes32dpI9ExPuH2y5z6MDBOn0TM3TGGFtbb5mbe/xo59BnS7rM9lxJR0qaYHtpRFxVHhARf6gYf6+k23JXB0CSRtRZwl8Axbe/iZ2GdQM9IhZKWihJFUfoV1WOsT0lIp7Lnl6m0slTAC2WZ9qnHk7+dtYYu2nbaqTL5SC2vyJpICIelPQPti+T9Iak3ZKubk55AFqt3snfZqE9tLaPnnty07bFhUUAMIxWTmuNpMuFK0UBIBHDBfph7S4GANAaBDoAJIJAB4BEEOgAkAgCHQASQaADQCI61rZoe1DS70b45ZMk/b6J5bQCNY5et9cndX+N3V6fRI2NekdETK61omOBPhq2B4bqw+wW1Dh63V6f1P01dnt9EjU2E1MuAJAIAh0AElHUQL+n0wXkQI2j1+31Sd1fY7fXJ1Fj0xRyDh0AcKiiHqEDAKoQ6ACQiMIFuu2LbW+2vcX2jR2q4WTbP7X9hO3/s/3ZbPlxtlfZfjL7fGy23LbvzGreYHtmG2sdY3ud7R9mz0+1vSarcbntcdnyI7LnW7L109pU30Tb99velO3PWd20H21/LvsZP277u7aP7PQ+tP2vtnfZfrxiWcP7zPbHs/FP2v54G2pckv2cN9j+ge2JFesWZjVutn1RxfKWvN5r1Vex7vO2w/ak7HlH9uGIRERhPiSNkbRV0nRJ4yQ9JundHahjiqSZ2eNjJP1W0rsl/ZOkG7PlN0q6LXs8V9KPJFnSeZLWtLHWBZL+Q9IPs+f/KemK7PHdkj6RPf6kpLuzx1dIWt6m+v5N0t9nj8dJmtgt+1HSVElPSzqqYt9d3el9KOl8STMlPV6xrKF9Juk4SU9ln4/NHh/b4hovlDQ2e3xbRY3vzl7LR0g6NXuNj2nl671WfdnykyWtVOmix0md3Icj+nd18puP4IcwS9LKiucLJS3sgrr+W9IFkjZLmpItmyJpc/b4m5I+WjH+wLgW13WSpJ9Ier+kH2a/kL+veFEd2J/ZL/Gs7PHYbJxbXN+ELDBdtbwr9qNKgf5s9oIdm+3Di7phH0qaVhWWDe0zSR+V9M2K5QeNa0WNVes+JGlZ9vig13F5P7b69V6rPkn3SzpL0jN6K9A7tg8b/SjalEv5BVa2PVvWMdmf1TMkrZF0QmRvlp19Pj4b1qm675D0BUlvZs/fJmlPRLxRo44DNWbrX8zGt9J0SYOSvp1NC91ne7y6ZD9GxA5JX5W0TdJzKu2TtequfVjW6D7r9Gvpb1U66tUwtbS1RpfeF3lHRDxWtaor6sujaIFe6+2xO9Z3afvPJP2XpOsj4qXhhtZY1tK6bV8qaVdErM1ZRyf27ViV/uy9KyJmSHpFpemCobS1xmwe+oMqTQOcKGm8pEuGqaGrfj8zQ9XUsVptL1LpDeWXlRcNUUvbarR9tKRFkr5Ua/UQdXTdz7togb5dpTmuspMk7exEIbYPVynMl0XEA9niF2xPydZPkbQrW96JumdLusz2M5K+p9K0yx2SJtoeW6OOAzVm6/9c0u4W17hd0vaIWJM9v1+lgO+W/fhXkp6OiMGI2CfpAUl/oe7ah2WN7rOOvJayE4eXSroysnmKLqnxNJX+434se82cJOnXtt/eJfXlUrRA/19Jp2ddBuNUOvH0YLuLsG1J35L0RETcXrHqQUnlM90fV2luvbz8Y9nZ8vMkvVj+87hVImJhRJwUEdNU2k//ExFXSvqppMuHqLFc++XZ+JYebUTE85KetX1GtugDkn6j7tmP2ySdZ/vo7Gderq9r9mGFRvfZSkkX2j42+0vkwmxZy9i+WNI/SrosIv5UVfsVWZfQqZJOl/QrtfH1HhEbI+L4iJiWvWa2q9T48Ly6aB/W1ckJ/BGeyJirUlfJVkmLOlTDX6r0p9UGSeuzj7kqzZf+RNKT2efjsvGW9C9ZzRsl9bW53jl6q8tlukovli2Svi/piGz5kdnzLdn66W2q7WxJA9m+XKFSt0DX7EdJN0naJOlxSf+uUidGR/ehpO+qNKe/T6Xg+buR7DOV5rG3ZB/XtKHGLSrNOZdfM3dXjF+U1bhZ0iUVy1vyeq9VX9X6Z/TWSdGO7MORfHDpPwAkomhTLgCAIRDoAJAIAh0AEkGgA0AiCHQASASBDgCJINABIBH/D99jjIx0p/HgAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "# initialize fitting parameters\n", "theta = np.zeros(2)\n", @@ -579,7 +755,9 @@ "\n", "theta, J_history = gradientDescent(X ,y, theta, alpha, iterations)\n", "print('Theta found by gradient descent: {:.4f}, {:.4f}'.format(*theta))\n", - "print('Expected theta values (approximately): [-3.6303, 1.1664]')" + "print('Expected theta values (approximately): [-3.6303, 1.1664]')\n", + "\n", + "pyplot.scatter(range(0, iterations), J_history)" ] }, { @@ -593,9 +771,22 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "execution_count": 82, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEHCAYAAACncpHfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO2deXxU1fXAvzfJCBnDiBKgVoRoqlbEgIAWBFstVUEWrcYFBFzAKAGqEZWgtrXaClSRtoKiBJTVDTeUpPYn7gW0gAIKKBkNiuICKotgnJDz++O9CZPMmmS2TM7383mfzNx337tnZl7Oucs55xoRQVEURWl+pCVaAEVRFCUxqAFQFEVppqgBUBRFaaaoAVAURWmmqAFQFEVppqgBUBRFaaZkxOrGxpijgfnAz4Bq4GER+acx5g7gGuAbu+qtIlIa6l7Z2dmSk5MTK1EVRVFSkjVr1uwQkbbBzsfMAABVwAQRWWuMaQWsMcb8n31uuojcG+mNcnJyWL16dUyEVBRFSVWMMVtDnY+ZARCR7cB2+/UeY8wm4KhYtacoiqLUj7isARhjcoBTgLftonHGmPXGmLnGmMPjIYOiKIpSm5gbAGNMFvA0cIOI7AYeBHKBblgjhGlBriswxqw2xqz+5ptvAlVRFEVRGkEs1wAwxjiwlP8iEXkGQES+8jk/G3gx0LUi8jDwMEDPnj39EhZ5PB62bdvGjz/+GAvRlSShZcuWdOjQAYfDkWhRFCVuuN1uZkybxuKFC9mxdy/ZWVkMGz6ccRMmkJubG7V2YukFZIA5wCYRuc+n/Eh7fQDg98D7Dbn/tm3baNWqFTk5OVhNKamGiLBz5062bdvGMccck2hxFCUulJWVMTI/n2s8HlZ4PHQCtu7Zw5ySEnrNm8f8JUsYMGBAVNqK5QigDzAC2GCMec8uuxUYaozpBghQAVzbkJv/+OOPqvxTHGMMbdq0QacAleaC2+1mZH4+S/fto7dPeS5wt8fDYI+HIfn5rFq/PiojgVh6Ab0FBNLOIX3+64Mq/9RHf2OlOTFj2jSu8XhqKX9fegOjPR5mTp/OfTNmNLq9ZhEJ7Ha7KSospL3LRXpaGu1dLooKC3G73YkWTVEUpYbFCxcyyuMJWWe0x8PiBQui0l7KG4CysjJ65eWRWVLCij17qBRhxZ49ZJaU0Csvj7Kysgbdd+fOnXTr1o1u3brxs5/9jKOOOqrm/U8//RTRPa666io+/PDDkHVmzpzJokWLGiRjKF5++WUuuOCCkHXWrl3Lv//976i3rShKYHbs3UunMHU62vWiQUy9gBJNLOfT2rRpw3vvWUsbd9xxB1lZWdx000216ogIIkJaWmA7+8gjj4RtZ+zYsfWSK5qsXbuW999/n/79+ydMBkVpTmRnZbF1zx5CaaNP7XrRIKVHAPWZT4sW5eXldOnSheuuu47u3buzfft2CgoK6NmzJyeddBJ33nlnTd2+ffvy3nvvUVVVRevWrSkuLqZr16707t2br7/+GoDbb7+df/zjHzX1i4uLOe200zjhhBNYsWIFAD/88AMXXXQRXbt2ZejQofTs2bPGOPmybNkyTjjhBPr27cvzzz9fU75q1Sp69+7NKaecQp8+fdiyZQv79+/nzjvvZNGiRXTr1o0lS5YErKcoSvQYNnw4c8K4PJc4HAwbMSI6DXp7qcl89OjRQ+qyceNGv7K6tGvVSspBJMRRDtLe5Qp7r1D8+c9/lnvuuUdERLZs2SLGGHnnnXdqzu/cuVNERDwej/Tt21c++OADERHp06ePvPvuu+LxeASQ0tJSEREpKiqSyZMni4jIbbfdJtOnT6+pf8stt4iIyPPPPy/nnnuuiIhMnjxZCgsLRUTkvffek7S0NHn33XdryfjDDz/IUUcdJeXl5VJdXS0XXnihnH/++SIi8v3330tVVZWIiJSVlckll1wiIiKzZ8+W66+/vuYewerFmkh+a0VJBcrLyyXb6ZQVQfTVCpBsp1PKy8sjuh+wWkLo1pSeAor3fJqX3NxcTj311Jr3jz32GHPmzKGqqoovvviCjRs30rlz51rXZGZm1vj29ujRgzfffDPgvS+88MKaOhUVFQC89dZbTJw4EYCuXbty0kkn+V23ceNGjj/++Jqprssvv5z58+cD8P333zNy5Miwi+KR1lMUpWHk5uYyf8kShuTnM9rjYbTHQ0esaZ8Sh4MSh4P5S5ZELRgspaeAsrOyCJkKj+jOp3k59NBDa15v2bKFf/7zn7zyyiusX7+e/v37B4xePuSQQ2pep6enU1VVFfDeLVq08KtjGfrwBHOpvO222zj33HN5//33ee6554JGV0daT1GUhjNgwABWrV9PZUEBfVwuMtPS6ONyUVlQwKr166MWBAYpbgDiPp8WgN27d9OqVStcLhfbt2/npZdeinobffv25cknnwRgw4YNbNy40a9O586d+eijj/jkk08QER577LGac7t27eKoo6xErY8++mhNeatWrdizZ0/YeooSL5qLS3dubi73zZjBl7t2UXXgAF/u2sV9M2ZENQ0EpLgBGDdhArMdDlYGOb8SywCMLSqKmQzdu3enc+fOdOnShWuuuYY+ffpEvY3x48fz+eefk5eXx7Rp0+jSpQuHHXZYrTpOp5NZs2YxYMAAzjjjDI499tiacxMnTuTmm2/2k+23v/0t69at45RTTmHJkiVB6ylKPIiVS3ezJtQCQbIcDV0EFhEpLS2VbKdTih0OKQf5yV74LXY4JNvprFl4bcp4PB7Zv3+/iIh89NFHkpOTIx6PJ8FSRQ9dBFaivTjaXCDMInBKjwAgvvNpiWLv3r306dOHrl27ctFFF/HQQw+RkZHS6/tKMyMRLt3NASMRLiAmkp49e0rdLSE3bdrEiSeemCCJlHiiv7XS3uViRZgAKTfQx+Xiy1274iVW0mOMWSMiPYOdT/kRgKIoTZ9EuXSnOmoAFEVJehLl0p3qqAFQFCXpiYdLd7K5mM58tZwRc97mh8rAMUHRQA2AoihJT6xdupPFxVREmFK2mZziZdzz0oe8uWWHGoBkJSvAcHPWrFk1KRaaM0uXLmXKlCmJFkNJEWpSJDidTHI4cAMerIXfSQ4HQ5zOBqdI8M0afLfHQy5WmmRv1uCl+/YxMj8/piOB6mrh1mc3cMykUma9brXTqY2Td/94Nu1cLWPWrvoKRpnrrrsupvev8d8NkmL6wIEDpKenN/j+jb3ey5AhQxgyZEij76MoXrwu3TOnT6fPggUHN0sfMYJVRUUNjpKN9y5cvlQdqObGJ9exdN0XNWUnH3UYi6/5Fa1ahp7yigY6Aogyd9xxB/feey8AZ555JhMnTuS0007j+OOPr0nwduDAAW6++WZOPfVU8vLyeOihhwDLn79fv350796dk08+uSZlc0VFBSeeeCKFhYV0796dzz77rFabOTk53HnnnfTt25ennnoKt9tN//796dGjB2eccQabN28GrJ5Or169OPXUU/nTn/5UM4J57bXXOOussxg2bBgnn3wyAAsXLuS0006jW7duXHvttRw4cIADBw5w5ZVX0qVLF04++WSm2z7X//rXv+jcuTN5eXlcdtllgJUqYty4cQBs3bqVfv36kZeXR79+/fj0008BuPLKK/nDH/7A6aefzrHHHsuSJUti86MoKUMsUiTEexcugMqqA1z5yDv84rayGuV/em4bNt/VnxfG942L8ocUGQH85YUP2PjF7qjes/PPXfx5sH9WzfpSVVXFO++8Q2lpKX/5y194+eWXmTNnDocddhj/+9//qKyspE+fPpxzzjkcffTRPPvss7hcLnbs2EGvXr1qetEffvghjzzyCA888EDAdlq2bMlbb70FQL9+/Zg1axbHHXccb7/9NoWFhbzyyitcf/31XH/99QwdOpRZs2bVuv6dd97h/fff55hjjmHTpk088cQT/Pe//8XhcFBYWMiiRYs46aST+Pzzz3n//fcBKzsowJQpU/jkk09o0aJFTZkv48aNY+TIkVxxxRXMnTuXP/zhDzz33HMAbN++nbfeeovNmzczZMgQ8vPzG/2dK0p9qOti6gZmAIuBHUA2cBnwjU9erIay76cqhpe8zdpPD/6fnHtSe+4f2p1DMuLfH08JA5DMBErf/J///If169fX9Hh37drFli1b6NChA7feeitvvPEGaWlpfP7553z11VcAdOrUiV69egVt59JLLwWsUcSKFSu4+OKLa85VVlYCsHLlyhrFO2zYsFo7mJ122mkcc8wxACxfvpw1a9bUpLTev38/7dq1Y/DgwXz88ceMHz+egQMHcs455wCQl5fH5ZdfzgUXXBBwm8mVK1fyzDPPADBixAhuueWWmnMXXHABaWlpdO7cueazKko88d2FqwwYCVwDrAA6AVuBEqClCGVlZQ3KHrBrv4eLHlxB+dcH4xTye3Rg6kV5pKcFztIbD1LCAESjpx4rgqVvvv/++zn33HNr1X300Uf55ptvWLNmDQ6Hg5ycnJqUy74ppgPhPV9dXU3r1q0D7ggWyfVe+a644gomT57sV2/dunW89NJLzJw5kyeffJK5c+eybNky3njjDZYuXcpdd93FBx98ELIt37TU3u/H266ixJthw4czp6SEUR4PI4Gl4LeF7GRgCNR7C9kdeysZ9K+3+HL3wdTpV/XJ4U+DOgdNzx5PdA0gAZx77rk8+OCDeOx5x48++ogffviBXbt20a5dOxwOB6+++ipbt4YLffHH5XJxzDHH8NRTTwGWUl23bh0AvXr14umnnwbg8ccfD3qPfv36sWTJkpptKb/99lu2bt3Kjh07qK6u5qKLLuKuu+5i7dq1VFdX89lnn3HWWWfx97//ne+//569daIxTz/99Jr2Fi1aRN++fev9uRQlVnhdTG/H6vlHI9/Qmq3fkVO8jJ5/fblG+V/f7zg+mXwefx58UlIof0iREUCi2LdvHx06dKh5f+ONN0Z03ejRo6moqKB79+6ICG3btuW5557j8ssvZ/DgwfTs2ZNu3brxy1/+skFyLVq0iDFjxvDXv/4Vj8fDZZddRteuXfnHP/7B8OHDmTZtGgMHDvRLGe2lc+fO/PWvf+Wcc86huroah8PBzJkzyczM5KqrrqK6uhqAyZMnc+DAAYYPH86uXbsQEYqKimjdunWt+/3rX//i6quv5p577qFt27Y88sgjDfpcihILvC6mF513HhvC1B3t8dBnwYKg3kCvffg1Vz7yv1pltw88kdFnHBuwfqLRZHDNiH379pGZmYkxhscff5zHHnus1ubwyYr+1ko8SE9LozLMPrkeIDMtjaoDB2qVP//e51z/eO1p11M6tubZwsTunREuGZyOAJoRa9asYdy4cYgIrVu3Zu7cuYkWSVGSBt/F4GDUzTf0yH8/4S8v1N6Bb0CXn/Hg8B6xETLKqAFoRpxxxhk16wGKotTGuxh8d4iYAG++oXtf+pAZr5bXOndF70785fwusRYzqjRpAyAiSbOYosSGpjBFqaQG4yZMoNe8eQwOEhW8Eph/7jgcWf3AR/nfePbx/KHfcXGTM5rEzAAYY44G5gM/A6qBh0Xkn8aYI4AngBygArhERL6r7/1btmzJzp07adOmjRqBFEVE2LlzJy1bxi4XiqJ4qck3lJ/PaI+H0R4PHbGmfUZcfAdfHNsT3/jcv17QheG9wu1SkNzEbBHYGHMkcKSIrDXGtALWABcAVwLfisgUY0wxcLiITAx1r0CLwB6Ph23bttX4ySupScuWLenQoQOOMKmAFSVauN1uZk6fzuIFC0i78K8c0r62B8/MYd0ZmHdkgqSrHwlbBBaR7cB2+/UeY8wm4CjgfOBMu9o84DUgpAEIhMPhqIlcVRRFiRa5ubk8kzWAlmNqR/wuGv0r+vwiO0FSxYa4rAEYY3KAU4C3gfa2cUBEthtj2sVDBkVRlFCICMdMKvUrf35sH7oe3TrAFU2fmBsAY0wW8DRwg4jsjnS+3hhTABQAdOzYMXYCKorSrPEcqOa42/w3fFlyXW965hyRAIniR0wNgDHGgaX8F4nIM3bxV8aYI+3e/5HA14GuFZGHgYfBWgOIpZyKojQ/9lZW0eXPL/mVPz3mdHp0OjwBEsWfWHoBGWAOsElE7vM5tRS4Aphi/03+UFRFUVKGr3f/yGl3L/crf2XCbzi2bfPaVD6WI4A+wAhggzHGGyN9K5bif9IYMwrLw+riINcriqJEjfKv9/K7+173K//fbb+jbasWAa5IfWLpBfQWEGzCv1+s2lUURfHlfxXfcvEs/+3kP/jLuRzaoknHwjaa5v3pFUVJWco2bGfMorV+5eV/G0BGumbCBzUAiqKkGIEStAF8Mvk8zRpQBzUAiqKkBH9btpHZb37iV14xZWACpGkaqAFQFKVJUzB/Nf/Z6L+ftCr+8KgBUBSlSXL2fa+z5eu9fuWq+CNHV0IURWlS5BQvI6d4mZ/yr5gyMCmUv9vtpqiwkPYuF+lpabR3uSgqLMTtdidaND90BKAoSpMgp3hZwPJkUPpeysrKGJmfzzUeDys8HjoBW/fsYU5JCb3mzWP+kiUMGDAg7H3iRZPdE1hRlOZBU1D8YPX8e+XlsXTfvqAbygxxOlm1fj25uaE2nowe4dJB6xRQGJrScE5RUgnvVE9dkmWqpy4zpk3jmiC7iQH0BkZ7PMycPj2eYoVERwAh8B3OjfIO54A5DgezHY6kG84pSioQSOmf0L4VLxX9OgHSRE57l4sVYTaVdwN9XC6+3LUrLjKFGwGoAQhCMg7nFCVVCZaL//xuP+efl52SAInqT3paGpUiIRdWPUBmWhpVBw7ERaaE7QjW1KnPcO6+GTPiKZqipAw/VVVz/O3+ufgnnH0845vYRuvZWVlsDTMC+NSulyzoGkAQFi9cyCiPJ2Sd0R4PixcsiJNEipI67NrnIad4mZ/y/+dl3aiYMjCo8k/mNblhw4czJ8ze1SUOB8NGjIiTROHRKaAgJONwTlGaOp/u3Mev73nVr/yp63pzapjdt5J9TS4Zp411CqiBNMXhnKIkK2s//Y4LH1jhV/7qTWdyTPahYa93u92MzM/3U665wN0eD4M9Hobk5yd0TS43N5f5S5YwJD+f0R4Poz0eOmLpiRKHgxLbSCXTmqFOAQWhKQ7nFCXZWLZ+OznFy/yU/7t/PJuKKQMjUv7QdFwsBwwYwKr166ksKKCPy0VmWhp9XC4qCwpYtX590nkN6hRQEJJxOKcoTYVZr7uZUrbZr3zzXf1p6Uiv9/2S0cWyKaBTQA2kKQ7nFCXR3PzUOp5as82vvLG5+Hfs3UunMHU62vWUyFEDEALvcG7m9On0WbCAHXv3kp2VxbARI1hVVKTKX1Fshsx4i/Xb/Hve0YrY1TW52KBTQIqiNJh45ekpKiwks6SEu0O4Zk9yOKgsKNC4HB90CkhRlKgT7wRt4yZMoNe8eQwOshC8EmtqdlVRUUzaT1XUACiKEjGJysypa3KxQQ2AoihhSYaUzLomF33CrgEYa+n+NOAoQIAvgHckjosHugagNEXcbjczpk1j8cKFB5XV8OGMmzChySirZFD8SsNp1BqAMeYc4AFgC/C5XdwB+IUxplBE/hM1SRUlhWhqO0PVRRV/8yDkCMAYswkYICIVdcqPAUpF5MTYimehIwClKdGUgwgDKf6cNk5eu/msBEijNJbGegFlAP5RHdZoIHSeBEVppjS1VOLBcvGfd/LPeODyHgmQSIkX4UYAk4BLgMeBz+zio4HLgCdFZHLMJURHAErToqmkLfAcqOa42/xz8f+h33HcePbxCZBIiTaNGgGIyGRjzPPAEKyOi8EaEVwuIhvDNDwXGAR8LSJd7LI7gGuAb+xqt4qIf9dDUZowyZ62YPePHvLu8F++u/firuT36JAAiZREEdYN1Fb0G40xR1hv5bsI7/0oMAOYX6d8uojcWy8pFSXONMaDJ1nTFmz7bh99p/rn4n/sml70zm0TV1mU5CBkOmhjTEdjzOPGmK+Bt4F3jDFf22U5oa4VkTeAb6MmqaLEibKyMnrl5ZFZUsKKPXuoFGHFnj1klpTQKy+PsjL/aRNfki2V+LrPvieneJmf8n/5xl9TMWWgKv9mTLg1gJXAP4AlInLALksHLgZuEJFeIW9uGYkX60wBXQnsBlYDEyIZUegagBIvouHBkyxeQC998CXXLljjV7769t+RndUiZu0qyUO4NYBwG8Jki8gTXuUPICIHRORxoCHdhgexNvHpBmwHpgWraIwpMMasNsas/uabb4JVU5SoEo2NR2rSFjidTHI4cGNtH+rGSlg2xOmMadqCkjc/Jqd4mZ/y33xXfyqmDFTlr9QQbgTwONY0zjxqewFdgWUcLgl58zojgEjP1UVHAEq8iKYHj9vtZub06Syuk7ZgbIzSFtz67AYWv/2pX/nHd59HWlrDc/ErTZdwI4BwBuAQYBRwPlYqCK8X0FJgjohUhmk8h9pTQEeKyHb7dRHwKxG5LNyHUAOgxIv0tDQqRUJ6R3iAzLQ0qg4cCFErfuQ/uILVW/1nUjVqV2msG+hPWNM2Dzag4ceAM4FsY8w24M/AmcaYblg5hSqAa+t7X0WJJcnqwROIX/6xjB891X7lqviVSAmXCygDawRwAbWTwT2PNQIIujuDiAwNUDyn4aIq4UiF5GOJZtjw4cwJs/FIPD14AqF5epRoEW4K6DHge6w1AG9KiA5YawBHiMilMZcQnQKKBN/kY6O8yceAOQ4Hs+1c6cmcfCxZSBYPnkCo4lfqS2PXAD4UkROCnPtIROISL64GIDTJrLSSmWAjppN79mTi+PEhNx6JpzFVxa80lMa6gX5njLnYGFNTzxiTZoy5FIg0IliJMdFwXWxuhAr2mjh+PFPvv5/KggL6uFxkpqXRx+WisqCAVevXx0355xQvC6j8K6YMVOWvRIVwI4AcYCrwWw4q/NbAq0CxiHwSY/kAHQGEo6kkH0sWkn3EpD1+JVo01guoArjUvlEbLIOxI6oSKo0m2ZOPJRvJmq45kOL/+WEtWTGpX9xkUJoXYbeEDHiRMT2B7SLyedjKUUBHAKHREUD9SKbvK1gu/hG9OnHXBWFjJBUlJI3dECYY44E8eyE4Lp5ASnCagutiMpEMI6aqA9X8IkAu/tsHnsjoM46NWbuK4kuDDICIXAFgjGkVXXGUhjBuwgR6zZvH4CDTGiuxDMCqoqJ4i5aUJDLYa99PVXT+00t+5Q9e3p0BJx8Z9fYUJRRhDYAx5jCgP7UDwV4Ske9FZE+M5VMioCb5WH5+SNdFdQG1SMSI6es9P3La35b7lT895nR6dDo8au0oSn0Itx/ASGAtVkoHJ3AocBawxj6nJAkDBgxg1fr1CXddbAqMmzCB2Q4HK4Oc946YxkZhxPT+57vIKV7mp/xfvelMKqYMVOWvJJSwgWBYCdu+r1N+OPC2BoIpTRVv5HSsgr2Wb/qKUfP8n9m1fzybIw49pOGCK0o9aGwgmMGa9qlLtX1OaeK43W6KCgtp73KRnpZGe5eLosJC3G53okWLKbEaMc1bUUFO8TI/5b/xznOpmDIwrPJvrr+HkhjCjQCuAP4E/IeD+wF0BM4G7hKRR2MtIOgIoD7UJyGc5g+KHncs/YBHV1T4lbvvPo/0CHPx6++hRJtG5QKyb3A4cC619wN4qR6bwzeapmwA4pGh09vGI48+imf/fgqB6yCkAkn2aNimwtCHV7Hy451+5fWN2tXfQ4kF4QwAIpL0R48ePaQpUlpaKtlOp0xyOKQcxANSDjLJ4ZBsp1NKS0uj1sZ1GRnSBmQFiAQ4VoBkO51SXl4uIiI3jBkjkxyOgHW9R7HDIUVjxzZaxlTk5D//WzpNfNHvaCj6eyixAFgtIXRrgyKBbcuyQURObqBhqhdNcQQQjx6dbxtPApnA3SHqT3I4qCwo4L4ZM5IqGrYpEas8Pfp7KLGgsemgLwx2CpglIm0bKV9ENEUDUFRYSGYYX3NfhdzYNtoDKyBiBdIUtz5MJLFO0Ka/hxILGmsAPMAiAnsC5YtIXCKBm6IBiEePzreNdKCS0JF9vgpEe5yREa/MnPp7KLGgsbmA1gP3isj7AW78u8YKl8rEI9+MbxvZWAu+kaY30PxBoYl3Smb9PZREEC4O4AZgd5Bzv4+yLClFdlYWW8PUaWy+Gd82hhF+w2VfBRLPaNimRKI2YdHfQ0kEIQ2AiLwpIp8GOde05mTizLDhw5njcISs09genW8b44DZELECqckf5HQyyeHAjTVF5MZamxjidDar/EGJ3n1Lfw8lIYRyEbLXB9oBh9qvM4HbgCnAkeGujdbRFN1Ay8vLJdvpjNgtMxptlIJkgxTb7qY/2X8nZmQEdTstLy+XorFjpb3LJelpadLe5ZKisWMbJVdTIpAr51n3vJoweZr776FEFxrrBmqMeQW4UkQ+Ncb8HWgLbAb6i8hZsTNNB2mKi8AQ+3wzgdrwAPcATwN7gMOdTkZedRVji4q092gTLBf/oLwjmTGsewIkUpTY0KhFYDsVRC5wpjHGYG0P+XdgL9DJzgj6noisj6LMKYM338zM6dPps2DBwUjgESNYFSWFHKyNq0eMUKVfh137PXT9y3/8ykf3PYbbB3VOgESKkljCuYF2Al4CRgCHYcUZ5WPFASwBLgJ2iUhM/dKa6ghASQ4+3bmPX9/zql/53y/K45JTj06ARIoSHxq7KfxWY8w/gRcBBzDSngrqCOyQIAvEipIMvPPJt1zykP+y+OMFveh1bJsESKQoyUU4N1BE5EGsaaAOIvKiXbwTGBpLwRSloSxZs42c4mV+yv81exMWX+Wv6ZeV5kxEewKLyN4673+IjTiK0nAml27ioTc+9itf96dzOMzp75Lrm355hTf98p49zCkpode8eZp+WUl5GpwMLuyNjZkLDAK+FpEudtkRwBNADlABXCIRpJXWNQAlFMNL3uat8h1+5Vv+NgBHeuBBrqZfVpoDjd0RrDE8irWZvC/FwHIROQ5Ybr9XlAZx4h//TU7xMj/l/8nk86iYMjCo8geYMW0a13g8AZU/QG9gtMfDzOnToyewoiQZMRsBABhjcoAXfUYAHwJnish2Y8yRwGsickK4++gIQPElGnl6NPma0hxobDI4700uBKZiRQUb+xARcdVTngEOfPEAACAASURBVPYish3r4u3GmHYh2iwACgA6duxYz2aUVCSaCdrikaxPUZKdiAwAVvDXYBHZFEthfBGRh4GHwRoBxKtdJfmIRWbO7KwstoYZATQ2WZ+iJDuRrgF8FSXl/5U99YP99+so3LNBqPtf8hPLBG31Sdanz4qSqkRqAFYbY54wxgw1xlzoPRrQ3lLgCvv1FcDzDbhHoykrK6NXXh6ZJSWs2LOHShFW7NlDZkkJvfLyKCvzzxOjxI94ZOaMNP1yl+7d9VlRUpaIFoGNMY8EKBYRuTrENY8BZ2LtVfIV8GfgOeBJqMmLdrGIfBuu/WguAqv7X/IS701YwiXrm3r//UwcP16fFaXJEhU3UBG5KsARVPnb1wwVkSNFxCEiHURkjojsFJF+InKc/Tes8o826v6XfCQqF783kV5lQQF9XC4y09Lo43JRWVDAqvXr2bB6tT4rSkoTLhncLSLyd2PM/QTYF1hE/hBL4bxEcwSg7n/JQ7x7/PVFnxWlqdNYN1Dvwm/KOOGr+19iCZaL/5CMND76a3KlXdBnRUl1wmUDfcH+Oy8+4sQedf9LDLt/9JB3h38u/sFdf879Q09JgETh0WdFSXVimQoiKYnHXr3KQbbu/IGc4mV+yn/SgF9SMWVg0ip/0GdFSX2anQGI1P3Pu3m60jBWuneSU7yM39zzWq3yOVf0pGLKQK79Tf29ZuLtj6/PipLqRGQAjDF9IilrCuTm5jJ/yRKGOJ1McjhwAx6sxbxJDgdDnE7mL1mibn0NZMGqreQUL2Po7FW1yv99wxlUTBlIvxPbN+i+iYjd0GdFSXUijQNYKyLdw5XFilgkg3O73cycPp3Fdfbq1X1064/b7WbYA6/zlcNfua+5/Xe0yWrR6PsnMnZDnxWlqRLOCyicG2hv4HTgBsDX2dkF/F5EukZL0FBoNtDk5bhbl+Gp9i+/9J8XMzfNRGVTlaLCQjJLSrjb4wlaZ5LDQWVBAffNmNGothQllWisAfgNVjTvdcAsn1N7gBdEZEuU5AyJGoDE4na7mTFtGosXLqzpAWcWPhaw7idTB2Hs19Hqmas/vqI0jMZuCv868Lox5lER2Rp16ZSkp+62if0mvhiwXsXUQX5lvpGyjemZqz++osSGkIvAxph/2C9nGGOW1j3iIF/caYqZH2Mls9vtZmR+Pkv37WPxjc8GVP57pw5ieQDl72W0x8PiBQsaJUd2Vhbheh/qj68o9SecF9B8+++9wLQAR0rRFLOExlLmGdOmcej4JxkaQPFXTB1ExdRBjAZmhrhHsJ55fYyW+uMrSowQkaAH1v69AFND1Yv10aNHD4k15eXlku10ygoQCXCsAMl2OqW8vDzmskRKLGXuNPHFgEfdNspB2gdpv+a8y1Xr3qWlpZLtdMokh0PKQTx2vUkOh2Q7nVJaWhq3z6koqQywWkLo1nAjgCPtheAhxphTjDHdfY8Y26a4kugsoQ2ZxmmszIHaDJqZ0+7x16UjsANrEbYIaA+k23+LgHsyMmr1zH2nle72eMjFWojKBe72eFi6bx8j8/NrfW71x1eUGBHKOgD5QBmW18+rdY5XQl0bzSMeI4B2rVpJeYiebLDebDQI1iMuzsgQV0aGHJaZKWnGSLtWreSGMWNqerqNkblum8F6/JHcPwvECTLBfu+Vf6JdPmfOnJp2bxgzRiY5HCHvWexwSNHYsX4yl5eXS9HYsdLe5ZL0tDRp73JJ0dix2vNXlCAQZgQQkQIG/hhJvVgd8TAAacaIJ4yy+wkk3Ziaa8rLy+WGMWOkXatWARV0JEQyvdEGZHOdaZI5c+ZIC5B2IGn23xvsOn4yp6UFbTOY4s92OuXKYcPCKusbQQ615YxkeiaRhlZRmhvhDECkG8LcZYwZYoy51z6Cu300UbIyMiLyNMmyFyOjtfgayTTONcBD1J4mGT9qFCOAFUCl/TcT6IU1ZPOVua53TESLux4PacaEzYUzGxhhyxlMft9pKHXpVJTkIdJUEJOB04BFdtFQLMsyKYay1RCPQLDWhxzCGI+HySHqFAOzHA7WbNoUtdQEEQc5AV/6lE3Emge/L1DbwCosg+EbIRssFz/4+/F7A6seefzxgNsmzjKG2fazs8ZuK6T8dpCWBnUpSvyIypaQwEDgbBGZKyJzgf52Wcqw2+OhBEL2ducAe6qqorpgHHGPuE5ZAbA4WNtYrpnebJWXXzeenOJlAZV/yMXdvXuDbps4OyODZ7AWh+rTo1eXTkVJHiIdAawHzhR7D19jzBHAayKSF2P5gPiMANq7XEzes4eJWAp0NAd3ri+xj6nArS4XYk/3eHuxbmAGlkLeAWRjWcelWVns2LMnbLsNGQF4sKZ8qoLU7wG0yOlC5qVT/M5Xf/MJr84d36heeHpaGpUiHIU1/RTpvRKd2E1RmhPRGgFMBt41xjxqjJmHNeq/OxoCJgvDhg+n3OFgFdaceh8sBdvHfr8K2GL3TH177WVY8+6Z1J6Pbw/s37s37FpARD1iYFidsk+xDE0g3uw2gNYTX/RT/tf9JpeKKQO5qMXGRvfCvdG5w7BGRpHeS106FSWJCLVCbI8ODHA0cCTW9PL5wM/CXRfNo75eQA3xzqlPsJHXk6UcJLseHjANbjeAd08xyFW254/XE6jDRX8K6NFTtuGLBn/WYHjdORv6HahLp6LEHqLkBromknqxOupjAOobZRro2mL72p/sa4vrXOtVfjeATArj0hjMpz2Sdm+xlWtpAKXqst1DJ4Vw5fzwy92N/qzB8DUipbacxfY9vPeaANImMzPsvRRFiQ3RMgAzgVMjqRuLI1IDEI2ebSQ90+XLl4srPV0yCe2D7/Vpb5uVFXZEUrfdNk6nuNLT5dqMjFpKdWJGhrQEOSyE4n/5EKe0ycwM25sO9FmvvvxyuXLYsIhGT75GZDnI9SBt7e/ECXLhoEFR79FHI/ZCUZoL0TIAG4EDWFO164ENwPpIro3GEakBaEyUaaSUlpZKm8xMuckYKccK0LrKVsgG5Ig6xuAnWyE2ZEQSzBgFU/wHMI36nA0ZPcVzKqcxoztFaY5EywB0CnREcm00jkgNQKyjTMvLy6X1IYfUjDC8Ux+TqJ0Codhn6sY7R97QEYkvkSZo8/2ckfaYkz3hWrLLpyjJSDgDEG4/gJbGmBuAm7F8/z8Xka3eIzrL0NEjYp/6MK6ZwRg7ejSjfvqJ3lhDoZHAUix3KN+kZpPt8pHAFKxI2UDUjRcIlhCuvgnafD9npNHKiU6GF45kl09RmiLhtoR8AstL701gALBVRK6Pk2w1RBoHEKlPfR6wvry8Xq6Gbrebk3/xCzZgKfkiLNfPUL6wE4EHgXchaMzAEYDH4eC+WbOYOH4813g8jPJ46AT8IsjuW/sfGBrx53yZwGka6vrbJ3uEbrLLpyjJSGPjADqLyHAReQgrM+gZURKqwhizwRjznjEmahFew4YP5yFjQtYpAfKMqXdPcca0aVRyMOp1MTAqzDUFwCEcVP6BYgZWYfVcx48axSQ7RXK/iS8GVP7Lr/klFVMGRhQ7MMsY8oxJmRw9yS6fojRJQs0PAWtDvW/oAVQA2ZHWr48XkJMwPukgy33WASKdI2/XqlUtf/w0e84/1HrDTyDpPnPy4fzlQ83x+y7qRjIf7rQ/Z6TrIcmepTPZ5VOUZIRGZgPtaozZbR97gDzva2PM7hjapQaRm5vLfqxotUlQO8rULp+PNYzZYUfpRjpHvmPv3lpRr9kQUfbQVvbrGVhZPQP1yHMmvhgyMydYvfWHZs4kPS2N0085hT5nnsngzMyg0bT7gV+Hka8p5ehJdvkUpUkSyjrE6gA+AdZipZQoCFKnAFgNrO7YsWPEFq9dq1ayHKQIa6vCdPtvkU/vvRykTVZWvbxKvPf19uIjCQKbmJEhrvR0WYEVK1C3B1sfrx7vaMLX9fHwli3lwkGDArpg1rfHnOxeNskun6IkI0TDDTTaB/Bz+287YB3w61D16xMJHEkswMSMDDnq8MPlpjAK0nfa5YYxY6Q4I6PG9fNarEjccAppzpw5ku101poyCqb4N0HQTV4C7b1bV+nVms7Cik0IFqBW9/OJND46ONYku3yKkmwkpQGoJQDcAdwUqk59DECk8+OuEIoxXA+5HGtE0ZraWyEGU0jl5eVy2CEtQvb4S22DchO1Ywom2QbnYg6OYnzz/xwGcmqXLjWGpm6Q1ESCp5Noijl6kl0+RUkmks4AAIcCrXxerwD6h7qmvsnggvUUJ2ZkiBNkGvVYxPXZTtF734k+6RmWg5wGkom1XaRXIS1fvlxuGDNG2h/ZKaji9ypyYxuScEZrMoEDz0ZHcH0bkE0hDJSmV1CU1COcAYg0HXQ0aQ+8ZYxZB7wDLBORf0ezgQEDBvDECy/w8vHHkwe0wPKJX9iqFSPS07mRyBdxfbdT9G6O8tO119ZsjjLM5aLP2LFsKC+nqrqaL3ft4uyBAxk2/g6edQ2k5ciZfvd9cOogfpg6qMYddLx9hHLZHMvBALO6gWdZEVx/JdANy0++sqCAVevXM2DAgKhtbakoStMjog1hEk19N4QpKytjZH5+raCqrVibpHi3L4wkkMt3O8W6uN1uZkybxuKFC9mxdy/ZWVkMGz6c7zsP4dVtB/zqt6r8gb//41KGAgL8m4MKuw2WJQwX5NQT+C7AufbUb1MW38+gm7MoSuoSLhAsI57CxAO3283I/Hw/pZZL7e0Lx2EFZQ0meKRsicPBqqIiv3O+BmaFbWC6jH6EZw9pCXWU/8g1L3Lny7Nq3l+IpfC9bbqxlHonQtPRlj8QOyK8vm6QVH3SKwQygoqiNG1SzgAEU2plWFNBW7GMQS7WFo/9sfzzx3BwC8gHgPlBdqaqa2BygqRrmPvUHfz2Y/9RyzKs3nqNvIDLR65ghNoBzDudFfZ6n+ksgMULF7LC4wlxlWUA+ixYoAZAUVKQlDMAgZSaN3Hb+ViBXHdjGYSJWFsafoe19eMOrPl0D3D6qady/PHH+93fa2ACBW4BfPHAFezbszPoF/sN8C/gcbu9lsClPnIF4wGsfYYD4Q1QC3V9oCApTa+gKM2blDMAgZSaNwp3FNa0zylAIdaCarDpn9+9/jrdjj+ef86ezdVXX10z5/+sayDc6K+K3X8fQrpU057gvfEyrHUHJ9YooBPWqGQi0JfQ01Gz8N8X2EtDp7Oys7LYGibBWqCRg6IoqUEivIBiinezcl+8idtysVJBjAauIrzXzUnV1YwfNYqioiL6zd5sKf86/DB1EA9OHUS6VAOWki4JcE/vKORlLG8erxdPtv13PsFTWAwGMlq25Dmnk5UB7p1r1/sdUJyREfFG65peQVGaNylnALxKzY3l6dMea9rldPv98YADuDbMfa4FPgbaTnyRZ1v8zu+8N0+PN++/2y4fB8wGP0UdLBeQd/pmAFZm0Eqs6ahM+28lkJ+RwahRo5i/ZAlDnM6A+X8mO53cP2dOLRfVui6fdRk3YQKzHY6ARgUOjhzGBlgIVxSl6ZNybqBut5vuJ51ERmUl12L1/L1uoHOwlPNO4CdCz38FW9wNtAHLJCxFfZ/9/pL0dF4yhkJjGO3x0BH4OZaCrzvd4saavgk1HeXriul2u5k5fTqLFyw46H46YgRji4oa5Krp9Wga7fHUyPopluIvcTiYv2RJQOOhKEryE84NNCUNwKknncSyysrg8/vAC8BvA5yvj+KvaROrt/4lBxX2Ey+8wIvPPFOjqKurq4ManTKsUcQorFFCvJVwtI2KoijJQbMzAEWFhWSWlHB3CPfGCViLsL5TH8EU/6dTB9Uo7rq7eWVjTeFcC3QBbg6hsMPtaOXG8uJ5HKhMS1MlrChKo2nsjmBNjsULFzIqjG97IbAeywDkTHwxoPJfPnUQ+Xa6hvkE3s1rhf2+L5aBCDXfHm7BNRdo53Bw7dixVB04wJe7dnHfjBmq/BVFiRkpNwJIT0ujUiTk/L4HOC7CqZ6VwDlY7povEHyevn9GBms3bw6qsDXtgqIo8abZjQACuYH6kjPxxYDK33f3LV96AycCVxPabXQMhNxnODc3N6QXTzBXTUVRlFiRcgYg0FSLEHyqZ+fUQSwPscAL1vZl4dxGr6mqYvGCBSHreLOJVhYUROyqqSiKEitSbgrI7Xbzq5NP5oX9+/kVhmMnvuBX5/hvKnhw7jhmGcMDIvwD2AgsBL7FSs9wAGuzgpFYqRsqCe026gEy09KoOuCfCVRRFCURNLspoNzcXPqedRYDgL75f6p17vZXSqiYOoj/zB1HLnCPCC8DNwD7OBiItR4raMwAX3AwiVwoNGWCoihNjZTLBQSw8s03eQZ47JUSvsg9lXNKruPhndsC1u2NFb3r4WCQVi5WuoYh9vFb4EHg3hBtasoERVGaGik3BQS1PYEi3iwFK5CrLpOAr4GnsVxBg3nwDM7M5O0NG3QRV1GUpKHZTQFBbU+giDdLCXJuNFZw1h6gH3Aa8AoHPXiKsfL4eKqr+eijjxopuaIoSvxISQPg6wkU8d6/Qc51xFoXqAQ2AGdiZedsiTVq+Alrm8l/V1YyMj8ft9sd8D5ut5uiwkLau1ykp6XR3uWiqLAwaH1FUZRYk5IGwDfLpTfbZihKCJ5r/1PgEOAorDQQ12KldD4C+C9WArhcam+fWBfdeF1RlGQkJQ2Ab9DVXuBh/NMze1mJZQDGBjk/GyjgYNqHXsD3WFNDM+vUHe3x+MUC+G4hebfHU7MPQC5wt8fD0n37Qo4cFEVRYkVKGgA4GHRVffnl7MXKAHoTtTdbKbbLJxF4kXgl1uhhvH3+bqy0zSOALcBDQDrWQnORfd/GbLyuKIoST1LWAHhxuVy0zMykGngT6Aa0AvKAe7B8/P8CXIf/TlxDsBLB+RqH3sCVwOdY8QJ1k8K1atGiVvuRJKcLNHJQFEWJNSlrAHzn3dfs3897QBVQjdVb9yrv/2FlB30Myyi0wFLylViBYYGSM4zBSg9RazoHK1lctcdTazpHN15XFCVZSUkDEGje/XNgM/578nqDvv6NtVUkWNG/3sXdQARzG+2NlRPosvPPrzEC4ZLTgUYRK4qSGFLSAPjOu3v3Bj4fq+ceai7+GiCLxrmNjgHKP/igxrsnlhuvq2upoiiNISUNgHfe3XcTl5ZYyjkU12FNE90apl4ot9GOWEFjXu+ewfn5Mdl4XV1LFUVpNCIS9wPoD3wIlAPF4er36NFD6kOaMbIZJBtkBYiApIF47NfBjp9A0kGcIE8GqbPCvm95kPPlIO3t18UOhxSNHSulpaWS7XRKscMh5XY75fb5bKdTSktL6/X5ysvLJdvprPlsAWV0OqW8vLxe91UUJbUAVksI3Rr3EYAxJh3LhX4A0BkYaozpHM02srOymIo1peOd8qlPRPA4LD//SdT2DLrZGAbg7xnki+/owOvdE+19ANS1VFGUqBDKOsTiwNJPL/m8nwRMCnVNfUcAN4wZI4fV6aXfADIpzAigGKTIvq6t/bq9z6jg6ssvl8Nbtgzd8/Zp9yeQ9LS0eskeCe1atQo6Aqk1EnG5ot62oihNB5JtBICVVeEzn/fb7LKoMW7CBHZTOwncOKyo3kgigjtibQxzH1aG0JvtzdrnLFzIomeeYYjT6RdUFihuIFbePepaqihKNEiEATAByvxyUhtjCowxq40xq7/55pt6NZCbm8vhmZm1pnxysZTz77AigEMpb18vn7qLtN7pnNdPOomeWAvMfQgcNxCrPQLUtVRRlGiQCAOwDTja530HLNf7WojIwyLSU0R6tm3btt6NjLzySkoyau93MwC4BHgdS2kHU96zgYEE36w9NzeXx59/ngynkzexRgl14wYa6t0TCbF0LVUUpRkRan4oFgdW/NXHwDFYiTbXASeFuqa+awAilqfM4S1a+M3Xl9fxDgo0j+8EaZOVJUVjx4b0pIm2d099Ppt6ASmKEg6SbQ1ARKqwpuRfAjYBT4rIB7Fo6wAwiNrePABnYU0FTaDOVJDd419SWsqOPXu4b8aMkDt8Rdu7J1J8s51OcjgCfoa6oxZFUZS6pOSWkABFhYVklpQwyuNhJrAYK31DNpab5iDgVmPY7HCwt6qK7Kwsho0YwdiioiajON1uNzOnT2fxggXs2Lu3SX4GRVFiR7gtIVPWALR3uVixZ0/YvYB/5XSy44cfGiWfoihKMtIs9wSGyF0lv9u3r965czQHj6IoqUDKGoBIXSVbQb0iZjUHj6IoqULKGoBhw4czK0ydEuAiiHgzFt3eUVGUVCJlDcC4CRN4gPCRvzcTecSs5uBRFCWVSFkDkJubiyMzk8H4J3Xzjfx1EHnErG7vqChKKpGyBgDgqiuv5OKMDCoJHvlbn4hZzcGjKEoqkdIGYNyECSw55BAuxkrXUEXttA31TdegOXgURUklUtoARDtiVnPwKIqSSqS0AYDopmsYN2FCTLZ3VBRFSQQpaQDqBmqdfsopSHU1/127lqoDB/hy166weX4CoTl4FEVJJVLOAMQ6UCtRCeAURVGiTUrlAnK73fTKy2Ppvn0BffVXAkOcTlatX6+9dEVRUp5mlQtIA7UURVEiJ6UMgAZqKYqiRE5KGQAN1FIURYmclDIAGqilKIoSOSllADRQS1EUJXJSygBooJaiKErkpJQB0EAtRVGUyEkpAwAaqKUoihIpKRUIpiiKohykWQWCKYqiKJGjBkBRFKWZogZAURSlmdIk1gCMMd9A2BivYGQDO6IoTqxReWNPU5NZ5Y0tTU1eiFzmTiLSNtjJJmEAGoMxZnWoRZBkQ+WNPU1NZpU3tjQ1eSF6MusUkKIoSjNFDYCiKEozpTkYgIcTLUA9UXljT1OTWeWNLU1NXoiSzCm/BqAoiqIEpjmMABRFUZQApIwBMMZUGGM2GGPeM8b45Y0wFv8yxpQbY9YbY7onQk5blhNsOb3HbmPMDXXqnGmM2eVT509xlnGuMeZrY8z7PmVHGGP+zxizxf57eJBrr7DrbDHGXJFgme8xxmy2f/NnjTGtg1wb8vmJo7x3GGM+9/ndzwtybX9jzIf281ycQHmf8JG1whjzXpBrE/H9Hm2MedUYs8kY84Ex5nq7PCmf4xDyxu4ZFpGUOIAKIDvE+fOAMsAAvYC3Ey2zLVc68CWWv65v+ZnAiwmU69dAd+B9n7K/A8X262JgaoDrjgA+tv8ebr8+PIEynwNk2K+nBpI5kucnjvLeAdwUwTPjBo4FDgHWAZ0TIW+d89OAPyXR93sk0N1+3Qr4COicrM9xCHlj9gynzAggAs4H5ovFKqC1MebIRAsF9APcItLQQLeYICJvAN/WKT4fmGe/ngdcEODSc4H/E5FvReQ74P+A/jET1IdAMovIf0Skyn67CugQD1kiIch3HAmnAeUi8rGI/AQ8jvXbxJRQ8hpjDHAJ8Fis5YgUEdkuImvt13uATcBRJOlzHEzeWD7DqWQABPiPMWaNMaYgwPmjgM983m+zyxLNZQT/p+ltjFlnjCkzxpwUT6GC0F5EtoP1sALtAtRJ1u8Z4GqsUWAgwj0/8WScPdyfG2R6Ihm/4zOAr0RkS5DzCf1+jTE5wCnA2zSB57iOvL5E9RnOaKiASUgfEfnCGNMO+D9jzGa7x+LFBLgmoS5QxphDgCHApACn12JNC+2154GfA46Lp3wNJOm+ZwBjzG1AFbAoSJVwz0+8eBC4C+s7uwtrWuXqOnWS8TseSujef8K+X2NMFvA0cIOI7LYGK+EvC1AWl++4rrw+5VF/hlNmBCAiX9h/vwaexRom+7INONrnfQfgi/hIF5QBwFoR+aruCRHZLSJ77delgMMYkx1vAevwlXfazP77dYA6Sfc92wt4g4DLxZ4srUsEz09cEJGvROSAiFQDs4PIkVTfsTEmA7gQeCJYnUR9v8YYB5YyXSQiz9jFSfscB5E3Zs9wShgAY8yhxphW3tdYiybv16m2FBhpLHoBu7zDwAQStNdkjPmZPa+KMeY0rN9qZxxlC8RSwOsNcQXwfIA6LwHnGGMOt6cvzrHLEoIxpj8wERgiIvuC1Ink+YkLddalfh9Ejv8BxxljjrFHkZdh/TaJ4nfAZhHZFuhkor5f+/9nDrBJRO7zOZWUz3EweWP6DMdyVTteB5Y3xDr7+AC4zS6/DrjOfm2AmVjeExuAngmW2Yml0A/zKfOVd5z9WdZhLfycHmf5HgO2Y22rvA0YBbQBlgNb7L9H2HV7AiU+114NlNvHVQmWuRxrLvc9+5hl1/05UBrq+UmQvAvs53M9lqI6sq689vvzsLxE3ImU1y5/1Pvc+tRNhu+3L9a0zXqf3/+8ZH2OQ8gbs2dYI4EVRVGaKSkxBaQoiqLUHzUAiqIozRQ1AIqiKM0UNQCKoijNFDUAiqIozRQ1AEpEGGMO2FkG3zfGPGWMcUb5/lcaY2aEqXOmMeZ0n/fXGWNGRlOOAG3eY2dmvCfAuQHGmNV29sbNxph768plf66f17PNEmNM53rU/6UxZqUxptIYc1Odc2Gzhpog2THtmJmAGXRNgjK+KlEmHv64ejT9A9jr83oRcGOU738lMCNMnTsIkykzBp97N9AiQHkXLB/8X9rvM4DCAPVeI8YxJ1i5bE4F/ub7/RBh1lCCZMckSAZdEpjxVY/oHjoCUBrCm8AvAIwxN9qjgveNvaeBMSbH7hHPs3uOS7wjBmPlLM+2X/c0xrxW9+bGmMHGmLeNMe8aY142xrQ3VnKs64AieyRyhrFy599kX9PNGLPKHMyZ7u3FvmaMmWqMeccY85Ex5owA7Rm7p/++sfKpX2qXLwUOBd72lvlwC/A3EdkMICJVIvKAfd0dxpibjDH5WMFFi2yZBxpjnvVp92xjzDN17uuVuaf9eq8x5m/GSgq4yhjTvm59EflaRP6HFaDlS6RZQ4NlxwyWQTdgpkxjTLox5lGf77EoQFtKEqEGQKkXxsr7MgDYYIzpAVwF/Aqrh3iNMeYUu+oJwMMiE66FeAAAA0pJREFUkofViy6sRzNvAb1E5BQspXWLiFQAs4DpItJNRN6sc818YKLd3gbgzz7nMkTkNOCGOuVeLgS6AV2x0hrcY4w5UkSGAPvt9urmuekCrAn1IURkCbAaK39LN6AUONEY09auchXwSKh7YBmgVSLSFXgDuCZMfV8izWgZLDtmsOuDlXfDSl/cRUROJvxnUxKMGgAlUjKNtdvTauBTrJwlfYFnReQHsRLXPYOVFhjgMxH5r/16oV03UjoALxljNgA3AyFTYRtjDgNai8jrdtE8rM1LvHh72WuAnAC36As8JlYStq+A17GmVKKKiAhWqofhxtrVqTfBU/t6+Ql40X4dTP5gNDajZbDrg5V/DBxrjLnfWPlrdgeopyQRagCUSPH2hLuJyHh7SiFUXt26isb7voqDz13LINfej7UecDJwbYh6kVJp/z1A4BToEeUHrsMHQI8GXPcIMBwrEeBTcnCjj2B4bMMBweUPRqQZLYNlxwx2fcByezqoK9a6x1igpB6yKglADYDSGN4ALjDGOI2VgfD3WOsDAB2NMb3t10OxpnXA2rbOqzgvCnLfw4DP7de+HiZ7sLbKq4WI7AK+85nfH4HVi6/P57jUnsNuizV6eCfMNfcAtxpjjgcwxqQZY24MUK+WzGKl7P0CuB0riVosCZo11Bgz2Rjze7tesOyYwTLoBsyUaa/tpInI08AfsbaPVJKYVNoQRokzIrLWGPMoB5VliYi8ay/YbgKuMMY8hJV18UG7zl+AOcaYW/Hf7cjLHcBTxpjPsTKhHmOXvwAsMcacD4yvc80VwCx7sfljrPn1SHkWazpmHdZI5RYR+TLUBSKy3l70fsxuU4BlAao+asu1H+gtIvuxvKjaisjGesgYFGPMz7Cm5lxAtS1XZ7E2PxmHpbDTgbki8oF92ckcTCE9BXjSGDMKa3rvYru8lIPZKPdhf6ci8q0x5i4sAwNwp13WFXjEGOPtWAba6EhJIjQbqBJ1bAPwooh0SbAoSYmx4h3eFZE5CZThJRE5N1HtK8mBjgAUJY4YY9YAPwATEimHKn8FdASgKIrSbNFFYEVRlGaKGgBFUZRmihoARVGUZooaAEVRlGaKGgBFUZRmihoARVGUZsr/A+9RFpi0o+YoAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "# plot the linear fit\n", "plotData(X[:, 1], y)\n", @@ -620,9 +811,20 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "execution_count": 83, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "For population = 35,000, we predict a profit of 4519.77\n", + "\n", + "For population = 70,000, we predict a profit of 45342.45\n", + "\n" + ] + } + ], "source": [ "# Predict values for population sizes of 35,000 and 70,000\n", "predict1 = np.dot([1, 3.5], theta)\n", @@ -641,9 +843,44 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "execution_count": 84, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Submitting Solutions | Programming Exercise linear-regression\n", + "\n" + ] + }, + { + "name": "stdin", + "output_type": "stream", + "text": [ + "Use token from last successful submission (raade@uwindsor.ca)? (Y/n): y\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Part Name | Score | Feedback\n", + " --------- | ----- | --------\n", + " Warm up exercise | 10 / 10 | Nice work!\n", + " Computing Cost (for one variable) | 40 / 40 | Nice work!\n", + " Gradient Descent (for one variable) | 50 / 50 | Nice work!\n", + " Feature Normalization | 0 / 0 | \n", + " Computing Cost (for multiple variables) | 0 / 0 | \n", + " Gradient Descent (for multiple variables) | 0 / 0 | \n", + " Normal Equations | 0 / 0 | \n", + " --------------------------------\n", + " | 100 / 100 | \n", + "\n" + ] + } + ], "source": [ "grader[3] = gradientDescent\n", "grader.grade()" @@ -666,9 +903,22 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "execution_count": 85, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArcAAAFNCAYAAAAafEeVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOy9d1ic6Xnv/3lmht6LKAIESIgOEuoVobpqq13b271Z2yf2Oo6TrOM4jk/i3zmO4xOXk92zOcfOusSxHZet8e5qJdRWWgkVhISEhIahN9FBovcZ5vn9McxoQHSQQPB8rmuvhbfe884r5jv3e9/fW0gpUSgUCoVCoVAo5gOa2Q5AoVAoFAqFQqGYKZS4VSgUCoVCoVDMG5S4VSgUCoVCoVDMG5S4VSgUCoVCoVDMG5S4VSgUCoVCoVDMG5S4VSgUCoVCoVDMG5S4VSgUCoViHiKEkEKIqAd4/K1CiMIHdfzJIIToFEIsneltFY8mStwqFAqFYt4jhHhBCJE9KGzqhBDHhBBbZuC4vxZCfG8mYnzUkFKel1LGzHYcAFJKdyll2Uxvq3g0UeJWoVAoFPMaIcTXgdeBfwYCgSXAvwFPzGZc4yGE0M12DArFo4gStwqFQqGYtwghvIDvAl+VUv5RStklpTRKKT+SUv7t4DZOQojXhRC1g/+9LoRwGlyXJoSoFkL8jRCicTDr+4XBdS8DnwW+OZgR/mhweZwQ4qwQolUIkSeEOGQXz1khxBftfv+8EOKC3e9SCPFVIUQxUDyB1xclhDgnhGgTQtwRQrw9bJNdQohiIUSLEOInQggxuJ9GCPFtIUTl4Ov6z8FrhRDiN0KIvxn8OWQwpj+3O1+zsJAmhKi2i6VCCPENIUTuYDxvCyGc7dZ/c/D61QohvjhW2cTgdfqeEOKS9doKIfyEEL8XQrQLIa4KISKGXbeowZ9/PfhajwohOoQQWUKIZWNs+2+DmfxOIcRFIUTQ4D3QIoQoEEKkjLSv3f7fG/zZeq980+5eeVIIsV8IUTR43f5+vPdUMX2UuFUoFArFfGYj4Ay8P8Y2/wBsAFYCK4B1wLft1gcBXkAI8KfAT4QQPlLKnwO/B340+Kj7cSGEA/ARcBIIAP4S+L0QYjKP758E1gPxE9j2nwbP5QOEAv9v2PqDwNrB1/UM8Njg8s8P/rcdWAq4Az8eXHcOSBv8eRtQNvh/gFTgvJRSjhLPM8BeIBJIHjwHQoi9wNeBXUCU3fHG4jngT7Bc92VAJvArwBfIB/7nGPs+D/wjlutSAvyvMbZ9Bsv77Q/0DZ7n+uDv7wGvTSBWK0FY7rcQ4H8AvwBeBFYDW4H/IVS97wNHiVuFQqFQzGf8gDtSStMY23wW+K6UslFK2YRFFP2J3Xrj4HqjlDId6ARGE6sbsAjFH0gp+6WUZ4AjWMTWRPm+lLJZStkzgW2NQDiwWErZK6W8MGz9D6SUrVLK28AnWAQ8WF7za1LKMillJ/DfgecGSyHOAVuFEBosYvZHwObB/bYNrh+N/yulrJVSNmMR+dbzPQP8SkqZJ6XsxnKNx+NXUspSKWUbcAwolVJ+PPhevgukjLHvH6WUVwa3/b1dHCPxvpTympSyF8uXoF4p5X9KKQeAt8c5z3CMwP+SUhqBt7AI5H+VUnZIKfOAPCyiX/EAUeJWoVAoFPOZu4D/OPWri4FKu98rB5fZjjFMHHdjEbCjHatKSmkedryQiYdM1SS2/SYggCuDJRD/bdj6eruf7eMe6TXrgEApZSkWAb8SS7bxCFA7mH0eT9yOdT771zWR19hg93PPCL+P9h6MFcdMn2c4dwdFsXXfkY4/meMppoAStwqFQqGYz2QCvVge9Y9GLZbsp5Ulg8smwvDH87VA2GDW0/54NYM/dwGuduuCJnDM0U8uZb2U8ktSysXAl4F/G62OdYQ4h79mE/eE2DngKcBRSlkz+PtLWB7z35hofHbUYSmbsBI2hWPMBboZ//1TzDJK3CoUCoVi3jL4SPt/YKmTfVII4SqEcBBC7BNC/GhwszeBbwshFgkh/Ae3/90ET9GApWbVShYWAfvNwfOkAY9jeUQNFmH46cE4orDU8I7JYHPVd0ZZ97QQwioaW7AI44GRth3Gm8BfCyEihRDuWJwk3rbLUJ8D/gLIGPz9LJb64Qt2mcnJ8A7wBWFptnPFco0fRW4ALwghtIN1xBOpHVY8ZJS4VSgUCsW8Rkr5GpZmpm8DTVgeif8F8MHgJt8DsoFc4BaWZqKJetf+EogXFmeED6SU/cAhYB9wB4vl2EtSyoLB7f8P0I9FFP8GSz3oeIQBF0dZtxbIEkJ0AoeBV6SU5RM45n8Av8UiXsuxZLf/0m79OcCDe+L2ApaMZQZTQEp5DPi/WOp+S7Bk1MHSwPUo8QqWLyutWOqWPxh7c8VsIEZveFQoFAqFQjGbDGZl35VSbpztWGYSIUQcoAecxmn2UygmjRK3CoVCoVAoHjhCiE8BRwE3LFlrs5RyrFpohWJKqLIEhUKhmOMM1vflCCGOzHYsCsU0+DKWspBSLHXBX5ndcBTzFTXaT6FQKOY+r2Axrfec7UAUiqkipdw72zEoFgYqc6tQKBRzmMGaywPAv892LAqFQvEooMStQqFQzG1ex2LUbx5vQ4VCoVCMX5agus0UCsWjjJjtAKaDEOIg0CilvDbolzrSNi8DLwO4ubmtjo2NfYgRPprUNLXR3tULgEYI3F2d8HJzxs3FCfFI3zGKB01tZzt3e7sB0AgN3k7O+Di54OrgMMuRzQ+uXbt2R0q5aLrHGc8tQYlbhULxKPNISxUhxPeBP8EyOcoZS83tH6WUL460/Zo1a2R2dvZDjPDRpLWzh9NXijiemc/N4nuDyLw9XNi5Npq9G2NJjlqMUEpXMYy2vl4+Kivg3SI9N5rqbMuXevnw1PJEPr08gWA3j1mM8NFGCHFNSrlm2sdR4lahUMxj5o06GczcfkNKeXC0bZS4nTw1TW2cvFzA8cwCymvv2pYvXuTFYxti2bsxlsjFfrMYoWKuUtRyh/eK9PyxxEBTTxdg+YOzNSSCp6MT2RO+HGed6tufDErcKhQKxfgocauYEFJKiqvucDwzn5OXC2hs6bStiw0P4LGNcexZH8MiH/dZjFIxFzGZzZyvqeDdIj2nKkvoN1umE3s6OnFoWRzPRCeS7B+kngRMACVuFQqFYnwW1KeJErczg9ksuV5YxfHMAk5fLaKrpx8AIWB1bBj7NsWxfc1y3F2cZjlSxVyjtbeHD0rzebdIj/5ug235cm8/nopO5NNR8QS4qi9Io6HErUKhUIyPEreKadHXb+LizTKOXy7g4s1yjCZLVs7JQcvWlGXs2xjHhqQIHHTaWY5UMdfIv9vIe8V5vF9isDWhaYUgLXQpz8QksiNsGY5add/Yo8St4pGloaGBp59+mpycHF5++WVeffXV2Q5JMX9R4lYxY7R39XImu5gTmflcK6i2Lfdyd2bXuhj2bYwjKSpYPX5WDMFoHuCTqjLeLdJz5nYZJmlx9fN1duFTUfE8tTyReL+AWY5ybqDEreKhcuHCBb75zW+Sl5eHVqslLi6O119/nbVr1076WP/0T/9ETk4O//Vf/6U+BBQPmgV1gylx+/Cov9vOicwCjmXmU1YztBFt74ZY9m2KIzzYdxYjVMxFmrq7+KDUwLtFegpb7tiWJ/gF8HR0Ek8ui8PH2WUWI5xdlLhVPDTa29tZsmQJb7zxBs888wz9/f2cP3+eoKAgkpOTJ3wcKSVSSl5++WWCgoL43ve+9wCjVigAJW4VDxhbI9olAyezCoc0osVHBrJvUxy718fi6+k6i1Eq5hpSSm7daeCdolt8WJpPe38fAI4aLbvDo3gmOomtIeFoNQtr1pYSt4qHRnZ2Nrt27aK1tfW+dd/5zncoKSnhd7/7HQAVFRVERkZiNBrR6XSkpaWxefNmzp49y/Xr1/nMZz7D22+/jRACR0dHPvjgAzw9PXnllVfIz8/HxcWFz3zmM7z22ms4OjoCkJeXx9e+9jWuXbuGg4MDr7zyCn//93+P2WzmRz/6Eb/4xS9obW1l586d/PSnP8XXV2VLFDaUuFU8NAbMZq4XVHM8M58zV4vp6rU0omk1gvWJ4ezdGMe2VVG4OCnDf8U9ek0mTlWW8G7xLTKqK2zCK8jVnc8sT+Cp6ESWei2MzzUlbhUPjfb2diIjIzl48CDPPfccGzZswMfHB5iYuC0rK+PYsWPExMQgpeRLX/oSoaGhtszttWvXMBqNrFmzhurqavbt28eXv/xlvva1r9HR0UF0dDTf+MY3+OpXv4rRaMRgMLB+/Xpef/113nrrLd577z0WLVrEX/3VX9He3s6bb745a9dKMedQ4lYxK/T2Gzl/o4xjF/PJ1FcwMGCps3RxciBtdRT7N8WzJj5swWXmFGNT29nOfxXn8V6xnor2ewmlNYEhPBOdxIHIGNwHEz/zESVuFQ+V/Px8fvjDH/Lxxx9TX1/P/v37+cUvfsEbb7wxrrhNTU3lu9/9ru1Yn//854eI2+G8/vrrnDt3jvfff58333yTH/3oR+Tk5Ny3XVxcHD/+8Y/ZuXMnAHV1dSxZsoSenh50yjhbYUGJW8Ws09rRw8dXCjmWmc+tkntTrfy93XhsQyz7NsaxfMki1YOgsCGl5GpDDe8U3eJoWSHdJiMArjoHDkTG8ExMEmsDQ+bdPTNT4lYpAMWEiIuL49e//jUABQUFvPjii3zta18jJiZm3H3DwsLGXF9UVMTXv/51srOz6e7uxmQysXr1agCqqqpYtmzZiPtVVlbyqU99Co1d5kOr1dLQ0EBISMgEX5lCMX/o6zNx5VIxKWuX4uCgLIbmCt4eLjy1cyVP7VxJdWMrxy7lczwzn6qGVn5//Bq/P36NZaF+7N0Yx94NcQT6qfGtCx0hBOuCQlkXFMo/btzJ0fJC3im8xdWGGt4t1vNusZ4IT2+eWp7IU9GJauTvMNTzEMWkiY2N5fOf/zx6vR43Nze6u7tt6+rr6+/bfrxvll/5yleIjY2luLiY9vZ2/vmf/xnrE4WwsDBKS0tH3C8sLIxjx47R2tpq+6+3t1cJW8WCpa2li2//zVs8e+A1Xv3eYa5mlmAa9GVVzA1CA7z50pMbee8HX+CX336Op3aswNPNmdLqu/zk3Qsc+sYv+MoP3+Wj83o6e/pmO1zFHMDNwZFnopN47/EX+OTpP+WrK9YT5OpORXsr/3LtApve+hkvHX+Po2WF9A2YZjvcOYESt4pxKSgo4NVXX6W62uLrWFVVxZtvvsmGDRtYuXIlGRkZ3L59m7a2Nr7//e9P+vgdHR14enri7u5OQUEBb7zxhm3dwYMHqa+v5/XXX6evr4+Ojg6ysrIA+LM/+zP+4R/+gcrKSgCampr48MMPZ+AVKxSPJo5OOiKWLqKzo5cTR2/yD19/k2f3v8ar/+sjJXTnGEIIkqIW882XdnLsX7/Mq688wc610ThotVzLr+KffnmSfa/8jG+/cZQLN8rUe6cAYKmXL99cm8ql577Mbx57igORMeiEhnPV5fz5mcOs+8MbfCfzNIa7jbMd6qyiyhIU4+Lh4UFWVhavvfYara2teHt7c/DgQf73//7feHp68uyzz5KcnIy/vz9/93d/x+HDhyd1/H/5l3/h5Zdf5kc/+hEpKSk8++yznDlzxnbuU6dO8corr/CP//iPODk58bWvfY3169fzyiuvIKVkz5491NbWEhAQwLPPPssTTzzxIC6DQjHn8fZx4+e//zNuVzRx7rSBjDP5VJY1ceLIDU4cuYGHhzObUmNI3RlPytpIdGqq1pzAQWeZdrY1ZRkdXb2czi7m2CUDOYU1nMwq5GRWIT4eLuwZ9M+Niwicd7WWismh1WhIC4skLSySlt4ePigx8E7RLQzNTfwq7zq/yru+oL1zVUOZQqGYzywoBTBSQ1lluUXonj9joLL8nmm8p5cLm9NiSduZQHJKOFqdepA316htauPE5QKOXcqnoq7ZtjxysS/7NsWzd2MsQX6esxihYq6hH/TO/aA0n7a+XsDinbsnPIpnYpLYsnhue+cqtwTFjCOlZGBggL6+PnQ6HTqdDo1GozIEikeZBXXzjueWUFneRMYZA+c+NnC74p7Q9fJxZWtaHKk740lauQStdu5++C1EpJTkVzRw7FI+Jy8X0NLRA4AQsComlH2b4tmxdjnuLk6zHKlirtBrMvHx7RLeKRrqnbvYzYOnohN5enkiSzy9ZzXGkVDiVjGjSCkxGo02cWuPVqvFwcEBrVaLVqsd4k6gUMxxlLgdASklFaWNnD1tIOO0gZqqe1lBbx83tm6PY9uueBJXLEGjWVCXcM5jMg1wWV9J+iUDGddL6R+sxXVy0JKaEsX+zXGsT4xAp76gKAap7Wy3OCwU6anqaLMt3xi8hGeiE9kfGY2zbm4MFlHiVjEjWLO1RqPFQ08IQX9/vy1bax2ZO/w+MZlMeHp62sSuyu4q5igL6sacis+tlJKykgbOfWyp0a2tvid0/fw9SN1hyejGJYYqoTvH6Ozu4/TVIo5dyud6YbVtua+nK49tjOXApnjln6uwYZaSy3VVvFt0i/TyInoHnRU8HZ04tDSWZ2KSSPYPmtX7RYlbxbQxm80YjUbMZjNCCIQQSCmHiNvhSCnp6emhpKSEhIQE23JrGYO1lEFldxVzhAX1qT7dIQ5SSkqL6jn7cR7nTufTUHdvQtKiQE+27YgndWc8MfGLlWCaY9Tdaed4Zj5HLxq4Xd9iW74s1M9Wnxvgo7xQFRba+/v4qDSfd4r03Gi6N1gk1sefZ2KSeHJZPH4urg89LiVuFVPGmq0tKSkhICAAV1fXIZnascQtQG9vL8XFxSQlJdn2kVLaRDKARqOxiV2V3VXMIgvqppvJCWVSSgoNtZw7beDcaQN3Gttt6wKDvUnbFU/argSWLled+3MJKSWG8nrSLxo4mVVIW6elqUgIWBu/hAOb40lbvRwXp7nxGFox+xQ0N/FO0S3eLzHQ3Gup53bQaNi1JIpnY5JIDYl4aE1oStwqpoR9tjYvL4/w8HA8Pe91205U3BYVFZGcnDzievtSBimlLSus1WqHCF71gah4CCyom+xBjd81myX5+upB14V87t7psK0LXeJH2q54tu1KIDxy0YyfWzF1jKYBLuWWc+xSPudvlGEcrM91dXZg++rl7N8cz+rYMFVuogCgf2BgsAlNz7nqcsyD+jDI1Z2nohN5NjrpgTehKXGrmBRSSkwmEyaTpcZGCEFeXh5hYWF4eXkN2W48cdvX10dhYeGo4na081uzu3fu3MHJyQlvb290Op2tWc0qghWKGWRB3VAPStzaYzZL9Ddvc/ZUHuc/yaet9d6Ewoili9i2K4G0XfGEhPk90DgUk6O9q5dTWYWkXzJwq+TeY+gAX3f2bYxj/+Z4Iher90xhob6rg/eK83in6BaV7ffKkx50E5oSt4oJM1JtLUBeXh4hISF4e9/7JjZRcVtQUMCKFSumFE9FRQWurq74+/vbGtWklPeVMqjsrmIGWFA30MMQt/YMmMzcuF7B2VN5XDxXQGdHr23d8thg0nYlsG1XPAGBXmMcRfGwqaxv4fglA+mX8qm7c6/cJD4ykP2b49mzIRZv94Vl+q8YGbOUXKmv5u3C3BGb0J6LTSbRb+ZKk5S4VYzLSNla+xvQYDAQHByMj4/PkH3GE7f9/f3k5+dPW9wGBATcF+9wZ4aRShmU4FVMggV1szxscWuP0TjA9StlnPs4j0sZhXR399vWJSSHkbYrga074vD1c5+V+BT3YzZLbhTXkH7RwOmrRXT1WN4znVbD5hWR7N8cz5YVS3FQk+wUWJrQjpQV8FZhLjeb6m3L430X8UxM8oxMQlPiVjEmZrOZ/v7+ITWvw8nPzycwMBBfX1/bMiklfX19Y7od9Pf3YzAYWLly5ZRiG03cDmcksSuEwGw24+zsjKOjo2pUU4zHgro5ZlPc2tPfZ+JKZjFnT+Vx+UIx/f2WL9gajSApJdwidLfH4un18LuxFSPT22/k3PVS0i8ayNJX2uotPd2ceWxDDPs3xxMfObs2UYq5Q0FzE28XWprQWvosTWiOGi2PRSzn2egkNoeEo5nCvaLErWJE7LO142U5CwoKWLRoEX5+ljqrgYEBioqKaGxsxMnJCS8vL7y8vPD09MTR0dG2n9FoRK/Xk5KSMqUYJypuR3ptALm5uURFReHs7AyoIROKMVlQn8RzRdza093Vx+ULRZw7beBqZgkmkxkArVbDmvXLSNuTwKatMbi4Oo5zJMXD4k5rJ8czC0i/aKCk+t4ku4hgXw5sjmfvpjgCfZWtmAL6Bkx8XFnK20W3yKgut4nGUHdPno5O5OnoJELcJz4iWolbxX1MJFtrT2FhIX5+fvj7+9Pc3Ex+fj5hYWEEBAQwMDBAW1ub7T+TyYSHhwdeXl64ublRWlrKqlWrphTnVMWtldzcXKKjo3F2dh4xu6tsyBR2LKg3fi6KW3s6O3q5eK6Asx/nkXO1HLPZ8u/WyUnH+s3LSdudwNoNUTg5K5uquYCUkuLbTRy5aODk5QKa2y3Ng8pWTDES1klo7xTqqe60TEITQGpoBM9GJ7MrfBlOWt2Yx1DiVmFjMtlae4qKivD09KS5uZnu7m4SEhJwdnYesebWbDbT2dlJW1sbLS0tNDc34+PjMyS7q9VOrC5rJsXtcKz3s9lsHrJcDZlYsChxO0dpae7i/BkDn5zKIy+3yrbc1dWRTakxpO1JZNXaSHSq3nNOYDINkKmv5OiFvPtsxXasiebglnhWRqspdgpLE9ql2kreKrzFiYpi+s2We8XHyYVPL4/nuZhkon38R9xXiVuFbRiDyWSacLbWnps3b9La2sqyZcsICQmZ0IQysIzevXnzJvHx8bS1tdHe3k57u6Xj1tPT0yZ4RxKfYBG3Li4uBAYGTu4FDzKWuB2J4UMm6urqCAoKwsnJSWV35z8L6k19lMStPY31bWScMXD24zyK8u/ZVHl5u7J1RxzbdyeSkKz8WOcKVluxoxcN6EvvvV/B/p4c2BzP/s3xhAY8WD9UxaNBa28P75fm83ZhLvnNTbblKYuCeTYmmceXxuJuV/aoxO0CR0qJ0WgkJyeHFStWTEqYGY1GCgsLaW5uJjIykrCwsCHHHU/cDgwMcOPGDVavXj1kuclkor293VbK0N/fj6urK15eXnh7e+Pm5oZGo6GyshJnZ+cpi9ubN28SGxuLk5PTlPbPyckhPj4enU6nhkzMfxbUm/ioilt7aqqa+eSUnk9O6qmqvGtbvijQk207E0jbncDyGNXYNFeorG8h/aKB9IsGGprvDfdYER3Cgc3x7Fobjbvr1P5WK+YPUkpu3Wng7cJcPizNp8NoceZw1TlwYGkMz0YnsSYwBI1Go8TtQmR4tvby5cts3Lhxwn/om5qaKCoqIiIigp6eHtzd3QkKChpy/KmK25Fi7erqsondzs5OHBwstVkeHh6Eh4fbfp8M0xW3169fJzk5GZ3uXu3PSCOElQ3ZvGBBvWHzQdxakVJSVtzAJ6f0nP3YQGN9m21dSJgv2/cksmNPIqFL1OCBuYDZLMkuqOLohTw+yS6md9Ahw8lBy7bVURzcksDa+CUPbYyrYu7SYzKSXl7I24W3yKqvti1f7u3H6af/VInbhYZVeNoPY8jMzGT9+vXj1pAajUYKCgowGo3Ex8fj7OxMWVkZLi4uBAcH33eOsUSc2Wzm+vXrrFkz+fuvv7+fkpISjEYjJpMJs9lsa1Tz8vLCxcVlXAH5IMTtcIY3qqkhE48sC+oNmk/i1h6zWZJ/q5qzH+dx7rSB1pYu27rlscFs353Atl0JLAqYeFe24sHR1dPPmewi0i8auFZwT7wE+Lizb1McBzYnELHYd4wjKBYKZW3NvFN4i/eK9UR5+/P2weeUuF0oWLO1RqMRGDqMISsri9WrV48p1BobGykuLmbp0qUEBd17nFdeXo6TkxOLFy8ecq4HKW6BIWUJZrOZjo4OW3a3u7sbFxcXm9j18PC4r1FtuuL22rVrrFy5csINcFasYre4uJjg4GDc3NzusyFT2d05x4J6M+aruLVnwGQm51o5Z0/lceFsAd1dfYClgz9xxRK2705k6444vLyVh+5coLapjfRLBo5eMFDTdC/7nrA0iANbEtizPgZPt4n1TyjmL0bzAHd7ugl291TidiEw2uhcK1euXCElJWXEx/vWSWJSSuLj44d41YKlscvBwYGQkBDbsomIWykl2dnZrF27dkqvaayaWyklPT09NrHb0dGBRqMZ0qiWn58/4uuZKNnZ2axatWrKjgl5eXlERETg6uo64pCJ4c4MSuzOKgvq4i8EcWtPf5+JrEvFfHJKT9bFYoz9lq5srVbDmg3L2PFYIhu2ROPiojx0ZxspJTeKajhyIY8zV4vp6rXUXDrqtKSuWsbjWxJYlxiuyhYWODPVUDa24Zhi1hhvdK4VjUZzn+0VQH19PaWlpSxbtmxITa09VneEkZaPxUyItdG+VAkhcHV1xdXV1VYuYTKZbGK3pqaG9vZ2CgsL8fX1tfnuPkwBad+EZn9e62syGo22LDuoIRMKxYPC0UnH1u1xbN0eR1dXH5fOFfDJyTyuZ5eRdbGYrIvFOLs4sCk1hu27E1m9fqmyFpslhBCkxISSEhPK3764g7PXSjhyMY+rhtt8fKWIj68U4e/tZitbWBqiaqkVU0eJ2znIeNlae4YL1L6+PgwGAxqNhrVr146Z3RxN3D5oJitEdTodfn5+tklqOTk5hISE0N3dTWVlJV1dXTg6Og7x3B2vnnY6Yni0/e0b0ey3NZvN9Pb22paZTCY0Gg3u7u7KhkyhmCHc3JzYvX8Fu/evoKW5k3OnDZw9mYdBX82ZE3rOnNDj6eXC1u1x7HgsSVmLzSLOTg7s3RTH3k1xNNztIP2SgSMX8qhqaOW36dn8Nj2b+MhADm5JYPf6GLzcXWY7ZMUjhhK3c4iJZmvtsWZupZTU1dVRXl7O8uXLJzwgYTbE7Uzg7u6Or68voaGhgEXUt7W1cffuXcrKypBS3ue5a38tH4S4HYmRsrvNzc309/fbYoehQyZUo5pCMT18fN158ul1PPn0OupqWmzWYlfcjuIAACAASURBVJXldzj6wXWOfnCdgCAvtu9OYMdjSUQum9pAGcX0CfTz4AuPr+fzB9dxq6SOIxfyOHWlEEN5A4byBv7Pm+fYtmoZB7cksC4hHJ1WPflSjI8St3OEyWRr7RFC0NfXR0FBAQ4ODqxbt27C9lqjlTQ8ijg5OREQEGAT9QMDAzbP3cbGRnp6emyeuwMDA5jN5imXB0wn82vNlltLFKzHszYM2q/X6XQ4ODjYJqopwatQTJ7gEB9e+PxWnv/cFspLG/nkpJ4zJ/U01rfx9m8v8fZvLxG5LIAdjyWStiuBwGA1fGA2EEKQvHwxycsX8/XPpnHueilHzudxxVBpK1tY5O3Gvk3xHNgST+RiVbagGB3VUDbLTHV0rnXfy5cvYzKZiI2NZdGiRZM6d3V1NSaTiYiIiCHHHK+hDODq1atTbii7ffs2jo6Oo9YCj0dOTg6JiYmT8siVUtLd3U1bWxulpaU4Ozuj1WqHZHcn2qB248aNaTW01dTUAAxp5Bseq/1/asjEtFhQF2mhNZRNFbNZor95mzMn9Jw/Y6Cj417ZUOKKMHbsSSJ1ZxyeXspxYbZpuNvB0YsGjl60lC1YSVgaxMFBtwUP5bYwb1ATyuYBZrOZuro6pJT4+/tPSqz09vaSl5dHV1cXiYmJ+PpO3jOwtraW/v7+BSFu7bHGbjQabY1qbW1tmEwm3N3d8fb2xsvLC1dX1xGvw3TPX1VVhU6nG+IvPB7Dh0xUV1cTHh6uhkyMz4K6IKtXrZZXrl5Fqx7dThijcYDsy6V8ckpPZkYhfX2WsjCdTsPajVHs2GNxXHByntq/d8XMIKXkZnEtRy/k8fGVoiFuC2mrozi4VQ2JmA8ot4RHGPtsbU9Pz6Qec0spqampobKyktjYWOrq6ibt1zr8eAsVBwcH/P398ff3ByxfNjo7O2lra6O8vJyuri6cnZ2HNKpptdoH1pA2Flbhai2laGhoICwsjL6+Pvr6+mzbqCETC5uWOx18dv132LgrgU17k1m5aTkOjurP/Fg4OGjZuDWajVuj6e7q41JGIadP3CLnajmZ54vIPF+Eq6sjm9Ni2b4nkZTVkWh1SkA9bIQQrIwOYWV0CH/z2e2cvVbCRxcsbgsnswo5mVVIgK87+zfFc2BLAuFBPrMdsmIWUX/1HiLWzJvRaLQJHI1GM8Q2aix6enrIy8vD1dWV9evXo9PpaGhomHLdrEajGVXcTlfAjcd0RPWDEuRWP11PT0/CwsIAS4a8ra2NpqYmSktLbcuamprw8fHB2Xnyj8OmU+9rxV7oWrF+aRrLhkxld+c3fT39tN3t5PjbWRx/Ows3D2c27Epky75kVqXG4Oikso9j4ermxK59yezal0zz3U7OnsrjzMlbFOXXcSo9l1Ppufj6uZO2O4Gde5OIig5S/55mAXu3hbo77Ry9mMeRCwZqm9r49ZEr/PrIFVYsX8zBLQnsWheDm/I5XnCosoSHhJQSo9HIwMDAEIFRV1dHT08PS5cuHXPfqqoqqquriY2NHVKCkJ+fT2Bg4JTKEurr6+nq6mLZsmW2Za2trRQVFeHi4mJ7PD+SgJtOWcJUHsvbM5HxuWMxndhNJhPZ2dkEBATQ3t5OX18fbm5utuyuu7v7uMK1vLwcd3f3SddIW5noEI3hI4RhQQ6ZmNcvbjhr1qyR7/7uMJdO3OLCsVwqCuts61zcnFi3I54t+5JZkxaHs/rAnzBVlXf45FQeZ07oqa1uti1fEuHPjscS2b4nkeDFKlM4m5jNkhvFNRw5n8fpq0X09Fm+5Ds76tixNprHtySQEhOq7N/mOKrm9hHB2glvMpmGNAdZaWhooKOjg6ioqBH37+7uJi8vD3d3d6Kjo+8rQSgoKGDRokU2D9jJ0NjYSHt7O1FRUZjNZkpKSmhtbSUqKmpIPaq9gPP29sbNzW1aE8oeZXFr3X/NmjU2Z4Ouri7bters7ESn09mulaen5321uaWlpXh7e0/pPQOLE8SNGzdYvXr1pPaz/ls3m802O7KgoKD5PmRiQX2SDW8oqy5r5OLxXM6n36Q0r8a23MnZgTVpsWzem8z6nQm4uquGnIkgpaTAUMuZE7c4+3EebS3dtnXxSaHs3JvEtp3xqhFtlunu7efM1WIOn9dzo+jefb94kRcHt8RzYHMCwf6esxihYjSUuH0EsDZnjWXv1dTUREtLC9HR0fftW1lZSW1tLXFxcfj4jJwVsE7qmkoWsLGxkba2NgICAjAYDAQHBxMeHj6kbMIai1XAtba20tXVRU9PD+Hh4UNqUSfKfBC3Y+3f398/pFHNbDbj4eFhy+7W1NTg5+c3pWw7WCag6fV6UlJSpvoSqK2txWw2ExIScl92V6PRDKndfcSzu49s4FNhLLeEutt3uXjsJheO5VJ487ZtuYOjjjXbYtmyL5n1uxJx81BCdyKYTANcyyrjzIlbXBreiLYpip2PJbFhczSOTqr6bzapamjhyAWL20JjcycAQsCauCU8vjWBtNVRODuqcp25ghK3cxh731IYexjD3bt3aWpqIjY21rasq6sLvV6Pt7c3UVFRYwrH4uJivLy8Jjy0wZ7GxkbKysoQQpCQkIC7uztgEWfj1dxmZWURERFBW1sb7e3tCCHw9PS0lTKMZZM1XXF77do1VqxYMWfF7XDMZjMdHR02sdva2oqrqyv+/v54eXnh4eExqS8HVl/jFStWTCV8wGIDp9FoWLx48ZDl9tldex7hIROPTKAzwUStwJpqW7h44hYXj+WSl11ue991jlpWb7UI3Q27E3H3VJOhJkJPdz8XzxVw5oSe61fLMJst19PN3YnUHfHsfCyJxJVL1CPxWWTAbCbbUMVHF/SczS6h3zQAgLuLE7vXx3AoNYH4SFVDPdsot4Q5ymSHMdiPwJVSUlFRQV1dHQkJCXh5eY17vqmO0O3o6KCwsBBHR0fWrl076UfRGo2GwMBAAgMDAUstqlW8VVVVYTKZbNlKb29vXFxcZvSPxqP0B0ij0diytmApJfH19cVsNtPQ0EBxcbGtmc26nZOT06jHs95b08FsNo/45WC0EcIjDZnQaDQ4OjrOh+zugmPRYh+e/EIqT34hlbsNbVw6cYvz6TfRXykj63QeWafz0DloWbl5OVv2rWDTnkQ8vN1mO+w5i4ur45BGtE9O6jl94hYlhfUcO5zDscM5LAr0ZMeeRHbuTSJiqZqI9rDRajSsTwxnfWI47V29nMwq5Mh5PYbyBt4/m8v7Z3OJXOzH41sT2LcpDj8vdb8/yqjM7QwxmWytPa2trdTU1BAeHk5eXh6+vr4sW7ZswmKzrKwMFxeXCWdBzWYz5eXlNDU1ERISQldX15CsMUwsczte9tJqq9Xa2kpbWxs9PT24uLjg5eVlq+EdnjWcKNeuXWPlypVTtkB72Jnb4eTn5xMaGoqHh4dtmf2Xg7a2NoxG432Natb3o7u7m7KyMhITE6ccQ0VFBa6urlPK+FvLGAoLCwkKCsLT09PWqGYdNDGHsrtzIoiHxXSHODQ3tZN5Us/59Jvculxiy0BqdRpSNkez9cBKNu5JxEPVlE6IyvImzpy4xZkTehrq22zLo6KD2Lk3ie17EvH1c5/FCBWl1Xf46HwexzPzaW631FBrtRo2J0dyKDWRTUkR6HRTt9tUTA5VljCHmOroXIC2tjby8vJspQGenpMrci8vL8fJyWlCQrGzs5O8vDz8/PxYunQpra2tNDQ0EBcXN2S7mRC3w5FS0tPTQ1tbGzU1NfT39+Ps7GwrY/Dy8ppwmcF0xe2VK1dYt27dlPaF6Ytbg8HAkiVLbGUgIyGltHnutrW10dXVhYODgy2r29LSMi1xO92mNoC8vDwiIiJwc3O7b8gEYBO6xcXFxMbGTnmi2zRR4naKtN7ttLgupN/k5uUSzAOWUhWr0N2yX2V0J4rZLMnLreL08VtknDHQOTgRTaMVrFq7lJ17k9iUGoOLcrCYNUymAS7mlvPR+Twu3ixjYPCLna+nK/s3xXFwayJLQ9TI3weNErdzAGuj1cDAAI6OjpMWth0dHeTm5iKlZNOmTVPqUq+oqECn0xEaGjpmnBUVFdTX1w8R0C0tLdTV1REfHz9k+wchbu2pqqpCq9Xi7+9/X+OV9dG8t7f3qB6y2dnZpKSkPLLiVq/XExkZiZvb5ERBX1+fzXO3ubkZZ2fnIaUMzs7OE77/iouL8ff3H7VRcSLk5uYSHR094vtkb0N26NAhPvzww2mdaxo80uJWCOEMZABOWMrI3pNS/s/Rtn9Q43etQvd8+g1yM4dmdFduWs7WAyvZ9FiSyuhOgP4+E5cvFnH6+C2uZpZgMlm+NDi7OLBlWyy79iWzYnWEmjI3i9xp7eLYJQMfnc+jou6e9Vvi0iAeT01k9/oY3F1GLx1TTB1VczvLWLO1NTU144rLkfYtKyvjzp07REdH25p7psJYgxjgXnOaj48P69evH3KeqdbrTherAHN0dGTRokU2p4eBgQHa29tpa2ujsLBwRAsy675z5JH3lJBSTun9dnJyIiAgAEdHRxwcHFi2bJmtUa24uJienh5cXV1tYtfDw2PU88zEIImxjmH/Ra+rq2vSQl5how/YIaXsFEI4ABeEEMeklJcfZhDefu7sf2Ej+1/YSOvdTjJPWmp0b2aWcC2jkGsZhfz42++xamsMW/evUM1oY+DopCN1RzypO+Jpb+vm3GkDp4/dwqCv5uPjt/j4+C38F3mwfU8iu/YmERkVONshLzj8vd34k/1reXHfGvSldRy5kMfJrEL0ZfXoy+p57Q9n2bk2mkNbLd65j/Ln0XxFidtJYj86VwiBVqud1ISw9vZ28vLyCAwMZN26dbYs6VQZTaBKKbl9+zY1NTXEx8fj7e094X1nC61Wi4+Pjy3DZ29BVllZSVdXF46OjvT19dHa2oqXl9e0Rg/PFlMVt1asolKr1eLt7W17b62lH62trdTW1tLZ2Tmkmc3exWJgYGDa126ixxgYGLjP61cxMaTlH2jn4K8Og//N6j9abz939j2/kX3Pb6St2ZLRzThqyeheOWPgyhkDOgetEroTwNPLlcc/vYbHP72GmqpmTp+4xenjt6iraeHd32fy7u8zWbo8kF2D9bl+/h7jH1QxYwghSIpaTFLUYv76+TTOZBfz0Xk91wqqSb9oIP2igdAALw5uSeTAlngCfdX7M1dQ4nYSmM3mIY/sreK2r69vQvuWlJTQ0tJCUlKSrd5SCDHl8bnAiON7rYMfPDw8WL9+/agCZK6J2+EIIXB3d8fd3Z2QkBDAMvo2JyeHpqYmm43ZRC3I7I87m0zX7WC0jKkQAldXV1xdXW012PbDOKwuFu7u7nR1ddHb2zskGz5TcShmFiGEFrgGRAE/kVJmDVv/MvAywJIlSx5qbF6+94Ru650OLp64RcaRHPRXyu4J3UF7sW2Pr2TDrkRc3NTj3JEICfPlpS9u40/+NBVDbjUfH8/l3GkDZcUN/Ly4gX//yWlWrV3Krn1JbNoWi7Oz+sL4MHF2cmD/5nj2b46nurGVI+fzOHIxj+rGNn76x4v8/P1LrE8M5/GtiaSmLMXRQcmr2URd/QkwPFtr/4Gu0WjGFafWprHg4GDWrVs3RExMZP+xGG4lVl1dTVVV1ZiDH0badyLL5wLOzs7odDqWL1+ORqMZ4jJQXV2N0Wh8oBZkM8FMiNuJ7u/g4IC/vz/+/v62fTs7O8nPz6empobS0lKcnZ1tmd3RBnIIcx1Sc78jx3hxWO+jufYePEpIKQeAlUIIb+B9IUSilFJvt/7nwM/BUnM7S2Hi7e/Bgc9u4sBnN9HS1MHFE7lcSL9J7uVSm72Yo5OOtdvj2XZwJWt3xKsRwCMghCBhRRgJK8L4yl8/xpVLJZw+nkvWxWKys0rJzirFxdWR1O1x7NyXTHJKuPLPfciEBnjzZ5/ZzJc+tZEr+koOn88jI6eUzFsVZN6qwMvdmX0b4ziUmkhU2NTGrCumhxK342C19xppdC6MLU4HBgYoKSmhra2NFStWjFh3OF1xa92/t7cXvV6Pq6sr69atm5DzwFwWseNhfR90Oh1+fn62rn97C7LS0tIhFmTWOtTZZibKEqZaUmD103V0dCQ+Ph4HBwd6e3ttjWqlpaUA9xrVPN3x0P4nGnMxfc6vTTlmxfSRUrYKIc4CewH9OJvPKj6LPDj44mYOvriZ5qZ2LqTf5NyRGxiyy7l4PJeLx3NxcnFk/c54Ug+sZE1aLE7OSugOx9FRx5a0WLakxdrqcz8+lku+voYTR29y4uhNm3/u7v3JLIlQQuphotVo2JgcycbkSFo7ezh+KZ/D5/WUVN3hrVM5vHUqh7jIQA5tTWTP+hg83NT0v4eFErejMFa21p7RxGlLSwv5+fmEhIQQHR09auZquuIWLJnh+vp6YmNjJ2Xt9CiL29GwijerI4S9BZm1DrW7u9tmhTUZC7KZYjwnivGYqSEO1nva2dkZZ2fnIQM5Ojo66Owoo7/lP3H0usDdzrU0NVXZPHcnKs5NJtMjWRc9VxBCLAKMg8LWBdgF/HCWw5oUvos8OfS5rRz63Faaals4n36TjKM3KLxxm4wjN8g4cgMXdyc27U4i9fGVrNoSg85B3TPDsa/Prb59l1PHcjlz/BYN9W28/dtLvP3bS8TELWb3/mTSdifgqZwrHire7i48t2cVz+5OoaCykcMZek5kFpBf3kB+eQOvv3mWHWuiOZSayKpY1YT2oFHidhjWYQwmk2nUbK09Wq2WgYEB2+8DAwMUFRXR2dnJypUrcXUd+w/MdG7w3t5eysstozPXr18/aZE2m+L2YZ3Xvg41ODgYKSVXrlzB09OTlpYWKioqJmxBNlNxT1ecTjfza41htGPodDp8PW7h7/D/odEuAzO4uC1GY9JQXV1NZ2cnOp2Ovr4+7ty5g5eX16gNY8opYdoEA78ZrLvVAO9IKY/MckxTZtFiHz79xTQ+/cU0GqqbOX/0BhlHb1B8q5rT72dz+v1sPLxd2fxYEqkHU0jesAytMtC/j9Alfnzhy9v53JfS0N+8zcfHcsk4k09hfi2F+bX89F9Psm7TcnbtS2b95uU4qC8LDw0hBHERgcRFBPLKc6mcu17Kh+dukZ1fxbHMfI5l5hMa4MXjWy1NaAE+s/80cT6ixK0dUkqMRiMDAwNjZmvtsc+8Njc3U1BQQGhoKLGxsQ/sm5mUkrq6OsrLywkKCsJkMk0p+zjbVmCzdQyNRnOfBVlHRwetra3jWpBNN+tqjX26mduZyDaPGIM0oul/HWH8HQIJaOjRrKQfCAkJua+xr7W1lcrKSsxmM+7u7vfVOk9U3BYWFvLss8/afi8rK+O73/0uL730Es8++ywVFRVERETwzjvv4OPjg5SSV155hfT0dFxdXfn1r3/NqlWrpn1N5hpSylwgZbbjeBAEhvry1Jd38NSXd1BT3kTG0RtkHMmhorCe429ncfztLLz83NmyL5ltB1NIWBupGhiHodEIklPCSU4J56tf38ul84WcSs/l+pUyLmUUcimjEA9PF9J2JbB7fzIx8YtVxvAh4uzowGMbYnlsQyw1ja18dD6PIxcsTWhv/NdFfvbHS2xMiuBQaiJbVy5Vk9BmECVumfroXMDW1GQwGOju7iYlJQUXlwdne9PX14fBYECn07Fu3Tra29tpamqa0rHmY1nCeIwkTkey1BrJgszb23tO1Ow+KJcCs7kSTd//QzNwEgApAugxaxgwZ6B1iB6yrU6nw8nJiaioKFtMVs/d0tJSuru7KSws5ObNm5jNZlvt82jExMRw48YNwPJlIyQkhE996lP84Ac/YOfOnXzrW9/iBz/4AT/4wQ/44Q9/yLFjxyguLqa4uJisrCy+8pWvkJWVNerxFXObkMhFPP8Xu3n+L3ZTWVTPuSM5ZBy5QU15E0d/d4mjv7uEf7A3qQdWknYohahE9Vh3OE7ODmzfncj23YncvdPBJyf1nErPpby0kY/+mM1Hf8wmLNyP3ftXsHNvEosCJjcNUzE9Quya0LL0lRzO0JORU8rF3HIu5pbbJqEdSk0iYrHvbIf7yLPgxa2Ukv7+/imNzgWLb+2dO3eIjY0lLi7ugf7Bra+vp7S0lOXLlxMQEABMT6COtG9PTw8Gg2GI4BvNcWAmspgPm4nEPJoFmbXpqquri2vXrk3agmymeBDi1mQ8TF/Pd3DTWUb6mjSJtJiKcNZ2W0Z8iaHCdLjHrb2fLliuc1BQEFVVVVy8eJFt27bh4ODA4cOHx60LP336NMuWLSM8PJwPP/yQs2fPAvC5z32OtLQ0fvjDH/Lhhx/y0ksvIYRgw4YNtLa2UldXR3Dw/Y4OikeL8OggXvr6Pv7kr/dSaqgh48gNzn2UQ2NNC3/897P88d/PsjjCn20HU0g9uJKIGPWeD8fP34OnXtjIUy9spLSo3lKfe0JPVeVd/uONM/zqp2dYuSaS3fuT2bwtVo39fYhoNRo2JUeyKTmSlvZujmXmczhDT1nNXX53/Bq/O36N5KjFHEpNZNe6aFxVo+WUWLDi1pqtLS8vJzQ0dNLC1mQyUVBQQE9PD56enpOaUDZZ+vv7yc/PB2Dt2rVDhNR0GtKG24jV1tZSUVFBVFQUWq12SBbO1dXVJnatHr0LCWvTla+vLz09PSQlJc2aBdlMilspu+jv/S4m4weDSwTdYgUdRmsWdNDKi6F1yOMNcBBCEB4eTmpqKh0dHfzkJz+hvb19Qpnvt956i+effx6AhoYGm2ANDg6msbERgJqaGsLCwmz7hIaGUlNTo8TtPEIIQVRCKFEJoXz+b/eTf72SjCM5nD96k9qKO7z541O8+eNThEcHse3xFNIOrSJ4ycQbahcKy6KDWBYdxBe/upPsy6WcSs/l8oUicq6Wk3O1HGeXdFJ3xLNn/woSVy5RtmIPER9PV154bDXP71mFvrSOwxl6Tl0pJLekltySWl77wyfsXhfDodREEpcFP3LJpNlkQYpb6+hcs9lMdXX1pI3Pm5qaKCoqIiIiguXLl5Obm/uAIoXGxkaKi4tZtmwZQUFB962ficxtf38/eXl5ODg4sH79eqSUtiarsLAwpJR0d3fT2tpKVVUVnZ2d9PT0UFFRgbe396jeqHOR6WabrfuPZkFm/ULQ09ODs7OzLbM71ijcyTJT4tY4oMfU+8+YB65ZFohw2sxGTAPZtm1sV0oMFbcTjaGrq8v2ZcjqYDEW/f39HD58mO9///tjbjeaP7NifqLRaEhYE0nCmkhe/vYT5GaVknHkBheP51JZVM9/vnqM/3z1GDErl5B2aBWpB1biqx67D0Gn07JhSzQbtkTT0d5jsxUz3Krm5NGbnDx6k6DF3uzal8zufckEh4ztk66YOYZMQnshjdNXizicoedmcS0fZuj5MEPP0hA/nkhNYt+mOLw91MS/8VhQ4tbe3gsm/2FoNBopKCjAaDSyevVqnJ2dMZlM07byGu1c+fn5DAwM3JettWe6mdu+vj6uXr06pNRh+MQzIQRubm64ubnZHtNfuXIFZ2dnGhsbKSkpQaPR2DK7s2GvNVGmW2M8mji2tyCzfiEYbkGm1Wrx8vKy3YNTvUbTFbdmsxkPn6Pc7XwPz8HBDGbNGppNejy1w909LE4gUgwVChMdvdvd3T2pTP+xY8dYtWqVzZYsMDDQVm5QV1dnu0dDQ0Opqqqy7VddXW2byraQ6Wzr5sff/AMb9q4geXM0jk7zb4qVVqclZXM0KZuj+fN//DQ5F4o4e/g6maf0FN64TeGN2/ziex+StCGKbQdXsmVfMh7eyrHDHg9PFw5+ajUHP7Wamqq7nEzP5eNjudTXtvK7X2bwu19mkLgijN37V5C6Iw43d+XP+rBwdXbk8a2JPL41kYraZg6f13P0Qh5lNXf5P2+e5cfvnic1ZRlPbEtkXbwa4DEac1OBPADss7XDSxAmks2zZlCXLl1KUFCQbfuZ8KkdHoM1Mzz8XCMx1cytyWQiPz+f/v5+tm7dOumaUa1WS0BAgO0xsHXMq9VeS0o5pCbVyWnoyM3ZbGSbicztRM5hb0EGlqykVexaG60makFmz3SsxAbMTbR2/x3eiy4OBupED8l0mq4PbmEatoeWDlbhJB2xl0kTFbeTtQJ78803bSUJAIcOHeI3v/kN3/rWt/jNb37DE088YVv+4x//mOeee46srCy8vLxUSQLQ0dLFkf84y5H/OIuruzNrdyWy6UAKa3cl4eox/wSKg6OOdTviWbcjnt7uPi6fNpDxUQ5Xz+Vz81IxNy8V82//84+sTo1l+5OrWL8zQU1FG0ZI2D1bsZvXKjiVfpPzZwvQ36xCf7OKf3vtOJvTYtmzfwUrVkeg1SrHiodFxGJf/urZVL7ymc1cuFHG4Qw9mbcqOH21iNNXiwj28+Tx1AQe35JIoN/sNzvPJea9uB0pWzvS+NvRPqit9a5SStasWXOfSNNoNNMWalaBOjAwQEFBAf39/bbM8ET3nQzNzc3k5+ezZMkSOjo67hO2UxFOw8e8DgwM0N7eTmtrKzU1NUNqUo1G46yVMcxUWcJUcHR0ZNGiRVRUVLB69eoxLciswxJGa+SbSua2y5hBV89/xyzvAKDVxNMy0IlRltptdS9rLzSxNA5IugduEeI09bKEiZQjgCXLe+rUKX72s5/Zln3rW9/imWee4Ze//CVLlizh3XffBWD//v2kp6cTFRWFq6srv/rVryZ0jvmOb6AXz794gMxjN6gw1HDug2zOfZCNg6OOlamxbNy3kg17V+Ab6DXboc44zq5OpD2eQtrjKXS293DxeC7nPsrh5qVi2/hfFzcnNu5OJO2JVaRsjlbDIuzQaAQpayNJWRvJX3yjj/Of5HMqPZfcnErOnNBz5oSeRYGe7NqbxO79KwhV9c0PDQedlu1rlrN9zXIamjs4ciGPwxl66u608/P3M/nFB5lsTIrgidQktqxcioOyFEOMI4weaZ+osbK1Vq5eC+dzIQAAIABJREFUvcqKFStGzFxa3QlGq3e1cunSJTZt2jTlOLOysoiMjKS4uJiIiAgWL564F2FPTw/5+fkT8vg0m80UFxfT3t5OYmIizs7OZGZm3he7yWSyef2OxvXr10lOTp7wo3X7sbj19fX09/fbsrrWJrWJvuarV6+ydu3aCW07nL6+PgoKClixYsWU9u/u7qasrIzExMQp7S+lJDs7e8T47S3IWltbbRZk1mtkrW3W6/UsXbp03AEhVsyyjzs9/0J737u4a3oAHZ09sfQ4luCpcULSYdvWSxOMWdZj0qylpt+Aty6MfnMxYe4/w83h3n3S0NBAb28v4eHhY5771VdfJTo6mhdeeGFiF2jmWVDP7NasWSOzsy0103UVTVxKv8Gl9BwMWaW2L8FCCGLXRLJx30o27U8hNCpwNkN+4DQ3tZNx5AZnD1+n8MZt23JPHze27Esm7dAq5aE7BnW1LZxKz+VUei4Nda225fGJoezan8z23QmqbGEWMJsl2fm3+fCcnrPXSzCaLCVkPh4uHNgc/8haigkhrkkp10z3OPMyczvR0bkwcllBf38/BoMBIcSY9a4zgclkoqenh8rKyglna+2ZaOa2vb2dvLw8goODWbNmzUP3uLWvSdXpdAwMDODr60trayu3b9+mq6sLJyenIUJuLn7YPMjM70gWZH19fbS2ttLU1ERpaamtTrqlpQWdTjfuvdk3UEx959/Sby5GI9zRCD/aBlzodSyxxEPfsCA8aZU+tPXrB9dbn3iMbQU2Gt3d3WpC2SwRHLGIz/z5bj7z57tpbWrn8olcMtNvcP2cgfyrZeRfLeM/vvtHwmMXs/lACpsOpLAsKWzeNeb5LvLkyS+k8uQXUqmtvMO5wzmc/eg6t4sbSP9DJul/yCRgsQ/bDqWw48nVylpsGMGLfXjpi9t48b+lor9xm5PpN8k4Y8Cgr8agr+anr5+0lC0cWMFKVbbw0NBoBOsSwlmXEE5rRw/plwz3WYqtjA7hiW1J7FyzHOd5WH8/FvNO3JrNZvr7+yc0OheGjs+VUlJfX09ZWdmQBqsHRUtLC/n5+eh0OlsmdbKMV/MrpaS8vJyGhgYSExOHWDFN50NsuuJ4pCa13t5eW2a3uLjY1oA1k01qs1mWAJNvBnNyciIwMNDWYGUymcjJyaG7u5u8vLxRLciklDT3fUBLzz/ZBKxOJNBo0iO5Y3eGfttPGs0aqo0NGOVdu/WWMgXNCFZgE3k/7N0SFLOH9yJP9r64hb0vbqGns5drZw1kpt8g60QulQW1VBbU8odXjxK4xI9N+1PYfCCFuHXL5p1QWRzuz/N/uZvn/mIXFQV1fHL4OucO59BY28K7Pz3Duz89Q0RMMNufWMW2x1MIDH30Ml8PCo1GkLwqnORVlmloF87mczI9l5vXKvjkpJ5PTg6WLexLZs/+ZELCVNnCw+L/Z++9o+LM8yvvz1OZKoqMyBkEIgcBQhFltVqx46R31h6P3Q7zujfY3tn1Wc++uz7eCV6vx9P2zoxD90R7OirngBKInHPOQUAVoaCo9Lx/lKoARUAJJO45OkfUk371VLq/7+9+7/XQujgtxWrbBjh+rZqLRY1UNPVS0dTL//7lVfblxHF4WxKxYc+W1ywXvDTkdjHV2rlwkNt7k7/k8mc3y7FarTQ3NzMxMUFqaioNDQ1LPtejSObU1BTV1dV4eXmRnZ29KFL1IgIaVCoV/v7+TgmIowFrdHR0XpOa2WzGZDItqaL+osntkx4vk8mQSqVEREQgk8nusyCbmppCpTEh8f0ZUtkIcskMEsEDsxDFsHUIxZxKrYASMCGgZVqIZ2CmGY973iI2cQaJ4AbMr74uRnO7WrldXnBxVbH5QDqbD6RjMVuoutXErVPl5J8pZ7BrhC9+fIkvfnwJD18tG/amsOlAGqlb1yFXvDQ/FwiCQMS6QCLWBfJbf7qf2uJ2rh4v5caZSjoa+/nw+6f58PuniV8fwfbDdmsxN8/V97EDLmoFu/ensHt/CgP9ei6eqeTCabts4V8/usm/fnST+KRg9ryewrZdCWg0ysefdBVPDEEQSIwKIDEqgH//5VwuFjVy/Fo1tW0DfHqlkk+vVBIXtoZD25LYtyEOV/XL+7qseM2tw5PVbDYvuFo7Fw5/1zt37rB27Vp8fX0XPYbFaG71ej11dXUEBQURGhqKIAhUVFQQExOzJBJgsVgoLS0lOzvb+ZgoivT09NDd3U18fLwzVnahY3dMEh5FXioqKoiPj18Swezr68Nmsy06+MJqtTI2NkZdXR0ajcZZtXRYkKlUqse+9tPT07S0tJCUlLTocQOMjY0xMDBAbGzsko5/Us0vQElJCenp6Q98ffQzeXRO/k+s6JFZgpHarEwI09hkkyhZg0IyqzmUCm5opWvoM88wbdMB4CaZYe7H3l2eRI9JT5bnT3GRzs7429racHNzczYQPgzf+MY3+M53vrNkjfJTwMu1xv4YzNXcLhZWq42GkjanTre/fTbWW+PmwoZ9KWw+kE769niUL6njgGnGQtn1BvJOlnP7Yg0zRvvKhUwuJWNrHDuOZJC9Kx7lamrUfbDZxHmyBeO0/d4plTK2bF/HngOpJKetWle9CDR33+HE9RrO5tcxbrAXOFQKGbuyYjmyLYmk6OUTELGqucVO4sxms7P5abEaTaPRyPDwMK6urmRnZz/RsvfjKnI2m42Wlhb0ej0pKSnziOyT2Inde+zMzAw1NTW4uLiQlZX1zPxmX8QHQSqV4uXlhVKpJC0tDZvN5nQbaG5uZnp6Go1G4yS7Go3mvnG+6Mrr06iIP+gcVtFI39TPuGP8KQACCpTKSEYs+c59bFYJSBznkGGyrKPVUsdsCpkcMDqPFyRptBpbsTGDVJg/w39WPrereHGQSiUkZEeTkB3NN//7m7TX9XLrVBm3TpXRUd/H5Y9vc/nj26g0StbvTGDT6+lk7UlC8xIZyiuUMjbsTmTD7kSmJo3cvljD1eNllN1onHVccFWyaW8y2w+nk5ITjXS1Mx24X7Zw42o9F05XUlXeyaVz1Vw6V41fgAe79yeze38yAYGrIRHPCzEhvvynr27nW29vIa+shWPXqimt7+bUzVpO3awlItCbw9sS2b8x/qUJiFiR5NZhm9XZ2el0FlgMYRBFkd7eXjo7O/Hw8CAgIOCJSKBUKn2knZijmcvf35/MzMz7xvq0InQd7g5LrUAvFk+iuX0azWwSicRpm+U4p8FgQK/X09nZyeTkpDMlzMPDA61W+8xCHBaKp5UuNncM4+Z66if+PzQS+31QSMIYsymwioZ5x6gULiCCRAxiYMYVq6BHIZu9H4Iocx4/bFWjn2lGJbE3lEkfkFC2UJ/bVXK78iAIApEJwUQmBPP//OdD9LQMcut0GTdPltFc0cnNE2XcPFGGXCEjbds6Nh/KIOe1lJcqLEHtqmLH0fXsOLoe3Z0Jrp8q58qxUpqqurn0WTGXPivG01fLtoNp7Dy6nqiEoGVT/XrRcFEr2PN6CnteT6GvZ5QLpyu5eNYuW3CERKSkh7H3QCqbt69DpXq1mp1eFJQKGXs3xLF3QxxdAzpOXK/h1M1a2vtG+Nt/vcYHH98gNyOaI7nJrI8LWdFV9hUnS3DExdpsNm7fvr1oC67p6Wlqa2tRq9WsXbuWrq4uXFxcnsgA/mF2Yjabjba2NkZGRkhISHjoj3xdXR0BAQF4ei5tJnvr1i20Wi02m23RUoGlyhKqqqqIjY29z/d3Iejv78disRASErLoY2HhVmCiKDqb1MbGxpiYmEAQBKxWKzExMU7nhsVgdHSU0dFRoqOjlzR2g8FAR0cHCQkJSzoeZp+/KFrpnPo5nVMfImLFV26XWvSYWhCx4CuPY8Za7jzOTRaDVFDTOt2FKFjQSgNhjsetTHRDbl5Dv2QABBuCKEMpnQYE9q25Om8MdXV1hIaGPpa47ty5k+vXry+pWfIpYeV+Oy8BTyJLWCgGu0coOFPBzZNl1Ba2OCeMUpnETnQP2omu+0tqKt/TNkTeiTKuHi+jr2O2OTMk2o+dRzPIPZS+2oj2ANhsIhUl7Zw/XcmtvAZMJvvEWa1WsG1XAnteTyE+KXh1gvCcYbFYuVHRxvHr1RRUd+CghEG+7hzelsSBzQn4PMdJ6ysnS3BUax3RsI5q7UIrYaIo0t3dTU9PD3FxcXh52b98JBKJ0y1hqXhQ5XViYoLa2lrWrFlDZmbmI8f4JM4DIyMjGAwGIiMjn3tC04tMGVsIBEHAxcVl3uRFp9PR3t7OyMgIbW1tAPMcGR43MVgulVuDpZeOqX/izswFABQSX4w2d+5YCp37CMxeRy74MGULYtBc6qR7EkGK7e5LqJD4YiGaflul8xipoACmwSajpKRk3n1aqCzBZDItaQK0iuULvxBvjry3kyPv7UQ3NE7+6XJunCil6lYjJZdrKblcy9/9JwnJm9ay6UA6G/en4u3/cN3/SkNw5Bq+9u/38dX399JU2cXlL0q5dqqc7pZBPvrBGT76wRkSMyPZfiSdLftfrmr2k0AiEUjPiiQ9KxLDpJG8S3WcP1VBQ20vZ0+Uc/ZEOcGh3ux5PYXdryXj7ftyTo6WG2RzAyJGJjhxo4YT12vovTPGP3x6k598fovNqZEc2ZbEhqRwpMvQovNBWBGV24eFMTwqgGEuHLZJrq6urF27dt6Pcnd3N6IoEhoauuTxlZeXExsbi1qtxmaz0d7eztDQ0H3WWw9DY2Mj3t7ej23OmQur1UpTUxMGgwGj0cjmzZuXNPalVm6rq6uJjo7GxWXx+pznVbl9ECYnJ+nq6iI+Ph6wP1dHkpper8dqtc6z1rq3SW14eJjx8XEiIyOXdP3x8XH6+vqIi4tb0vEA1+v+nmmfM/jIw5mwVOAqS6F7ph8/RQTjzhhd8FPEM20pxUWaSqtxBE95MFPWGud2T1k4Fls9alka7cYhXCTu2MQO53aVxAsYwl2+gUzt/3Tep7GxMcbHx/H29sbLywt3d3fUavUDSf+WLVsoLy9/kdWYV6oM9Dwqtw+DfniCgjMV3DhZSuWNBqwW+4RfEAQSN0Sz5ch6Nh9IfynT0SxmK6XXG7h6vGx+I5pCStb2eHYczSAzNx6FcsXUk54bOtvvcOF0JZfOVqEbtUupJBKBzA3R7D2YQvamtchXk+SeK6w2G4U1nRy7Vs2N8lasd6sgfl5aDm1N5NCWZxf3+8pUbh0yhAc5Icz1qH3YsV1dXfT29rJu3boHLvtLpVJmZmYecPTC4RjH5OQktbW1eHt7L8p6a7Ga27GxMWprawkODiYuLo6CgoKlDv2hWO5V2aXi3sqrTCbDy8vLWcmf26TW1NQ0LxLXw8PDOcFaKp6kcjtjHaV6/H8z6V0AIghIkUnSaDc6pAX3vGaiDJuQRf10OwAS5l9XQAGSDBqnOwBwFbydlVwAuaDFKPrRaRwlx3P+fSotLSUoKIjJyUna2tqYnp526pvd3d3RarWLuk96vZ5vfvOb1NTUIAgC//Iv/0JsbCzvvvsuHR0dhIeH8/HHH+Pp6Ykoirz//vucOXMGtVrNRx99tKCEvlU8W3j4aHnt61t47etbmNAZuH2+kpsnyyi7Wkd1QTPVBc3832//m53oHs5g04H0l6aiK5NLyd6ZQPbOBKYmjeSfr+bq8TIqbjWRf76a/PPVuLq7sPWAPSgiPiN8dfn9LsIifPndb+3iG7+/g+LbLVw4Xcntm00U5jdTmN+Mu6eanXuT2HsglYioV8Oj9UVDKpGwMTmCjckRDOsNnL5Zy/Hr1fQMjfGPxwr45+O3yUkO58i2JDalRCJbhn7YK6Jy6yC396KyspKoqKgH6v4MBgO1tbW4u7sTHR390CXUwcFBJiYmlqyhBHsVUyaTodfriY+PdzY4LRStra1oNJpHRvzCfA1vYmKi03HhSeJ/7z12cnKS6upqLBYLrq6uzmaseytzi42AnYsXWbldbOV0bpOao2oplUoJCAhwNqkthqzqdDqGh4eJiYlZ1Lh7jPl0GH7JuMXuiayVxWG2uTBiqXPuE6yMZcxSAYCrNI4Z0ZdB06zmNlAZx8Td7S5iDCapNyPmKud2H1kYMzb7+d1kyQxbJIxb2nCXBfG2/9/NG09xcbEz6Q7s92l6epqxsTHGxsaoqanhhz/8IdPT0/zt3/4tOTk5j7Sk+3f/7t+xZcsWvvnNb2IymZiamuKv/uqv8PLy4tvf/jbf/e530el0fO973+PMmTP86Ec/4syZMxQWFvL+++9TWFj4sFO/UgziRVZuHwbDxDSF56q4fryE0iu1mE2O1DuB+OwothzMYNPBdHxfwu75kcEx8k6Uc+WLEtrq+5yP+4d4sf1IBjuOZBAcuUrY7oVeZ+DyuWrOnaqgs23Wkm7tugD2vJ7K9t0JaN1ejq7+lQKbTaS0oZtjedVcLW3GYrUX5Hw8NBzYnMDhbUkE+T75qszTqtyuCHLrkCTci5qaGkJCQuaRSVEU6ejoYGBgYEFE886dO+h0OtauXbuksRkMBoqKivD29iYxMXFJVbn29naUSiWBgYEP3WdycpKamhp8fX2JiJifg/40yK2jyt3X18e6detQKpVMT087SZ3BYECtVjvJbkdHB1FRUS89ub0XAwMDTE5OotFo0Ov1TExMIJfL5+lRH6VFHRkZQa/XExUVtaDrmW1TlI3/mI7pS/jL/TDahjAaQhhRDBKiCENvaXTuG6yMYdLShEySRKuxjRBl7DzyGqSMw2BtxDITSS/9BCuj0VtmZQpr5JFYbT3YhAg6ZrrwkQUzae3AWx7JUb8fzBvXQl6D3t5ejh49yqFDh8jPz+d73/veA9+n4+PjpKSk0NbWNm8CFRsbS15eHgEBAfT395Obm0tjYyPvvfceubm5fPnLX75vvwdgldwuIxjGpyg8X82NEyWUXKnFPGNxbkvYEM3Ww+vZfPDlqejORXtDH1e+KOXq8VJGBsedj8elhbHzjfVsO5C6qs+9B6Io0lTfz/nTFVy9UINh0r7KqlDI2JQbx76DqaSkh6/orv6VCN34FKdv1XHsWjVdA3aPdEGA7IQwjuYmsyU1EtkSLfJeGVnCo3CvLMEhC1hMItfjpA0Pw1zJg5eXF0FBQUtebnY0xj3uOgkJCYuuCi8ERqORmpoaNBoNWVlZgH1C4erqiqurK8HBwYiiyNTUFHq9nq6uLnQ6HQ0NDfj4+ODh4YGrq+uiE9BeBJ6Gz6xCoSAgIMBJpkwmE3q9nuHh4fua1Dw8POal3S3m+oMzlRSN/Q1TVnvlQibxZtwiMKEYtJ+Le98zWvS2YMZM9jHcfxU1OksA4/Tf3T5/D6ngTq9lnClb192/7V9OMmFpDWFubm54e3vzve9975H7tbW14evry2//9m9TWVlJRkYGP/zhDxkcHHTe44CAAIaGhgA7aZ47MQoODqa3t/e5N1SuYvHQuKnZ8XY2O97OZmrCSNHFKm6cKKX4Ug21t1uovd3Cj//rb0jMiWHL4YyXSqMbERfI7/yXQH7rz16nurCVK1+UcPNsFQ3lnTSUd/KT/3GMzO3r2Hl0PZnbV/W5YP9tjI0PJDY+kPf+393kX2/k3KkKyovbnZG//oEedtux/Sms8X853ivLHZ5uar722nq+ui+D8qZejudVc7m4ids1ndyu6cTLTc3BLfZqbvCaFzNRXRGfnoeRAZlMhsViwWaz0dHRweDgIAkJCbi5uS343Esht44GNa1WS3Z2Nm1tbU/kuCCRSB5I9uaSzuzs7AV1py8WZrOZ0tJSYmNjnQ1tD3ougiCg0WjQaDQEBQVRU1NDQEAAJpOJ3t5eJiYmUCgUTkLn5ub2ULL7IrVmzyKEQaFQsGbNGtassS8vWiwWxsbG0Ov1dHd3O5vUPDw8nIEjj4JFnKF47Jf0Gc9gEaeRIMdVlkjPzDCGu0liACL210mCHLUsiUGTjTHL3O128itFgVqawLBZyrhV79zuGIdc0CAXorljEZiyzXrjSrC/3xSSpVWTHBXux8FisVBWVsaPfvQjsrOzef/99/nud7/70P0f9FlZ1S/aYbXYmNQbcF0BFUC1VkXuG1nkvpHF1ISRwvOVXDtmly5U5zdRnd9k1+jmxLDtyHo2H8rAw2fld9BLpRJSN8aQujGGP/wfb1JwoZpLn5VQcauJggs1FFyowdXNha0HUtn5xnrWpa/qcwGUKjnb9ySyfU8iA/16Lpyq4PzpSgb69Pz8H6/xi3+6RlpmJPsOprJxayyKlyguerlCEATSY4NJjw3mP341l7P59XyRV0173wg/O13Mz04XkxkfypHcJHLTo5E/x8CTFf3qS6VSZ0OLj4/Popq45p5jocR0bqzt3Aa1JwlhcBw/dwyiKNLf3097eztxcXF4e3sv+dwPg8VioaGhAbPZTE5OzqJjdCUSCUqlEm9vb2fFbGZmBr1ez+DgIM3NzUilUifZfdxy/fPC8whxkMlkeHt7O183m83mdBoYGhpyakofpGceMjVzbfTvGLP04SY14yoNQWdV0D/dxhr5fMIiYsVVGsKIxYWuqQ4iVPfKPES0sjCGTHI6TZ1Eu8yXQgiAhyyGbuMM49YuIlzmO0BIBAne8gQM1qW9/6amphZEboODgwkODnZGSL/11lt897vfxc/Pj/7+fqcswTF5CA4Opru723l8T0/PIyU9rxL0d8Z4O/SPSMiJIWtvKll7UwiLX/7hAmqtiu1vZbP9rWwM41PcvqvRLbta5yS6//Bf/o3ULbFsPZLJptfT0HoufwL/OKhcFGw/nMH2wxn36XPP/LqAM78uIDDch51H17PzjfWr/rl34R/gwdd/N5evfmMrFaUdnDtZTv71RsqK2igrakPr5sLOfUnsO5hKZLTfix7uKwF3Vxe+tCedd3enUd3Szxd5VVwqaqS4roviui48tS4c2JLAkW1JhPg9e339iiW3NpuN0dFRDAYD6enpC7LcehAWSkwdVVS1Wn1frO3TILcO/16TyURdXR0SiYSsrKx5S9pPC3q93mnCPzY29tSuoVQq8fPzw8/P/mVy73K9IAi4u7sjiuIziwVeCJ53fK5EInESWaVSiclkwsvLC71eT3t7OwaDAaWLghHP23QIVxCxIUGKmyyOlukObHcrsDZm9YkCUgQCaZxuxoa92jpXpiBBhlX0pGFqAPEB0nkZKiw2D+qmuuecc/Z5qSUemG0+1E/XkuQ6nzQvdIIwOTm5oHQyf39/QkJCaGxsJDY2lsuXLxMfH098fDw/+9nP+Pa3v83PfvYzDh8+DMChQ4f44IMP+NKXvkRhYSHu7u6rkoS7sFrsk+Tqm41U32zkn//bb/AN9iJzbwqZe5JJ3RaPepnHa2rc1Ox8ZwM739mAYXyKgnOVXP+ihNKrtZTl1VOWV8+P/uSXpOfGs/XIenJeS8XVffHa/+UGbz933vzdXN783VynPvfKsVL6Oob5xf85xy/+zzkSsyLZ9cZ6Nr+Wgma1oQqpVEJGViQZWZFMjE9z9UIN505W0NI0wLGPizj2cRFr1wWw90Aq23cn4qp9YWEyrwwEQSA5JpDkmED+41dyOVtQzxd5VbT2jPCLMyX84kwJ69eFcDQ3mW3pUSjkz4YLrIiGMqvVisUy+8PuiLNVqVR4enoSHh6+5HPPzMxQXV3N+vUP1i+LokhfXx8dHR0PraJ2dXUhkUgIDg5e0hgGBgYwGAy4ubnR1NREdHS0kyAuBPn5+eTk5DyWdM11W0hKSkKtVlNQUHBfxdsRlvGoKnh9fT3BwcGLmlSYzWbGxsbo7e3FYDCgUCgeqk19FJ6koexJE8Z6enqQSCRLrhT29fVhs9nmvVcGZzq4MfIL9Da7k4Hc7MmU1RXzXW2tA14yKSbRgMLqjVHijYCJceuQc3uo0h+dpQM3WRAjFhc0EjUDptkEsmiXCAZN9biY/RkW5PgpfemdqXduj3KJYtBci698HU0GHYHKIHpMTaRrt3LQ9+vO/axWKxUVFWRkZDzyuebn5/PFF1/w4x//+LH3paKiwumUEBkZyYcffojNZuOdd96hq6uL0NBQPvnkE7y8vBBFkW9961ucO3cOtVrNhx9++NDPL69gQ1nepWuUXaml6FwFJRer0Q2NObfL5FISN8WyYX8aG/anERCxcjr1J3QGbp0u5/qxYiquN2C761snV8jI2JFA7huZbNibgkrz8oSGWK02Km42cemLEgrOVzv9cxVKGTl7ktj15nrSNsciXYZWTC8SzY39nDtRwZUL1fOa0DZvj+O1Q2kkp4Ut+9WMlwmiKFLd2s+xvGouFjUyc9cxxUPrwoFN8RzJTSbU317NfaXcEhzk1maz0drayujoKAkJCUxMTDA9Pb1kQ32wL8+XlpY6l0TnYmZmhtraWhQKBXFxcQ+tNvb09GC1WgkLC1vSGBwSBJVKRUJCwqITnW7fvk1mZuYjl/2npqaorq7G29ubyMhIJ3F90LHPitw6MDAwgMlkIjAw8L4ABTc3t3lVzgfhRZLb7u5uZDLZkiuFvb29AAQFBWETrRSNnaBw7AvcpB7Y6MdbnkDzVBdSQYZMMjHvWHeJiMoWTot5GJtgw1/hyqR1xLk9VOkHggd1hh5s2AhXBTFoanduj3aJwmiTUjfZCYLAWnUEfTMNc7bHMWYx0zpttyyKVkfRPdNIttsu9vl8ybmfY3UhNTX1kc/14sWL5Ofn89d//ddLuldPCa/UL9i9bgk2m43Wyk6KzldSfKGKxuJWJykECF0XxIbXUsnal0p8djTS56iJexLo74zfJbolVOc3OZ+TUq0gZ18q246uJ2NHAgrl01/5elEwTBi5da6KK1+UUFnQ4nzca40bO45ksOvNTMLWPtpO8lXDjNHMrWsNnD9VSXnJ7HdhYJAnew+msmd/ymoS2nPGhMHI2YJ6juVV09IzG1+9fl0IR7cnsyc77tVySxgbG6Ourg5/f3+ysrIQBIHp6el5Fd2l4EGSgrma17XjxPDyAAAgAElEQVRr1+Lr6/vYczhkBYuFTqejqakJjUZDWlrakmaTj4rvdVSeOzs7iY+Pv89rdKnRv08SGezAvQEKVqvVSXb7+vowm83ORiwPD48lpaHdi2fRULYY2Gw2ZDIZI6Zezo38X4bukk+FRItZdKFh6u7fwvzlM63UlxmLii7rkJOumSxG5/89ZAGMWbR0m7pmxzpHpuAjD2PEpKJzptXu2XJ3Dwf8FbGMmlV0GDvvG7NcMl+PvdDoXYPBsCDN7SqeHSQSCTFpEcSkRfDVbx9hfGSC4gtV3D5bTsnFarrqe+mq7+XjvzmNq6eG9buSyH4tlfW7k3Hzeryk5EXBw9eN139rG6//1jZGB8e4caKUvM+LqC9uI+/zIvI+L0Lj5kLO/lRyj2aSujUO2TNa/nxe0GhV7Hk7iz1vZzHYM8qVL0q59HkxfR3DfPrTq3z606tEJwaz84315B5Meyma754USpWcHXuT2LE3if4+HRdOVXL+VAV9vTo+/PFVfvbTPDJzotl7IJUNm2OWbF+1ioVDq1Hxzq403t6ZSk1rP8euVXOhsJGS+u55ZPdJsSIqt0NDQzQ2NpKQkDDvx3J0dJTBwUHWrVv3ROef6xNrMpmora1FJpMRFxe3oKVyh6xgod6lYCc5LS0t6PV6goKCmJiYWLL3alFREampqfc1hTkqbI7n8qDKc1FREWlpafOep81mw2QyPbJy29jYSEBAwKKcKRxwVG4fF3k8Ny1Mr9czMzODq6srOp2OtLQ0XFxcFk00nzQ+t6OjA7Va7WxuWvTxnR00SAoYlrVwx9SAgMAaRTx60wzjtg7nfq5SN2wMIyDgI0+g0TCAVGKYdy4vqRSzOIPKFEKbqMdXqmRKMuufGaJcw5jlDu6yaOomu4lUB9I3M3uNGHUo4+YhBCGQpqk+4jVhdBmb52yPYso2SZJrLls9tzsfvzfC+GH41a9+xcTEBH/6p3+6pHv1lPBKV24fBYvZQs2tJgrPVVB0roKe5gHnNolUQuLGteS8nk7OgfQVI18Y6Bzm+vESrn1RTGv1rJ7c3duVLYcyyH0zi/isqCXbNi43iKJIfVkHlz4r5vqpCgwTRgCkMglZ2+PZ9VYmmbnrkK86BzhhtdooLWzl3MkKCm40Yb0bRuDhqWHP68nsO5hGcOjTb+JexcMxYTByrqABm2jjS3syXh1ZgsViwWKx3EdkxsbG6O7uJjEx8YnO7yC3AwMDtLa2EhMTsyjycufOHfR6/YJTpyYmJqipqcHf35/w8HD0ej39/f2PJQsPQ0lJCUlJSfOW8YeHh2lsbHysfre4uJiUlJR5xHih5Nbf339JvrsDAwPMzMwsWsYhiiKTk5NUVVXh5ubm7MZ3VHY1Gs1jye6Tktv29nZcXV0fW81/EO6Yevms9x8YoY9QZQQm2ygzNjf6TAMEKAKYsHY493WTeuIiFZmyutM7M4RckCO7h9yGqfwYMcvom7FLE/wULhhss/rKAGsQA6KRMdF+XISLPwNzKrvr1ElUT3YxZZu5+3co3TP25U6ZICdcFU/ZeDNH/Q6x0zvXedxCgzB++tOf4uLiwh/+4R8u+l49RayS2wWit2WAwnMVFJ6toPpmo7M5DSA8Ppjs/WnkvJ5G7PrIFUEOu5v7uX7MXtHtnkPcfYM82XY0k9w3sohKCnlptJemGTOFl2q59HkJJdcasN0lbW5eGrYfSmfXm5lEJSx/54znCd2ogcvnqjh/qoLO9tmqYVJqKK8dSmPz9nWoVC+PtGUl4JUKcZBIJA/8QC41gOFeiKJIZWUlAJmZmUuyxVrIOOampyUmJjr1qk/qtjBXImC1WmlubmZycpKMjAxUqkd3hz6JLGGpWOqxgiCg1WpRKBQkJSU5gyV0Oh0dHR0YDAZcXFycZFer1d53rRchS7CJNkrGr3JF929YsSAgIBPcaZ0ZwCLaf3Qlc84pIMFNGkrTdBsW0d4wJhNml8skogQ/ZRz1hk4s4hwLubsyBIWgxF0axaBNx9gc39qp6UmQgtLqgkoeTO+M0Uls5x6/Rh7EkEnCiNmCDRG5MP/LfaGyhKmpqSVXuFfx/BEU7c8b39rHG9/ax6TeQPGFKgpOl1F8oYqOuh466nr4zV+fxMPXjezXUtnwehrpOxJRqZdnA1dITABf/dMDfOVPXqetpscpV7jTq+PTDy7w6QcXCI72cxLdkJiVrVdVKOVseT2VLa+nMnpnnKvHyrj4aRGdTQMc/+gGxz+6QXisPzvfyGTH0Qy8fBe/6vaywdNLw1tfyeHNL2+gvqaXs8fLyLtcR3VFF9UVXfz935xj+55EXjuURkzsqiPLSsKKILcPw9Mgt0NDQ05Jgb//0r7cFkJOp6amqKmpwd3d/T53gqdhJeZYwneEK8TGxi6IhD2JdvZFpYw5MDdYwpGi5ogM7unpYXJyEqVSibu7O56enmi12uficzsXAzO9fDb4czQyKVbRgkb0xCxq0ZvNWMRZvbgjDcxdtoZJixtdM5P3bJdhBdyFNejMcqpMvSil89/7FtGMnzyMLqOFzukeApXz7ZHkSjlrrBE0mnSYLQMEoIU5HFVAwF+xjsrxXkTAQ27XXCqeQHO7lHjmVbx4uHpo2P5ODtvfycFsslB9s4HbZ8q5faacwc5hzv/8Oud/fh2li4KMXUlsPJhB9mupy1KnKwgCUUkhRCWF8Nv/7Sh1ha3kfVHMjROl9LQM8qsfnOJXPzhFTEoYO97OZuuR9Ss+/tfL1403fzeXN765jZaaHi59VkzeiXI6Ggf45/91kg+/f5r12+LY83YWWTviX3nZgiAIxCcFE58UzO//h71cu1TL2RPlNNb1cerzUk59Xkp0rD/7D6WzfU8CGtdVS7HljhXxjn5cQtlSYDabaWhowGKxoFarl0xs4dHkVBRFent7nQ1djuCHuXhU/O5C0dPTw8jIyLyK8ELwIiq3zwqCIKBWq1Gr1U6rLqPR6JR9NDY2IooiCoUCnU6Hm5vbooMlFkpuraKVa6PnuKo7i1W0sFYWRaBiHfWTPVgZIUYx/zUSRAE/RQLVk/1YxDsEKuZLSWTI8FXEUz3Riw0jCkEOzFZdVRIVbtJgKiZ65o3BAXeZJyI+1Bi74O68SqFSwN0+SA+rN92jZgakd+Y9VwCFZH7l1mazLWhZ2mAwLNl/ehXLB3KFjPQdiaTvSOQPfvA1Omp7uH22nPyTZTSVtpF/spT8k6VIpBKSNsWy8WAGOQfS8Qv1edFDvw8SiYTEnBgSc2L4g796l4obDeR9Xsytk2U0V3bSXNnJP/7FJyRvjmX7m1lsOpC+oj10BUEgJimEmKQQvvlfD1GcV8+lT4spulpH0RX7PzdPDbmH0tj9VtaqbAHQaJTsP5zO/sPptLcOce5EOZfOVtHSOMDf/eAMP/m7C2zdGc9rh9JISH55ZC0vG1aE5lYURUwm032P22w2CgsLycnJWdT5HHrUiIgIAgICuH379pLSzRxwpKQlJyfPe3yhVmJTU1M0NjaSlpa26GsbjUYKCgrw8fEhISFh0c+hvLyc2NjYeRW2hWhum5ub8fHxeSBZfxwGBwcxGo1Ltk57Eiuwnp4exsbGkMlkjI+PI5VKnV677u7ujw2XWMjz7jX2cHX0NHWGcgC85X5oJb40Ts/absWoI+iZaXRuVwkB1E/Nbg9W+qO32PWxvvJATDZ3umdmrWxcpCrA3jwWpAync8rItDgbrWs/r5QZm5EQZQxVE8N4K2ToLbOa3BCVBxPWCbxlYVSO9xKp9qZvZtZbNxBXrBIbezV7yVqT4mzg6+/vx2KxEBJybyLafLz//vt885vfdDZrviC8Ur88T6K5XQru9I5ScKqMWydKqLoxq/MEiEwKZePBdDYfziQ8IXhZk4CZaROFF6q4+mkhJZdrMd/14ZQrZKzfmcCOtzeQvScZxUuiv9QPT3D1eBkXPimio7Hf+Xh4rD+73sxix5EMPFctspwwzVi4mVfP2ZMVVJZ2OB8PDvVm38FU9ryegsdLkJi3HPBKaW4fBolEsqiqo8ViobGxkZmZmXl6VKlUuuBq1MPGca88YnBwkJaWlgU1py1VluBogNNqtYSFhS1p/C+qcvuiJA0ymQytVut0ajCbzej1ekZHR2lvt5PHuZHB97plPKpya7GZuTBynsujF4lyCUKKjABlNLWTPcRp5sdmCoAUGf7KGKom+oh0mT95kwoS5IICH3kUFeO9+N3j+StHhlyiwVUaTMV4HzJBiuyel18rdUMiBlA8Zv/xstxzy91k3gwaJfRM2b13beLse1AmyPBUB1Gk78SmktDa2srU1JRzEqTRaB5bxV5o/O4qVi58g7w49N4uDr23iwmdgeLzleSfKqXkYjVt1V20VXfxy786RlC0H5sOrWfT4fXEZkQuO6KrdFGw9fB6th5ez4TewK1T5eR9VkTlzUYKzlZScLYStVbF5kMZ7Hwrm6RNa1dEU93D4OGj5ejvbOPIN7bSWtvLpc+KuXqijI7GAf7pr07w4fdPkbU9nj1vZ7E+dx0y+attkaVQypyWYr3do5w7Wc7FM1X0dI3wT39/mY9+cpWNW2N57XA6aesjkEiW1/v7VcSKILdP44twZGSEhoYGwsPDCQwMnHdOBzldaiTsXHJqsVior6/HYrEsuDltseTWcQ2r1UpmZiZNTU1LJosPIreTk5OMjo7i6en5SG/ZJ7nmcoFcLsfX19fpfmCxWBgbG0Ov19PZ2YnNZpuXovYwQtcx3c6/DfyaQZO9QUwpqJEK/lRN3nUnuOcQCUogkPJxu4zg3nMqBQ1Gqy/l03biKWP+D6mPPID26Tt0Wu2BCzJh9r0rRUqoKoqGyR7M4pTzcYeGVykq8VSE0DihR28x3Lc9SBnAnRnonJ7EikiofxDRmmBnA19bWxs6nY7h4WEUCsW8Br65Mo9VWcKrBa2nhh1f2siOL23EZDRRkVfPrZMlFJwqo7dlkI//5jQf/81pfAI9yTmYwaaDGSRtjl12/rNaDw37vraZfV/bzEi/nmvHirnySSEtVV1c+NUtLvzqFj4BHvZGtDeziE4OXVbfaYuBIAhEJwYTnRjM7/yXgxRdrePiJ8UU59VTcLGGgos1eHi72kMi3sokIm5pyYwvE4JCvPidP9zJb/3edgrzmzl7vJzi2y1cv1LP9Sv1+Ad62Ku5+1PwWbPatPeisLy+VZ4BLBYLTU1NTE1NPdQ94Ekb0xzkdHR0lPr6eqfcYaFfeIsht3q9nrq6OsLCwpwk/Uka0uaSW1EU6erqore3F29vb5qampzesh4eHnh6eqJSqRAEYcV+mT+u2iiTyfD29nbGLDuCJXQ6HT09PRgMBkwmE76+vnZpglzg2OBZWqeruGO2W3YFKCIZNJkZMI3OvbD9/KIMb1kEoyYp/TM652bhLvtVSVzwkoUwbBK4Y5pNKJMIdnKrQYNM9KZjepoJ67Rzu1yQYgb8FH6Mm2RUjA0gldzbcGYhTBlOjV5Pt3EAX+X8j79EkBCmiqZM34uIQJCLnZgq72puHQ18rq6uTjs0h6Z5cHCQ5uZmp8yjvr6e6enpBVVuw8PDncRYJpNRUlLC6Ogo7777Lh0dHYSHh/Pxxx/j6emJKIq8//77nDlzBrVazUcffUR6evpjr7GK5wuFSkHWvhSy9qXwxz/8LWoLmrl1vISbJ0oY7h3l5E8ucfInl3D11JDzejpbj2aRtiNh2TU2eQd48MYf7OaNP9hNd3M/Vz4t4sontxnsGuGzf7jIZ/9wkZAYf3a+s4Htb2XjF7Jy/VHlChmb9iazaW8yo3fGufJ5CRc+Laa7ZZDP//kan//zNaITg9n7TjbbDqWhXcFa5KcBqUzCxq2xbNway52hcc6frODcqQoG+vR89JM8fv6P18jaGM3+w+lkbohGeu/S2iqeKVaE5hbsgQQPGuvcAIZ7odPpqK+vJyQkhODgh2u+qqqqiIiIWHKVyWQycevWLVxdXUlMTFx0ktZCtMNzo4eTkpLmaWTr6+vx8/NzJn0tBtXV1YSFhaFSqaipqUGlUhETE4PVanXKPuYGKRiNRlxdXTGbzfj6+i6KxDswNDTE1NQU4eHhix4vPJnmtq+vD6vV+li96MNQV1eHh4cHJpOJmrF6rkoKmJAYCJJrUMlcGDbbuGMaZ63Gjy7jbHNXvCYEk81Ex4QRvWgkWRtKy/RshOY6TTgW0Uy7YQq9ZYpYTTCdxg7n9giXAFRSOVX6YWawEKTyRmeZ9e70lrnjo/CifKwPGyJqqRIbs1VZL7k7GomW+skh52MecjCJ5rvnD2HYaKTfNKvJ9VOp0Zkn+PuE/4ifclZj3NLSMi9Zbi7MZjOjo6P85V/+JRcuXCAoKIicnBy+/vWvs379g2VU4eHhlJSU4OMz24D0Z3/2Z3h5efHtb3+b7373u+h0Or73ve9x5swZfvSjH3HmzBkKCwt5//33KSwsfNRLtjJnYUtESnKqePI3pwmODViWy+aiKNJc3s6tE/YmtK6GPuc2jbuaDa+lsvloJhk7k1C6LM6S8XlBFEXqS9rI+6yIa8dKGBuenYQmbVzLjrez2XIoY0U3ojkgiiJNVd1c/LSIayfKmRy3T6jlChmb9iWx+60sUjbGIJUuv/fai4DVaqO8uJ1zJ8vJv96IxWIvOvmscWPfgRT2HkjFL2BlO3E8azwtze1LQW5zcnLmESyH1+vExAQJCQmPtSOqqakhJCRkSYEE4+Pj1NTUMDMzQ25u7pIqmqIoUlBQ8FCSbjAYqKmpwcfHh4iIiPt+tBoaGvD19XVWGxeDmpoatFotPT09Tn2wzWbDbDY/8Lk4ghRaWlqwWq3YbDY0Gg2enp7OiNzH3YMXTW5tNhvBwcFLOr6urg6fIF/OTl7hlr4IAJWgJECyhkbzbGNGmNyTQZudSLpIXAhXRlA83urcPpfcaqWuBCnDKRmbTQdbpwmh3WjXAPvIvXCX+lM5OUuGw1S+3LHYiUGIKohps5KOOWTaXapmhnEkSIh0iaBhXI+R2R9hAI3MgqtUjYfMj8qxAbRygRnbbIy0p0LOGoU3fx71NTwUsxZPCw3w2LJlC9evX6ekpARvb29SUlIeuN+DyG1sbCx5eXkEBATQ399Pbm4ujY2NvPfee+Tm5vLlL3/5vv0egleK3IYHRIprRzag9XIlIWctiZtiSdgUy9qMyGVXFQXoaujl5vESrn9eRHvNbKKYSqMkc28Kmw+tJ2tfCmrtk0dvPwtYzBbK8uq5/PFtCs5WYDLaPz9yhYysPUlsfyubrN1JKJQrvxHNNGMm/0INF35TSEV+s/P32DfQg11vZLLrrUwCw5afQ8aLgm7UwMUzlZw5Xk5fj30VTxAgIzuK1w6lkbNl7Wrc7wOw2lB2Fw5JgUMv61i2DwoKWrDX61JkCTabjfb2du7cuUNycjJVVVVPFE7wIDhsxLq6ukhISHgomViqLMFmszE2NsbExMSCAh8cY9Vqtbi7u+Pm5oa3tzeTk5Po9XpaWlowGo3O1DCHZnc5SRieNMSh3tbB1Z7PsWCvcIarwuiYmuSOZHrefuLdeaG32YceqxWVxXDfdgGBcFUkNeM6tPdICARBQCpICVNFUK4fIEozv+FMIghopC54SoMo0/UTrJrv3iCXSPGU+TBlUVKo60crnf/aKgQpUepg6sZ0dFrtFWCzbdZWTytT4yvzpWx0AEXM0kIcALRaLTt27HjkPoIgsGfPHgRB4L333uP3fu/3GBwcdBLWgIAAhobsE4Xe3t55Vffg4GB6e3sfRW5fKQiCgHegJyN9Om6fLuP26TIAlGolSZtjSc1NIHV7AlGp4cui2hYaF8RX4oL4yn8+TG/LADePFXPjWDHN5R3c+LyIG58XIVfKydyTzNY3stiwPw2XZeQxKpPLyNqdRNbuJAwT09w6Vc6VT25TeaORW6fKuXWqHFcPNduOZLLz3Q2sW7/8mukWCoVSTu7BNHIPpjHYM8qlz4u59GkxA92j/OsHF/nXDy6SvCGKve9ks3FfMqplWnl/XvD00vDO1zby9ldzqCzr5OzxMm7mNVByu5WS2614emnY83oK+w+nExC0eNehVTwaK4bcPqyr30FMJRIJLS0t6HQ6UlJSFtWlvVhy66ikenl5kZWV9UyW/0wmE7W1tcjlcrKysh7Z7LYUxwODwUB1dTVSqZS1a9cuiNg+6JoOsqvVagkJCXFWdvV6Pa2trU7d5Vyy+yKxVHI7ah7j573HKbPVAbBGqUEj8aVi3F6tVcvmPy+N0hVfsxv1Rod0YP7rYzbacCWEQt0gD4JMUCAX11Cks1dnJfeMWSt1p3vKSIfFfn2pMPseVAgy/OUBlIx3Yr3bUCaXyDDdnf94Chq0ijUUjc5WeuWCBBt2churCaNBr2dg6m5znHTxPreLeT/eunWLwMBAhoaG2L179yNjfR903pVKFp4FvAM9+XXxBwx2DlNzs4Ga/EaqbzTQ3dhHyYUqSi5UAXYJQPKWdaTkxpOyLZ6IpJAXLmMIivbn3T85yLt/cpDBrmHyT5Zy83gJtflNTi9dhUrO+t3JbDmaSfZraWjclk9FV6N1Yc+XN7LnyxsZ7tdx7fNiLn9ym7aaHk5/dI3TH10jMGINO97OZsfb2QRGrNz0Pr9gL776x3v58rd2U1PUxoVPirh5toqq261U3W5F853P2XYonT1vZ7H2FfeCFQSB1IxwUjPCGR+b4tLZas6eKKOzfZjf/CKf3/win/SsSPYfSiNnayzyV9yZ4mlhxZDbh0EqlTI2NkZrayv+/v5kZWUt+oO0UHIriiLd3d309PQQHx+Ph8ez0c44fHgXYiMGiwuBuLca3NfX9/iDFoEHkV2DwYBOp3PaSclkMuRyuTPB6nl/8S3meqIocnWklN8MnGT6blRtpDKMjplhuqyzMgTb3ehaAYFIl0j6p6bpmZnVt8oVcpgGiSgQpgxDZ7LRap4NTDAajQCoJEoCFMHoZiT0GGf1r5K7q+tuqFFJvBgyWhmzGJ3bZXfJbbhLIH1TFjqnDFjnEEGFRMKMKCVMHkjl+AhulvF5z1MhkeOlUCOIrhSNDKGU2L8a5IJ0HnGGxVVuF3KvHYEba9as4ejRoxQVFeHn50d/f79TluD4HAQHB9PdPbt83dPT4zx+FXYIgoB/uC/+4b7s+toWAEYH9FTm1VGRV0v51RoG2u9QcKqUglOlAGi9XEneso7U7fFk7EomKMb/hRISv1Afjv7RXo7+0V6G+0a5eayEa58VUne72Ul05Uo5GbsS2XIki5wD6cuK6PoEePLmH+3hzT/aQ3tdD5c/vs2VTwrpax/il98/yS+/f5J1mZHseHsDuUcz0a5Qj1SJRELyhmiSN0TzB//9Da6dLOfCx4U0VnZx5lf5nPlVPmFr/dn9VhY7j2bg4fNqu6e4uat540vZHH03i7qqHk4fK+X6lXrKitooK2rD3VPNnv0p7D+cRtAKbk5cDlgxmluz2XwfgbPZbBQUFACQkpKCq+vSoh/b29tRKpWP/JE0Go3U1tbi4uJCbGzsfT/uj2psWwjy8/PJzs52OjskJiaiVC4ss72trQ0XF5fHLs2azWZqa2uRSqWsW7cOmUxGfX09a9asmafXfZTm1oGOjg7UavWCyPdcOCYIOp0OiUTi9EJ1VHYXQnafRHPb3d2NTCZb0DJ29/QQP+46js6sZ9I2gq/CiymDhEFxCpl0vkzAVylHI1UzY3ahbWqEcI07/TMjzu1xrn6YbVYGxk0MiUaS3QJpNHQ5tye4+GE0z9BtNDGOmViFD+3W2YaxZG0ICALlI0OYsJHgFkDz1CzJi9UEIEFGud5+TITah17T7PHrXIMZmp6mx2gntf5KN/RWuw5MLkhZpwmnXN+D6a7XrZtUxZQ4hVam4lj2f5j3XMvKykhOTn7kaoLNZiM3N5fy8vJH3mODwYDNZkOr1WIwGNi9ezd/8Rd/weXLl/H29nY2lI2OjvL973+f06dP88EHHzgbyv74j/+YoqKiR13ilSoZLTTEYbDzDpXX6qi4WkvFtTqGe0bnbfcL9yVjVxIZu5JJ3R6P1nN5xOo6iO71L4qoK5jVfTqkC9veymbDa2moNAv77nyesFptVFyv58onhdw6XY7RYJ8syxUysvcms+vdHNbvTFh21mhLQUdjPxc+KeLKsVLGRiYBkMmlZO9MYN+XsknbHLssZDHLARPj01w+X83Z4+W0t84WRFIzwnn9SDobt8W9UtXcV66hzGKxzKuuTkxMUFtbiyiKxMbGLskpwIGuri4EQXhoB31/fz9tbW3ExsbOa3qZiycltzdu3EAmkxEYGEho6OJ8ExdCznU6HXV1dURGRs4jdo2Njfj4+Mwjt45EuGdBbgHu3LnD5OQkERERTu9UnU6HXq/HYDA8luw+a3Jrtln4dCCP44M3sYhW/BUerFG6UTHWj0W0oRRkCNLZqqlCkBGrCaFM34vl7ucpVK1l0GS3+nKRKIlRh3Fb1454l2sluQXQZLCTU0+5K6GqIAp1bc5zJrj40Wyye9z6iFq0gjt15tkvviS3QBqnuhCAWE0oZouc2slZshzj6kunsR9XqYoAhT+jRhM9ptlKcYjKgzuWYSJc/BieFrGKIiOW2YQzb4UGk81IkjaC/5X45rz7U1JSQnp6+iOXsQ0GA2+88Qb5+fkP3QfsE7OjR48C9s/4V77yFf78z/+ckZER3nnnHbq6uggNDeWTTz7By8sLURT51re+xblz51Cr1Xz44YcPdWG4i1Vy+xiIoshA+xAV1+qouFJL2eXqeQ4AEonA2vVRpO9MJH1XEuuyY5ZFc9pIv55bJ0q48UUR1TcbnURX6aIg67VUth7NImtvyrIkukbDDPlnKrj8yW3K8+qw2exjd/fRkvtGJjvf3kBMatiKX843mywU59Vz/jeFlOTVO5+nT4AHu9/MZPfbWQSErlYowf45bKjt5cyxMvIu1TIzY5eJvWrV3FeW3FdTYMQAACAASURBVDoauYaGhkhMTKSvrw9vb++Hks6FoLe3F7PZfF/3vtlspq7OrrGMj4+/L61qLpZKbkVRpKOjg5aWFnJycpZUfe7o6EAmkz3QAcBms9HW1sbIyAjJycn3aV4bGxvx8vJyhhg4xvQ4ctvZ2YlKpcLPz2/R451Lbu/Fg8iuWq12ujFoNBpKSkqWTG67urpQKBT4+/s/cHvVeDunBgsom6gHIEwVgCCqaJqaJY4uEgWixK5lDVcF0j9tZdo2Mc9pIFjtyh2Tnmh1KK3jBnxULnRMz5LTRK0/rVO9rFWHUzk2wjqtL3VzyGmqezDtU/2EKIMo1fWToPGj0TgrIVmr8MIgMSIRXWk2jJLk5k+jode5PU7rh0IioXFsgjGzkbWuvrQbZyu5UWpf1FIFpaN2zW+IizsD5tnqXYpbKG0TelQSJZ9u/Ma8e7SQycXg4CC///u/z6VLlx6533PAymYHi8TTiN+12Wy0lHdQerGK0kvV1OY3YbXMFhZUGiUp2+LJ3JtC1mtp+If7PuJszwcj/Tquf17Etc8KqS+cdRVRqhVkv5ZK7lsbyNyTjEK1/Jqchvt1XP2kkIu/KaBrThRu6NoAdr67gZ3vbMAnYOU3HA0P6Ln0WQnnPy5koGt2VSslJ5q972azaV/yS+Eq8TQwOWHkyvlqTh8rm1fNTblbzd30EldzX0lyOzY2Rm1tLV5eXkRFRTmbyLRa7ZJIlgMDAwMYDAaioqKcjzl0r1FRUQ8lQnNRUFBAdnb2opoyjEYj1dXVuLm5MTw8zKZNm5Y0/odVnqenp6mursbLy4vIyMgHjq25uRkPD49lQ27vhYPs6vV6dDodBoOBmZkZIiIi8PT0RKPRLKq68bBxj5un+Jfui1weriDWNYBh8zB+Cn8qx/oIVnkyNEcf6ypV4iIT8Zb5O2UArnIbFnGWAMS6+mKyKqgdtx8X7epJl3H2HJke4XRPTdFusFd30zwCqJ+clRlke0RTPTbEiMnuwpDhEUT1hJ38KgQZCepgisZ6cFxxrcKTDuswAP5KDwLlPuTrOpzni9OuoXW6HwGIVqzBJqion5wly5EaL7pn7uCj0OImcWPcZKHHOEKMqy+/zP76vHu1EHLb1tbGd77zHY4dO/bI/Z4DVsntE2JqYprqGw2UXa6m7FI1nfW987aHxgWR9VoqmXtTSNgU+8IJylD3MDe+KObaZ4U0lsyuhmjc1Ww8mEHuW9mkbU9AusxsmERRpKWyi0sfF5D3ebGzei6RCKRuW8fuL21k4/7UZev/u1DYbDZqito4/5tCbp6txHS3Qunq7sKOIxnse3cDEetWdfQwW809fayMa/dUc/fedVoIDF76qvVyxCtHbru7u2ltbSU+Pn6eJdZCluQfh6GhIcbGxpzhBY2NjUxPT5OQkLBgF4HCwkIyMjIWHOE7MDBAa2srcXFxeHt7P9Cvd6Ho7u5GFEVCQ0OdjzmkFPHx8fYkrYegubkZd3f3efKChZDbx1VAH4XFkNt7IYoiRUVFBAcHo9frmZycRK1WO2UMjyO7HR0duLi4zCO310dq+UnnGcYt9mpshls0dZP9jN9t2Ap18WbANOtqkKAOo9EwwoRlVnerllmwISIVJMSow+gyjDFsnnRuj3R1p8c4ggIpkeoQJs0Wmqdmz5nq7k+DoQcfhRtq3FFK5VSNz5LdDI9gqic6CcQdvSgjWO1O1cRspTdRs4Z24yCBeNIwPUmk0p1262wlNtHNj0nbNGajhPbpSeLd1tA8NVslWqv1xVWmoGLkDkablWhXb9qn7pDkHsA/rf/KvHu4EHJbXV3NBx98wK9//etH7vccsKLJrSAIIcDPAX/ABvxUFMUfPmz/Z0Fu78Vw7yill6ooOltB6aVqpsZnbfBUGiVp2xNZvzeZzL2pL7yqO9g1zPXPCrn6cQGtVbOfF3cfLZsOr2fbm9kkbY5bdvpPi9lC6ZU6Lv5bPoXnqzCb7KRGrVWx5dB6dn8ph/jsqBfucPGkMIxPk3eynPO/uU1z9ax7S0xyCHvfySb34PJyxHiRMEwauXzu/mpuWmbE/8/ee0fHdd5n/p87HdMHZdDZSZAEQBCFDWyiGiVSsopFiZIs2Ul2EzvJbpzdPWfjeLOr/JLN2fUmjp3joo3tTWwVipJVLLGITSTFApDoHSBBFKJjgOmYPnN/fwwwMyBBEKQkkIz0nMOjI9w7d965c+fe533e5/t82f1Eyb+ZpIUvXc7tlPXg2h+zTCYjFArd4FVzw1RawpQynJOTw6pVq26JaM41azYUCtHa2kokEmH9+vUxq8PU6+dahX7teweDwdjx29raCIfD044/22tvNUbsTmKq3XB2djbZ2dmIoojX68Vms9Hb28vExAQqlSpmY9Bqtdd9j1P/3+cd55+6DiMIYZwhD+kKIzI0jAeCMWIL8RiuTGUybje0u9y4I3FiKwEiiCxQmbEHJFSOD5OqnK6uhMUIK9Q5XLLauegdZqV+undKEARWaxZRZ7Xgj1goMU2frMkECUtUC6ifjA7L1UzPPNYqNCh9Rpq9UUKtUihhknMokCJ4RK54PTGlVyqJn5NlmjTUaKm0xB/+U+kLauntqUQej+e2Czy/wjSEgP8simKtIAg6oEYQhGOiKLbeqQGlZiez85v3sfOb9xEKhmituMzFw/VUHamnu7lvWgpDbl4WG3eXsOnxElZtXDHvJDJ9QSp7/nw3e/58N1c7BqNE951K+i8NcehXJzn0q5OYzAa2P7OBHc9tIq/07sihlcmjRWYbdq7BZZvg1PtVHH/rPB21PRx54yxH3jhLxsJUHnxuEw/u3UTGgnuzeYJGn8TuF8vZ/WI5nS39HN1/gU8+qOFyYx+XG/v4xd/+ji27inhk70byyxbfFd/NnYJGq+Jrz6zj8a+X0dY8wMEPajh9vJW6qm7qqroxmjTsfKyIXU+WkJl179tYPivuGeU2HA7PSGIHBwdjy9S3C6vVSnt7O1KplIKCglvKyJ1CbW0tq1evnlXpnSrqWrx48XVK860qv4mYOgfJycm0tLSwYMECsrOz53QjuHLlChqNZpoCOxfl9lZSB67FZ1FuYXblcIrsJtoYVCpVTNm1WCwoNUkc83fwzmAlQTFMsSEXUYQG+xBBMUKBPotLCUkES9RpaKRJ1NqGCYkiqQoNznA8SssgSyI3KYUa21CsYMykkDERjlZDmxV6UuUGau1xpTRPn0yXJ2pTWKpOR4mKekd8ubfYlEmzqx8JAvm6XMJhKbX2+JjWpWTR4OwjWa4hVWZCJsios8eVjxJTFk2uPlbrsrjq8pCp0NIyEffcrlDoGcNDliKFOtsYa0zptCbYFAoM6cgECWaZkb8rfmTa+Z2L5/nEiROcPn2af/zHf5x1v3nAv6mnoSAIvwN+IorisZm2z4dyOxvGBqxUHW2g+kgDtSeamXB4Ytv0KVrWP7KWjbtLKH1oDZo71J5WFEW6mvr49L0LnH73AkNdcRUsa2k69+3ZyI49G1mwMvuOjG82XL00xIm3KznxdiVjg7bY39duXcmDz29iy+6Su7KA7lbg9wU493ETR9++QENF3D+duyydR57bwP1PlWFM+WriDNGkhU+ONHPwgxp6uqLPE0GA0vVL2fVkCZu2rEAqu7fU/S+dLeFG5HZkZASXy8WyZctu67hut5uGhgYANm3adNvLPPX19SxfvnxGYhyJRLhy5Qo2m43CwsIZGxlUVVVRVFSEQnHrStnQ0BADAwOEQiEKCwtviZx3d3ejUqmmkdS5kNv+/n6kUultk1uXy8WSJUtu+bVwa2kJoiji8/liBWqV453UyYbpYNILq85AI1FT4+iJvabQkEXHZJLBck02YlhBkytOHDOUOqyTyQKrtLn0OCewRabnxurlkqhaq8mhbtxCSpISiz9egb5MZ8QR9JKuSKV2fIQCYyod7rhNociUgTccwO0X6HY7KE3OoCGB/K5LziYCNI2P4QmHKEvJmkZuNyTn4ggEaLZHfbglyVk0OKLbJQisN+RSYxvBE47+plaodHSFo58pN8lItsLEmdE+dmYt5wclcXIbDoepr6+ntLR01vP+0Ucf0dbWxt/8zd/Mut884N8MuRUEYRHwKVAgiqJzpn3uNLlNRCgYouX8JSoO1FB5sJbBzvj1LZVJKdiSx4ZHi9m4u4ScFXemw5woilyu6+aTtyo4/dtKrCPxbOmlaxZw355NbH9mA+l3mTIaiUSoP9POsTfPc+5gXaztb5JGydYnSnnwuU0UbFp+z9sWBnvHOPr2BY6+cxGbJXr/lMmlbHywgEee28DaLfO/GnA3QhTFWG7u6U9aCQaia3TJqVoeeWwtu54owZwxe7v0uwVfOnI7lb16LcbGxhgfHycvL++WjieKIr29vQwNDbFkyRKGhoZYu3btbY+vsbGRxYsXo9NND6me6gRmNptZvPjGyyo1NTW35PGdgs/no6amBqlUelvd0mbyLM+V3EokktvyOo+NjeF0OueF3Mbe0+/ip90nODnWTn5SKiMhJ7qImssBJ3lyI92RePXuGkMWloAdrcRIk91yXdJAlkqPQgpiWEWH04pWpiAgTG+/W6A3MzwRZMAbvSFnqFWMB6IteCUIbEhZSPXYKBOTvt3VxhQuu6MKkl6mYpU2izOW3pgSXJKcQeMkuV2mScMg1XDBGldyp8itQiJltTYLRIFqW5wMlyVnUefoJ1umJRxRkJakpdaeoBQbzXR6LeQIetpdLpaqdFwOOtmVvpT/WfpI7LoKBoM0NzdTXFw86/net28fVquVv/iLv5jL1/NF4t8EuRUEQQucBv6nKIrvXbPtD4E/BFiwYEFpb2/vHRjh7BBFkb6OQSoP1nLxcD3N5zqIhOM2rty8LMq/VsbmJ8tYUTpz8esXjXAoTMOnbZx6p5Kzv6uepjoXbM7j/uc2sfWp9eiT7y7V0O3wcPr9Ko7vr6CtKl5Al7kolYee38xDezeRln1vFx2FgmEunmzl47cqqTndHosUM2eZ2PncBh5+dj2pGV9MU6V7DU6Hh6OHGjn0QQ39V6N1FxKJwLpNy3jsqVLKNi69qycEX5HbSdhsNgYHB8nPz5/zsbxeL83Nzeh0OpYvXx5rbnAzNWo2NDc3k5ubGyt2E0WR/v5++vr6yM/Pn1YENxPq6urIy8tDrZ77Ut3o6CiXL18mPT0dURRZvnz5LY+7p6cHuVxOdnZ8CS4SieDz+Wa1SAwMDCAIwryT27kui08hLEb4cKieX/SewhMOIEGgVJNDw8QonnD0eirWZ9IyEVU1pQiskJhpDdjxTzY0mEoagKh/dY1+ERXjV2MdwAxyFV6ixDVZriFNlkyTY2jajyctSYE96CVdUCORagkSZtAbV4nyDCZ6JsbJ12fTZnWwQKenzRlXuopN6fR5bRiCSi75PJSmZlCfQE5Lk7PwR0KMuH0MeSdYl5pFbYKSuzElB18oQo1lGBGBstTMaeR2W9oiGsdHsfqjXuPi5HTqHcPsNOSyR5WNTCbDaDSiVqsZHh6mqKho1vP+y1/+Erlczp/+6Z/O6Xv6AnHPk1tBEOTAAeCIKIo/nG3fu0m5nQ0um5vqo9GitIuH63DZJmLbUrJMbHqshI2PlbJ2R/4dSV8I+INUH2vk1DuVVB6sw++NTkJlcinrdhZx/3PlbHj07ksu6O8c4fj+8xzfH7ctCIJA8X2rePj5csp3FaNQ3dtxW5YhO8d/W8WRty8w0h8nb+vvX83O5zay7r6Vd10Sxp2AKIo01vVy8INazp5sIxSKPs/SMwzseqKEnY+vJfkutHd86QrKbgSZTDan1rkQ/bIHBwfp6elh1apVscYPkUhkzse4EaRSaaygLBAI0NzcjFKpZMOGDXMqEptrQRoQS3Tw+XysW7cOp9PJ+Pj4zV84AwRBmFZQFgqFaGlpwel0IpFIMBqNsX/XFqfd7YVoTY4B/v7SMWTSCJ5wgMXqNOzuILZgKEZsgdgsdqk6nXFvhIBMhd8f/y583qgqu0KVzhW7mx6Je1prWykCUkFCvjaHxvFxhiIj0SqzBKgkcvK1adSMDSFiJ+sa64hRpiZDJuHCSFS9TTy3UkFAJ1Xj9joYmUx0EBOoc7pKhxIlFywjCUeMbpcgUGTIIhCUUD02xBTXmxLlF6iNyCMKXL5wjNgCSCVSNDIFeem5rFtRit/vx+FwYLFYcDgc1NbWYjAYMBqNGAyG6yZCHo9n2oTpK9wehOjyya+AtpsR23sJOpOWHc+Vs+O5ckLBEE1nOzj/YTXnP6zG0jfOgX8+wYF/PkGSVkXpQ2sof7yUjY+VoDXOT5tahVJO+WOllD9Wisfl5dyHNZzcf566ky1UHKil4kAtSVoV5Y+Xcv9zm+6aaLGcZel86/tP8dJfPEHd6TaOvnGOisP11J5spfZkKxp9EtufWsfDL5STV3JvFmilZRp5/j88xHN/8gD15y5zeF8lFceaqDzeQuXxFlLS9Tz0zHp2PreBjC9B04MbQRAEikoWUVSyCJt1gqMH6zn4QS3Dg3b+5f+e5De/PE35tjx2P1nC2rLFSCT33rUwG+4Z5XZqqfxaeDweOjo6brpMGggEaGlpQSaTxVrPTiESiXDx4kU2btx42+Pr6OggJSUFURS5dOkSy5cvv6XuXU1NTSxatOg6W8O1cLlcNDc3k52dTW5uLoIgMD4+jsViYeXKlbc87sSM3Km0iIULF5KamkokEsHhcMT8qqIoxoiu1+uNpRbcKr5o5dYW8PDzrtMcGm5GBIqMGYgRKbXWaMFXoT6FDm+cCG5IXoA7EKbWGiWWJcmZNDnjqmehLgOnP8CliajNMUuaxCjxmK/VugzsAT9XJ7crJBLCQtTLKkGgQJ9Fr9sRy6wFSFcnMeafQCdTsjgpjVGvh74EJXelMZnL7jGWaVLx+kV0CgUtjoTWjClmLrksrNZlUDdqoSAljXpbvGCtLDUTV8iHzy/Q7XRQlpZBjTVeMLbRnE0wJFJnGSYswjpzJtXjUSVXALaZF9E4buG5xQX8cX78XLtcLvr7+1m2bBl2ux273Y7DER331LWhVqv5p3/6J9auXcuePXtu+D1NIRwOU1ZWRnZ2NgcOHKC7u5u9e/ditVopKSnhtddeQ6FQ4Pf7efnll6mpqSElJYX9+/df13hlBtzTd2xBELYAZ4AmolFgAH8piuKhmfa/V5TbG0EURTrre6j4qIbKA7V01vfEtsnkUtbeX8CWJ9dR/rUyjGn6eR/f+JCd07+t5OQ7lVyqiVsAktMN7HiunAee38ySwty7ijS6bBOcfO8ix948z+WGuGVl4cosHn5hMw88uxFj6uzPnbsdNouLE+9V8fH+Cwx0TxVWCZRsXcGjz29iwwP5yP4NxGR9VkQiIrUXuzj4QQ0VZy8RCUcpXnZuMrufKuXhXUXoDXc2eu1LZ0u4Ebn1+/00NTXN2oJzavl+2bJlMzYdEEWRioqKz9Q+t6OjA7c7SngKCgpQKm+tYvVaW8NMY+zr62NgYICCgoJpJNhqtTI8PMzq1atvedx9fX1EIpFoC87hYQoLC1Gr1TN6bqcaadhsNiwWC6Iokp6eHiM1c40x+yzkNhKJUFNTMyO5jYgi7w00sr//AoM+xySxzMblD3JpYiy23xp9Cu3ekZjaGolIqbHFyWxpchaNzj5UEhkrNFn4gtDkSmx4YOKqbwy9RIExrMYaCmFP8NyqpXL8+FmkTiYclNHptKFUQEiMq8HmJBU5SSYuWe3YAwFydVoGvPEaoaJkM0JESu2kGrs6OZV2Z7wJxLb0hbSNjzPsjSq5xanpNEymMZgUSRTo0/l06GrMs1ualkGtdRABWGPIQCHIuDgW/0xT5Hex1oQQkmJUqqgZG+LPCzfy+3nxiaPdbmd0dJQVK1ZMO/dT14bdbuev/uqvaG5uZs2aNbz88sts27ZtWpOQa/HDH/6Q6upqnE4nBw4c4Nlnn+Xpp59m7969fPvb36aoqIjvfOc7/OxnP6OxsZFXX32Vt956i/fff5/9+/ff8LiTuHtYxjzgXie312L06hgVB2o497tqGk/H29RKJAIFW1ay+YkyNj1edkfydAeujHDqnQpO7DvHQEKx3KLVOdy/t5wdz27EnHt3FaJ1t/ZzbF8FJ96pjDWJkMmlbNi5hof2lrPuwYK7QoG+XYiiSNOFKxzZf4Ezhxpi+cCmVB0P7VnHzuc2krXw7vpO7hTGLS4Of1THod/VMTYaffbIFVK2P5DPY0+VsqpgbolLnze+IreTCIVC1NTUsGHDhhm3tbe3EwgEyM/Pn5Vw3m77XACn00lNTQ1paWnk5+ff1gXR2tpKZmbmjA0XpmwOKpWKvLy860ik3W5nYGDglnzHU+jp6aG/v5+UlBTy8vJiubc3KygbGhoiEAig0Wiw2Ww4HA4EQYjlyxoMhhuS3c9Kbmtra6+bzDQ7hvhB+ye0u0YwJykxytX4ggLdbjsr9CauTMRtG4X6ZMISsHtFrk44r0saKE3OIiSG6HN6GfF5WGNKp8WV2PAgBZ1MSbN1HE8oRFaSlpFgXHU1SRSky3W0uuwxqU0qjxPbJZpkJBEZ7Y74mLK0aoZ9bqSChCJDJlaPj66JeNRPnimFy64xUiVKUlTRwolWR5zsFqWk0ea0UGTMpGXUyorkZOqt8SK4ktR0XCE/E04/A34fpeYMaq3xz7TRnE0gFKZudJSICGXmDGrGh/je2i28sKwwtt/4+Dh2u31aN7+Z8Gd/9mesWbMGm82GSqXie9/73oz79ff3881vfpPvf//7/PCHP+Sjjz4iLS2N4eFhZDIZFRUVvPLKKxw5coSdO3fyyiuvsGnTJkKhEBkZGVgslpv93r4it/9GYLc4qThQw9n3L1J3oplQMG4lW7Z2EVueWs/2ZzaQvXx+kxdEUaS96grH3zzL6Xcv4LLG/cNrtq7kgec3s/Wp9XdVM4JgIMTFY00cef0s1SeaY5MGk1nPA89uZOeLW8hdfusNeu4muOwTHH+vmsP7KulLmHwUlS9n1/Ob2PRwAXLFPe/M/MwIhyJUnrvEwfdrqb5wJfb3JcvMPPZUGffvLEA9j/FyXzrP7Y0eYFMNGK7FVKbswoUL55z5eqsQRZGenh5GRkbIyspCp9Pd9vvcyHM7Pj5Oe3v7rDaHa32zc4XVaqWnp4eUlBRWrVp1W2NOTU0lNTU6Ew4Gg9jtdsbGxrhy5QpSqTSWL2swGL6QCmhbwMNPO8/y0WDUgmCQq8hVplI1PhBTLRPPjEGiRCWqqRgbmvF42UkGFBEVlZb48p2QwI9yJRq0aLg4Gi/Gkk42PJAKAoX6LAYcEzS77PHtU+8tU5ISTuLSmBP1NTfVkBhhpS4NpzdE1fAIubrpRn+ZIFBsyKZuZJgRzxgrTdO9ZAaZCrPEwMXB6E080ROcrExCLSiptYzEzklk8qzIBAlFpgz8PpHa8bjtITL5eo1sus86HA7PSaH3+Xxs27aNkpKSWff77ne/yw9+8ANcrqiKND4+jtFojNmGcnJyGBiInuuBgYFYi2mZTIbBYGB8fDx2/X2F6Ri4PERr5WXaL3bSWdeNy+bG4/TicXmRSCXIlXIUKjk6owZDmh5Dmp6UTBNpOSmk5aaQvjCNrKXp8+ZzvRmMaXoe/b0dPPp7O3DbJ6j6uIHzH1Zz8eN6Out76Kzv4V//x9ssLVrI1qc3sO3rG+YlYkwQBFatX8aq9cv49g++Qc3xJo7vO8eFQ3U0nmmn8Uw7P/1Pv6H88VIefGELJfffeX+uXCFj8+5iNu8uZnzIzol3Kjn65jn6O0f47U+O8tufHKVg43IeeWkLWx4vQaW+97JzdUYNT/3+dp78vW201vTw8VuVnDlYT8P5yzScv4wxRctDe9bzyN4vt5orlUnYvH0lm7evZGjAxsEPajhysIGuzlH+6f8c4hc/Pc4DjxTy+FOlLF52/cr33Yp7htzeCNeSyUgkwuXLl3E4HBQXF99S+sCtYCpxwWAwsH79evr7+z9TUdq15HbqczidTkpLS2eNCLuVYjSY9LV1dmKz2Vi0aNFtEeOZSLxcLictLS22BB0IBGLL2J2dnbGK+8Tiu9tFWIzwbl8T/9JVxXjIOUkss2m12rgUtsZIHESLr+SClHxdFvWWUezya/OSRdRSOcs1GdSOjpCcOn27RIA0pYY0mYGGsVGU8ukrCFKJwHJtKhM+kYvDo6Sqpl9zCqmM5WojHTYHY5EJQCAYiV8r6SotWQpdzIIQ/XzR70QAikyZuH1Bmp1xJTY8qQlnJGlJlWkZcfvpc8dzdCNiBLlEQpEhg9bRcewK/7RzEhFFVhnScHuC1AyMsOaaiZNKKiNfa0bJ9eR2LpMUj8dzU//4gQMHMJvNlJaWcurUKWDmIsWpa222bV8hjvaLnfzLf99P3Ymmm+wZtdJY+mYvRtUla8lelkHO8kxy8rJYsDKbBauyyVqajkx+Zx4hWqOGHXvL2bG3nIAvQM3xJs68e4HzH9VwpaGXKw29/Ov/eJvFBblsfnIdW59az6KCL94LK1fI2LirmI27iplwejn7QRXH3zxL45l2Tr1Tyal3KklON3Dfno088PxmlhYtvOPXcEqmkWf/4yPs+Q87aavu4sjr5zj9QRXNlZdprrzMz/7rPrY/vY6dL26+J4vQBEEgv2wx+WWL+aP//iSfvF/N4X0V9HQM886rn/DOq59QvHkFj+zd+KVXczOzTfy7P3mQl//9fZw71c5H79fQXH+VA+/VcOC9GvLX5LL7qRK27ViNQnl3n6e7e3TX4GYK5VSxVUZGBuvWrfvCfoRDQ0N0dXVNS1yQSCSfG7mdysZNT0+nrKzspp/jVpRbn89HY2MjycnJrFu3juHhYbxe781fOANu9p4KhQKz2RxTnP1+P3a7naGhIdxuN263O6bs6nS6OZEmURTpDDr4h4o3ueQaI0kqY7k2jQlfhIujUXKouCbVIU2hw+UVuTA6RQ7j4xYA/a5YRgAAIABJREFUtUSFEFRxcWQ49rcpKCVS9NIkml3jDIajyqYk4ftIVarJlBs5OxrPnJUmbF+pTyMQEKkfj1sMIKrUKgUJC6VaOh0TOD3TCXMwEmapNhlCUmqHLOQapiu5EiSUmbJpGBllOOJl2TV2FpM8iTRBR/WUkhuJf+YstRaNqKBiOO65DU/6gbVyBSt1qTjdQVqsY6jypytMc20R7Xa7b9pM5Ny5c3z44YccOnQIn8+H0+nku9/9Lna7nVAohEwmo7+/PxY3l5OTQ19fHzk5OTGP79Tv7ytEYR228x83/zcA1Lok1t5fwKoNy8hbt4zkDCMafRIqrQoxIhLwBQn4ArisEzjGnNgtTsYHrVj6xhntG2e4e5Sh7lFcVjftFztpv9g57b3kChkL83NZuX5Z7F/Oisx5z6hVqBRseqyUTY+Vxonuexep+KiG7uY+upv7eP1v3yNneSb3PbuJ+57bNC/dxzT6JHa+vI2dL29juNfCJ2+d5/ibZxnoHOG9nxzhvZ8cYcGqbB5+cQsPPL+Z5Duc0yoIAqvXLWX1uqX80d8+y+n3qzjy5jnaq7s4/JszHP7NGRbkZfLoS1t54NmNd13e71yg1SfxtW9u5fGXt9BW28PhfZV8eqCOunOXqDt3CUOKlof3rOfR5zeRueDLm7SgUMjY8XABOx4uoPvKKAffr+H44UZaGvtoaezj1R8dZedja3nsqVIys+/OVr/3jOcWokrgTOM9d+4cWVlZDA8PX1dsNVecP3+eTZs2zUokg8EgbW1tAKxatWpaNNZnbQN85coV1Go1kUiE3t7eOWXjTmFiYoLLly/ftAnFVGFdIikfHh5mYmJimodyLp7bkZER/H4/CxYsmNMYEzHl28zJycFms2Gz2XC5XCiVyphndyaLx6jPzb92VrN/oB6AVIWGHJWJGut0i4FJJcMZ8pOh0mEQtEyEA/RMxG0C+YZk2ifGWKxJRgxK0StU1CYkCaxLy6LG1k+hIYMhp4dsjY66hCSCApOZzokxCvUZNFos5Gj0dE5YY9uz1TpEIUyKTEfjmAWDXIlTTIjZEgQKk9Pod0xgmSwIUykk+CfVXL1ExgKVjmaHPaa2ZurUDHvdk0puBm5/gE5H/DMtNhrpctnI1ejRC0oCkQidjjihXp5iYmDCSY6gomvCy7JkE+22uGK3Ki0VlURGz7gDu89HXkoy7bZxfvHgbjZm5sT2u3r1KgqFYlq75pmwc+dOjhw5Muff4qlTp/j7v/97Dhw4wJ49e/j6178eKyhbs2YNf/zHf8xPf/pTmpqaYgVl7733Hm+//fbNDn1vyUyfEWZtprjWv53Hv/0w3/zrZz8zARFFEduIg/7LQ/R3DNJ/aZCr7YP0tvYx0jt23f5ao4a8dUtZuX4ZqzYsZ+X6ZehT7kwlfjAQou6TZs59UMX5D6tjBVQAS9YsZPuejWz7+gayl82ft1QURTpquvjkrfOcSijqkkgllD1UyEMvbmXjrrUoVHdPfm5vxyBH3zjH8bfj45UrZZTvKuaRl7ZQtCXvnu6E5nJ4+OT9Gj5+K6rmTqF4ywp2v1j+VdLCJLyeACePNXPgvRo6L00KQQKUbYw2h1hfvuxzaQ7xpSsog5nJrcfj4dy5cyxcuJBly5bd9o/swoULlJWV3VCVslqttLW1sWTJkhlbzn7WNsCdnZ1YLBa0Wu11UWU3g9frpa2t7Yb+xkgkQkdHBx6Ph8LCwmktfmca91zJrc/nY+HChXMe5xRuVJTk9Xqx2+3YbDbcbjcqlQqj0YjGoOcDSye/6qzGrFIz5LdRaMimcXwMGQIepque6WoVuUkm6kYtBCIRFhv09CaQ22KTGQEptaMjRIDS1AxqE8jrZnMu414fbZPkL7o9Tn7L0xbQabcx4o0WjqwwpHDJHX3Qq6Vyik2ZXBgZJDipxKcok7CGoyQ2S67GqNDSYo8XgwFIZSCTSFhjzKB1ZAykIhPhuD3CpJJhkCsJeyP0e31k6jUMeeJxZCuSk9FKlDQMjxAWRRabjHQ7o59ZIgiUZ2bTPDqG3ecHYFmyMUZ+VxpTUAkyGixxz+2yZBOX7VZee+QJ1qbFH/7d3d1otdpZ0w8Atm3bRlVV1Zyv40Ry29XVFYsCKy4u5vXXX0epVOLz+XjppZeoq6sjOTmZt956ay5FiV8qcpualC6WhHbwy6Z/+MLVSY/LS2ddd0zVbbtwmfFB23X7ZS3LYOW6ZazaECW8S9cumnfPaTgUpv5UK6f2n+fsB1XTuo8tK17Etq9HiW7W0vnzFAYDIaqONnD0tTNc/LiBcCg6udUa1Wz7+gYefGELqzcsu2tsAMFAiAtHG/n4tTPUfNIaexZnLEzloefLefj58nu6E5ooirTX9XLwjfOcOVhPwD+ZtJCm4+E9G3hk75c7N3cKoijS3jrIgfeqOXW8Jdbq15xhYNcTxTzyePFnag7xpSS3wWAwtnQviiIDAwNcvXqVcDhMeXn5nKOoZkJVVRVFRUXTiB9EiWFnZycOh4OCggKSkmaueLVYLNhstusikuYCm81GfX09ZrP5thIPfD7fDTusTVkcMjIyWLjwen/X6OgoDodjWnezuZDb0dFRPB7PXHJGr8NcKu5FUcTn83Gsp42fXq1lJBS1ThSqU+jzuLBONmHQyhR4xChhE4BCYyaj7gkGvHHit0iv56rHjkyQsExuICJIaXfHldaS1AzqbEPo5EqWa1KQRCRUJSi5U+R2gcZAZCKMSaun0R6f4a80ptLhsrDWlMlVmxOdTEm3N06mzUkaQkKIBQoDDRYLWpkCF/7YdokAhSlmRp1ehieihFmRoOSmqpLIUqhpGh9niquZkuTYggGkgsDa5AxG3R763PEosRy9jv4JFyuNKfh9YSIC9LriiQ6LjHoCkTCpMjXNo2MsMOnpdca3r0pNIUmQ872Nm8lLjt/Qr1y5gtFoJCVl9pv81q1bqauruxsezHd8APOJZEWaWCY+wKs1/5sla2594vlZYekfp+3C5RjhvVzTFevuNQWNQU3RffmU3F/A2h0F5K7MmtfrJOAPUnOskU9/e4GKj2rwuOK2rJXrl7Fjbznbn9k4rzYB+6iTk+9UcPzNc9OyfXOWZ/DwN7by4ItbSMm8e5Z/R/vHOfrmeY6+eY7RhC5hZQ8U8OhLW1n/cOEdL5r7LHDZJzjxfg2H3qyIJS0IgkDp9jx2v7iZdTtW3dUtbOcLToeHIwcaOPh+DYMD0YmtTCZhy45VPP50GQVFt+5z/1KTW7/fT0tLC0qlkry8POrq6mYkpreC2tpaVq1aNY28ut1umpubMZvNLF48u5H+dhopRCIRurq6YhXfcrn8tpb5A4EADQ0N12W/TnVjm83iMBMpvxvIbZfLyg+azuAOB2h2DpOrNqAS5bj9AQaC8eVFjVSGlyBLNMkQknDZYUOtlOEJxTuQLdTr0MmU2DwBBtxu8oxGOlxxcluamgEIXBq34wz4WZeeSfV4nNyuN2cRCkViMVlrU800JJDbdalZWD0+rtijhHaJwciVyRgvhURKWUomDaOjeEJRJcCoVGGbVHIXaY1oUdBim77EK8ijry00mmketiCREXs9gF4lJ02uxOkJMuYPYFDJsQfjJCI/NRVpRELzaFQhztBrGZyIEn6dXEFhShpVg0MxL26WQcuA24VCImVNiplR1wR9Lhcf7nmWhQnXzqVLlzCbzRiNN37wi6LItm3bviK3dwA5qQvE1Y5y1u7I5399/P07vlwcCoboae6LKbst5zsYvDIybZ/kTBNr78un6L7VFG1fTeaS9Hm7bgK+ANVHG/n03SjR9bqj9iGJRKBoRz73PbuJzU+sm1d/aU9LP8f3nePEm2exjjhi4yl9sJCHvrGVTbuL7xrbQjgcof7TNo68fo7zh+pi8WzJ6QYefnEzO1/YTOYdyCD+vCCKIi1V3Rx68zxnDjcQmlQp07KM7HxuAzuf3UDqHfZK3w2IRERqq7o48F4NlWcvxaLlFi8189jTpTyws3DOcWJfWnI7ODjIlStXWLFiRWxpdCZieqtoaGhg6dKlaLXaWMOE/v5+CgoK0Otv3gnHZrMxNDQ050YKXq+XpqYmkpOTWbJkCUNDQwSDwdsii8FgkLq6OtavXw9E833b2tqIRCLk5+fPujQ8NjbG+Pg4eXl5sb/NhdxaLBbcbvdteYxnI7fOoJ+ftV/g7e5mQmKEtcnpSCXSWCetxVoDPd740qdZnoRJkNMx4Yr5U5MUUryTS/o5aj0ZSi3VljgZXWE0cmmS3K4ypKGTKLkwmtDQID2TmvHBWEyWLCKl0hKP/ipOS6feNkSaSk2WwkAoGKElIXN2mdHEZbeVNaZ0LA4PcomUvoQGDalJSYQlERarTdQPjaCRynElWCukEoGC1DQGrG7GJ4v9pAqB0OSqxQKtHr1cSYslToi1KhmuYBC1RMoCuZphvw9nAhlO1iZh9/tZqlAz6g2iUMqweOJLs2m6JDLVWkbsE4y6PaRokxjzejn6/AukJxSGtbW1kZOTM6uXdorc1tfX33CfecQdI7eCIBwWRfHR+XzP4rXF4rKRMhxjLv70n36fr33n4fl8+zlhuGeUuk+aqfukmfqTLdhHHdO2p+WmULQ9n+L7CyjbWYTJPLfag88Kn8dP5YFaTu4/T9XH9TGiJpVJKX2okPueLWfzk2UkaW6cXPN5IhwKU3WskWOvn6XyYG1sPFO2hZ0vbSOvbMndMIEEwD7m4sT+Cg795gwDCROYtdtW8sg3tlC+uxiFUj7LEe5uOKxujv22isP7Khjsid57JVIJGx5Yza4XNlGy9d72Hn9eGB12cPB3tRz+XR12W3QlMkmtiMaJPV3G4qWzd279UpLb1tZWXC4Xq1evnqbSJhLT20VzczMLFixAqVTS3NxMUlLSjA0TbgSn00lvby+FhYU33Xd4eJgrV66wevXqWNOGoaEhfD7fbZHFxEYWTqcz9lnmku87k+IsiiLBYHCWV312cmuz2ab5fMNihHe6Wvl0pJuzlt5JYpkJYahO8MMu1hrp8VqjqqYhg16bC0vQPe34CpmADIEFch2XXC7StWqGvPFg9eUGI55IEJNEQ7NljCJzGvXW+M24LD0TfziEzR1gwOWiNCOD6oRc3FJzBhIEmoYt+MNhClPTaLLF/arFaelM+MNcGo8S6EV6Az2eqKorFySUmTNpHBnFE4yST4NSiT0cVYxWGJKRhAU6bHFlWRAgIhUxyBVky9VcsjkR5HGyC6BNkrNCn8IViw2XP0CSSjpN6V1lNGLzBBiZiJJlvUaJwx+1Riw3mpAhod0SLzDTJSlwBgKceell9AnNT5qbm1m8ePGsSQiRSITt27d/KcitIAg3CvIVgAOiKM5rR4GysjLxh3/xE/72+R8hkUr4L7/8Ng9+Y9t8DuGWIIoiva391J9sofHTVho/bcM57pq2z4rSJax/tJh1j6xlRdnSeVkOdtncnH2/ilPvVNBwsiWmRKk0SrY8uY77X9hC8Y75y6t1jrs4+XYFR18/O822sHBVNo98czv37y2/I+2IZ4IoijRXXObwa2c4+1EtAV/0WWJI0fLg3nJ2vbyV7Hn0Nn/eiEQiNJzv5NCbFVQcayIcit6HMxemsOv5TTy0Zz2GezBJ4vNGIBCaFic2hTXFC/na18so356HbIbfz5eS3Hq93hlnRjdrXTsXtLa2olKpGBoamqYKzxVut5srV65QVFR0w32mFNVwOEx+fv60tIWZUgvmikgkQmVlJdnZ2QwODlJYWDhnom+1WhkZGZnWxGEu5PazdBmzWq1YrdYYuT0/0sf/aTpHp9NKWVom3nAAhzdIn9tFUYqZRkeceC7WGpGGgjhDAiMeD0aFEkck7pmTCRKKUzNoH7Pimuxol6pSMBaKEjm1IKXQmEa1xRJbkk8ktwu1BnKTjJwbjEd7TZFbAViu1JKqMVIxEldy16SZabSOkKJKYkGSAX8gTKs9ThSXGIx0T9hYbUhh2O4mSaFkwBN/gKcmJSGTSzArNDQNW9DKFbgicU+uRiZnVVoKrUNjeENhQERMEOPXpJgZn/Aw5IoTeIVSgj8cZonBiDwsodfpxJ8QVadQSDAolWQotbQMjaFQSfElkOFMg5Z0pYZffO0x5AlkorGxkRUrVsyau+z1enn88ce5cOHCDfeZR3zR5DYMnL7B+2wURXFe21JNdSj71/+xnzf/7n0EQeA//fMfsfNb983nMG4bkUiEnuY+6k+2UH2sgcbTrTFyBKBP0VHyYCFlD62h9OGiefGh2kYdnHnvIp/sO0drxaXY303pBrbv2ciOvZtZuW7pvCmoPS39HH39DMffPDu9he6uYh7+xlbKHiq8Y/nD18Lt8HDy3Ysc/s2ndDXHu0Cu2byCR1/ayubHSlCo7l0112pxcvTtixx+s4LRyWJKmULK1keL2PViOfll914u8BeB7s4RDrxfy/GPG/FOxl4mp2rZ9UQJu75WTKo5PjH7UpLbUCg0Y5ZsW1sbZrP5pkUuN0I4HKayshKpVEpJSclteXc9Hg8dHR0UFxfPuN3hcNDS0nJDRXWmwq65wu/3c+bMGbKysm5JbYaZ7RTzRW6l5hR+09nAb3tagaiFYLHWxKdD8VleIrldojWRKlVzwRJXUU1KFfZJ/2qB0YzNHWDE5yYkxlXNDJ0Gi2+CQn0al0atJCuV9AfihLggNYUBr4vFahMNQ6OszcigJuE9SjMycAcD+L1heh1OSjIyqElQcovN6UgRaBkdwxcKszoldZqHttScgcPnp8saVW8X6PX0TkSXYnUKBYUmM1VDg4QmyXaySsV40BuN/UpLx+7y0ZtQLKaQSvALYZYaTMjCErrGbISliT9VEbNeQ6ZKS+PAKCAgyONdx/RKBYu0OlpHrEzF34oyERHQyOWsSk6hZdhCKCxS9Sd/MO27q6uro6CgYNrE7FqMjY3xB3/wB3zyySc33Gce8UWT22bgKVEUL8+wrU8Uxdwv8v2vRWL73bd+8Dv+3/f3AfCdf3iZJ//Do/fcg9bn8dN4upWLh+u4+HE9w92j07YvLljA+l3FlH+tjLx1S7/wZeGBzmE+2XeOT/adY6AzbnXKXGLm/r2befDFLfPW/jcYCHHx43o+/vVpqo82JrTQNfDgC5vZ+c3t5M5Dh7a5QBRFOmq7OfSbM5x+7yJ+b/T5ojNpePDZjez61jZy57lt8ueJcDhC9ak2Dr5xnupT7bEkiUV5Gex6oZz7nypDo5sfO8vdjIkJPycON/Lhu9VcjVk7BMq35fG1r6+jqGQhEonkK3I7hcuXL2MwGG7YnnY2TJFOpVJJTk4O6em3t1zi9/tpbm6+LrEgsUVvYWHhDZdzZ/K+zgVTbYZDoRDbt2+/5XHb7XYGBgampTTMhdzOpSjsRugZGeLV1lo+Hu9nTWoaXW4byzQp1I+MsNacMa2YqyjFzJDfRY7SQN3wCEv0Rq4kxHolK1XoVHI0KGkbi6qlMjmEEq7r9RmZDNgnGJhs8brUZOTKZEyWQpCQr9bR5nThn3w4rE03UzceJdTZGh1L9SbOXE1QcjMzqLYMIREEilLSUSLlQkJDhILUNJqsFjI1WswKNcFgmHZ73Gaw2GCgz+NkTUo6ly1WDAol/QlKrlmtxqRWEfSH6bE6MKlUjIfiObm5Oh0mVRLNg1HiqpJJ8RJVXbUKBauMKTQMjxIMRwm+TCIQlERQSKUsTdIw4vZPKz5TSCWEpCIrtHr6rC6CEZGAIJIkk3H6331jmme7urqakpKSWUlET08Pf/mXf8lHH310w33mEV80uX0GaBJFsWOGbU+KovjBF/n+1yKR3AK888OP+MV/fQOAbc9s5D//4tskae/Nh6woigx2DlN1pIGaYw3Un2rF74mvcCRnmqLNHL5Wytr78r/QoitRFLlc282Jfec4/U4F1qH4PWn1xuU8+NI2tj+zAZ1pfpanx4dsnNh3nqOvf0pfR3ziXbglj50vb2frU+vumha6E04Pp96t4vBrZ+hsjAsZheUr2PXNbWx+7N725o70Wzm8r5Kjb1/ANqmsJ2mU7HiylMdeLGfxqqw7PMI7D1EUaazr5aN3qzl3uoPw5LNq4ZI0fvnmd7585DYcDhMKXds6Fbq6ukhKSpoxf/ZGEEWR7u5uRkdHKSwsZGRk5JaPkYhri7ogGtHV3NyMTqdj+fLlsxKCmewBNxt/V1cXY2NjrFmzhrq6OsrLy2953A6Hg76+PgoKCmJ/GxwcpLOzk6SkJEwmEyaTCa1WO031uR1yG4yEeberjR83XsAVCiCXSNiSsYDq4UHck2S6NCGpQC2Tsz4lmwtDA/gmJzVRchtd/klWJpGnTebCyCCJl7FUHm1fu1hnRBmRMe73xpolACwxGuh2OShKSWfI7sKs0dI8Hi8IW67VMBDwslCp45LdSVG6eVpr3NLMDCZCQXzeEL12J8UZ6dSOxVWctWlmpIKUxqERwhGRVakptCY0TNiYmUWvzcGwO2ojWGDQx5TZXJ2eLJWGqsH4AypVo2bU70Erl7NYrcXi9jPqiyvPeqUCLyEKU81cGbEiRkSc4fjkRCuXsyzNxMCYk3GPD41cjjsS3S4AazPSGXK6GXFOxI7nCAUwKOT8fWkBoihiMBgwmUx0dXXdtPtfa2srP/rRj9i3b98N95lH3FtS5WfEteQW4PQ7FfzjH/0zHpeXxQULeOXd/0zmknvX8ziFgD9I89l2Kj6q4fyHVdPaCCvVSkoeLGTjrhLW7yr+Qu0L4XCExk/bOP76Gc68dwHfRJRwyxUy1j2ylgde2MKGeWrMIIoi7VVX+PhfT3Pqt5Wxsaj1Sdy3ZyM7X95GXundU4R2uaGXQ7/+lJPvXoyNVZ+s4aG95Tzy0lZyl89fg43PG8FAiIqjzRx84xyNlVdif19duohdL5SzdXfRPU3iPy+MW1wc+rCWgx/UkpObwj/8/Jtfkdsp9Pb2IpVKycnJmeFV12MqqcBkMrF0aXQp61aPMdPYqqqq2LhxIxDvBpaXl0dqaupNXz+Tgnoj+Hw+mpqaMBgMscYV58+fvy1ym1gIFw6HaWtrIxQKsXz5ckKhUKyDmNvtRq1Wx8iuz+e7rihsNpzo6+YfGypRyqV0OMbJUxtwBiNkarXUJRDD0vRMaseHWJucQa/VQa5OT4M1vhS5RG+kz+OgKDmD1uEx1HI5Y0HPtPdK0yaRrdLTODKKKEKyRsV4AhnckJ7J2ISXbnvUGrA6LY2WSXKrlErZlJlD9cAQE5OEe4VOQ8dkw4R0hZLlpjTODSSkJ2SmU2sZjsVoScIC1SNxcro6LZUW6xiLtXoigQgqhYJLiUquyYAjEGCh1kDTwAjZeh1XE2wIWTodGXotHYMWPMEwZo2aEV/0MwtASWYGA3Yno67o30xJKsYDvth7ExRpH4s/+E1JKqwBHytTUwj6wrh8Piy+uDKcplGTrE3CIFPw82d2x1rd2u12+vv70Wg0MbJrMBiusyhUVVXxxhtv8Ktf/eoGV8O8Yt6e4oIg7AbygZg0Kori/zdf7w8zk1uAq+0DvPLMP9DfMYjOpOE7//gtHnhhy11Dcj4rRFHkSn0P535XxYWDtdOKriCaX7vtmY1seWo9GYtufYVvrvBO+Dj3fhXH3jgzrRBNY1Bz37Ob2Pmt7eSVzY8/1+PycvrdCxz59WnaLsbJ1cJV2ez6/R088PxmdKbZW2TPFyZcXj5558KM3tzHfu8+Nu1ai1xxd/iIbwe9l4Y5+MZ5TrxfjccVvdfqTRoefnY9u18s/6o5BBAKhbFZJzCnG74it1Po7+8nFArNKUZrcHCQ7u7uaUkFU8cIh8O31XELojfXiooKNmzYQEdHB16v97puYLPB6XRy9erVaQrqTLBYLFy6dImVK1dO8xjfLrl1uVx0d3ezdOlSGhsbyc7OJicnh2AwOO0GLIoiHo9nWrtciUTCwoULMZlMNywwah4f5e/rKmIe1k2ZOQw7XHS7ouStJH266rk1cwG9didXndHtRWYzDZPFXhJBYH1aJm0jFpyTSQOpSUlYJsmtWiYn35hKk2UUfzjuuZ0itzlaPUp/hIhMSq8rTh5XpabSZh2jKC2dIZubLL2O+tG4UluSmU6v00GGPIk2i5Xlel2M7AKUZKQTRmTYNoHF7aEoM536hOix0swMfIEwrcNRj9HKtBTaJj25armcUnMG1f1D+Cc7FC0yGeh22pEIAmvMZkL+CC1jcQ9vll7LwISbVakp+Lwh/MEwwwnjMWvVqFUKFBEJl0etpGs1DCekRaxMS0EQoWM4SngTM3AXm4ykKlXU9A+zJMXE/m99fdr3WVVVRXFxcYzs2u32mLJrNBoxGAycP3+e48eP8+Mf/3jGa2IKPp+Pbdu24ff7CYVCPPPMM/z1X/813d3dsQ5lJSUlvPbaaygUCvx+Py+//DI1NTWkpKSwf//+ufzm54W9CYLwKqAGdgC/BJ4BLoqi+AezvvBzxo3ILcCEw8MPfu+nVHxUA8DmJ9fxH3/67+Ytams+Yekf58KhOi4cqqXuRNO0orQVpUvY8vQGNj+xjty8L26JeHzQxsm3z/PJvnN01vXE/r5wVTYPfmMrD7ywhdR56ujV09rPkd98yol95xJa6MrZ+uQ6Hv29+yjckndXTHREUeRSXQ+Hfn2G0x9UxdRcY5qOnS9u4dGXtpKx8OZi0d0K74SfUx/WcvCN81xpiQokgiCwbscqdn+jnNJtK7/0zSG+lAVlkUhkRi/oXJIGgsEgra2tCILA6tWrr8t+HRwcxO/331a01RTOnDmDTCYjKyuLBQsW3NLNYopkrlmzZsbtkUiEy5cv43K5KCwsRKmc7p+6XXI71agiEonEMn3nknNrtVoZGhpCp9Nhs9nw+/3o9fqYsjsW8POjuotUjw1g8XnIVGtJU2gIhMO0JyQJFKenUzc2zCKdATUK1DIF1aNx1XOK3K42peLxhJALEjqd8ZzbNHUS1qDt0r/GAAAgAElEQVSXopQMusccOPw+ItLpl+1Ck54UuZrGwREiIuSadFxNILebs3MZsLvonVRy12Sm0zBJbjVyOevSM7nQ149/MvKlJDuD6pEoeV2i0aIJC7S44uSyKNNMvWWE5KQkFmkMiGGR+tG4+rzanMol+zhr0sx0j9hJ12qmRX8tSzGikMlwT/jpt7lYlGykyxn39BWkpxEORegYiZ7HHKOevsnPk6XXkavVcfFq3AOcbdDR73ZhVidhksrxhkT6XXGPb65RT0gQSVEm0dI/ysIUAz12B6sz0vj1i09MO5dVVVXXNQsJh8M4HA5sNhu//vWvOXDgAMnJyXzve99j27ZtJCfP/AAXRZGJiQm0Wi3BYJAtW7bw4x//mB/+8Ic8/fTT7N27l29/+9sUFRXxne98h5/97Gc0Njby6quv8tZbb/H++++zf//+GY+dgPkit42iKK5J+K8WeE8UxXkNmp2N3EL0nH/8Lyf5v//lNTwuL4ZUHd999Q/Z/MS6G77mXod3wkfV4XrOvFdJ5cG6aT7dBauyKf9aGZufWM+KLzAztru5j2Ovfcqx18/gsER/q4IgUPxAAQ++sIXNT62bl/zcYCBE5aE6Dv3qJHUnW2KFT1lL09n50jYe+sZWUjLvjqYEE04Pn/z2Igf/5RQ9bdH7mSAIlOxYza5vbmPjzjX3bBc0URTpqL/KgdfOcfpgXaw5REZuMo++sImH92zA+Bla2N7L+IrcJuBmrW+tVittbW0sWbLkhp7akZERXC7XnJfZEzHV9KG9vZ1NmzbNGnB/I0xMTHD58mXWrl173TaPx0NjYyPp6eksWrRoxhvw7ZDbcDhMU1MTdrudLVu2xAj/FLkFbnizt9lsjI2NxdIdIpEILpeLq6MjvNbZxrHxEUKiSK5eQ5pSS9OohVBEJC8tmfYE/+mmzGx8wRCNw1ELQUlm5jRyuz4jC7c/EMtgXWo0TiO3ZeYMhlwTDE6SS6kAoUlyq5bJWG1K46rVzljCsnuOUUuf28VCvQENciJAx3h8TIUZZtrGx1iTaqZr1M6SFCN1w3EltiQ7gzGfFw1y2kfGKcnJoGYooUmEXgMiXHV4CIRFCjPTaLBEbQ8CUJ6bQ9eYLeZxXZWeSut4VJldajJhViVxIYGcLk01cdluIy1JRZoiiUA4Qpc9Hny/MNmAKxhggU5PU98IuSYDPY749uVpyWjlcpr7RwhHYFGKIWbJSNOoWZFiorJ7IJacsNRsonPcxubFufzo6Z3TvveZyO21eO2116ipqSErK4tLly7NhYDi8XjYsmULP//5z9m9ezfDw8PIZDIqKip45ZVXOHLkCDt37uSVV15h06ZNhEIhMjIysFgsNyMk80VuL4iiuEEQhErgaWAcaBZF8dbjTz4DbkZupzDSa+Ef/v2r1J9sAaLFZn/4v7+BecG9q4rNBT6Pn+ojDZz74CIXDtXhtsdXNLKWpnPfc+Vs31PO4oIvJuQiFAxRdaSBY6+d4cLBWoKB6AqUWpfE9mc38si37mPl+mXzoqIO91g48pvTHPnNGcaHovdUiVTCpt3F7Pr9HZQ8UHBXNCUQRZHWi1c49OtP+fR31QT9k6t2mUYeeWkrj7509xDy24F93M2xdy5y8I3zjEy2MpYppGzfXcxjL20mb+2tCWX3Oj4vcnvvmlgSIJVKZ0xRmFI7nU4npaWls2Zz3ugYN0MgEKC5uRmVSoVGo7ktYgsgkUiIJITyT2FoaIiuri7y8/NnbXl6q3C73TQ1NWE2m4lEItOUbEEQEASB2SY+124PiyIHBq7y86YaHAE/SqmUAn0ywy4XdQkNDsKTS+9qqZR8k5mgL0LD6Oh1xzcnqclO0hHyhaf5Rad+4suNyRAS6be6Yv7TqXHJBChKzaDX4qDu6gg69XRPqF6hpDhZQ8PACCCw3GyadnyTUkmaVE391eltQgFSlEq0EgV1I8Ncy5sUUimFaWnIRYGL/XGC7pmIPkAXqtWEQyLuCX+M2AJIBMjR60iWq2gZtKAyT1cjlFIpJenpNPWNYBV9LE+LK6F6lZJcrZ6qqwM02KLjlU0+kHRKBStSkvF6gzQMxT+LTCrFoFKy1GSipW+UMbk3RmwhOilYm56O9Jp5ZCQSmdNNNhQKsWbNGv7sz/7spvuGw2FKS0vp7OzkT/7kT1i6dClGozF2Pebk5DAw6W8eGBggNzdKOmQyGQaDIda6+i7AAUEQjMD/AWqJCgO/vLNDujHSF6bxvz7+Pr/7ycf8v7/az6e/reTCoTq+8d+e5pk/f+yeVcRuBpVayZan1rPlqfWEgiEaP23j/O+qOPtBFYNXRnjz797nzb97n4Wrc/j/2Xvz8LbqO+37o9VaLFn74n1LvMXOvpE9IQkhGzuFlqZAgWlLS7eZaTvP9Hn7vLOUzsw7nSlPVyhhKS2UsgSSQEhCyELI5tjOYjuxHe+2bMuyJNtaLOm8f0iW5OwEO4Sh93XlKj2Szu+cY+mc+/f93d/7XnzXPBbfOY+c0mvrw7gYpDJp1NFh3Uw8/YPsffUj3nthL7WHGtj+zPtsf+Z9ckoyWLVpCcvvWzChjXC2XDObfnwXX/rR7RzbeZJ3ntvDwa3HObDlGAe2HMOaY2LNg0tZ9aVF18VP+FIQiUSUzS2kbG4hj/3TPex8+SDbnttLe4ODF3/2Fi/9x1bmr5nK2geXMG1R8Q1ByD8OdMZU7v6b5dzxyFKO7a1j64sfcuT9Wna9fpRdrx9lUnkma7+0gCXrp6NQ3hixy58FfKa+BZd6sF6MmA4ODnLo0CHkcjmzZs26LLG91D6uBKfTyZEjR8jMzKS0tPQTza7OJ7fhcJiTJ0/icDiYM2fOuBLbzs5OampqKCsrIz09/ZqOe/QzgiCwtamB9a+/wr8f/QjvSJDpJhs6kYIahxNBMnb+JETCTE5RI/aLONbuYOQ8DbVUJGKWyY7HE6AmZnWVDIVESoFcTaPDRaMzqkuNHxNQZjRjk6ZS1erA5YtWa0evqjYlhSJVKm53gOqOxL5HSXqp0USuUofLE8CRFIggCAI6hYKpRjMeT5Ah/8iY4xIhYprVikGcQlVLd9yvdhRmvZ4irZ521zBdXl+c7AKYVAr0ciXdfV5OdUaru6P3Zk2KnJl2G9KwiOpWR5yAisUilDIpM9PtCL4wfe5hgqHEd0cmETMz3YYoIFB1LlFRBlBKJdjUakK+MFXN3YyEI0hiA+qVCmak2xCPiDjR4kB+HsEJh8NX5aE8NDR01ZM8iURCVVUV7e3tHD58mNra2gvek/xdu9RrNwB+JgjCgCAIfwFygGLgnz7lY7osxGIxt3/rVp45+R8suXsegeEAz/zoj3zzpv/FmWNNn/bhTTikMikzVpTz+H8/xB/O/V+e3PG/WPPQcjSGVFpOt/PC/3mVR6Z+n4fLv8vm//0yrbUdV97px4DWkMq6R2/mv/b9H35X9TPu+u5adBYtLbUd/O4HL/HFvMf5hw1PsvfVj+IV3omARCphzi1T+fEfn+DF+p+z6X/fhTXbhKOlj83/z6t8qeg7/O+7/5OPth+PWzZ9WtAaUrnjayv53cH/w09f+y4LN8xAJIIDbx/nR3f+nK/O/TF//sW7ePoHr7yzGwwSiZg5y0r5yTNf5fcf/Ii7HluGVq/m7Il2fv73L/PA/J/wu396k87m3ivv7K/4n1O5HW00EwSB1tZWOjs7KSsrQ6u9ukjCS1VOL4aPUxG+WojF4vjD2+v1cvLkSTIzM8nMzBy3B/ioG0I4HGbOnDlIpVL8fv9Vn/f5OOly8Y9vv05tbEm9zGBiMDhCdWeiEitK+t+pJitCRKAmyXZrVGYiF4mZrEkj7AtzPKmSO0pnTEol2Sotw8NBznmT3RGiIxQbjIQCEc52OvEz9nxSJBKKrXbOdDlpCA5hSRvbIWxQKCnWiqlvj1aIS+2JSqBaJkMnSyE0FObkQN+YcwKYYjGTEhFzvDVRqR19PTNNg16qYMQfpqE3IaXQaDToQmGy1GrOdPfTHXGOsTITi0TMTLdxttNJVXM3pemJtDyZWIxZqaTHOUhVU3RMiSQ6olwiYYrVjCgscDyJ1IpFIhRSKQVpGlr7vLg9fnxJD0t5jAzXtvdSPdDNlMxoN7nivJSjSCRyVVWRoaGhy8bzXgw6nY6lS5fy0UcfMTAwQCgUQiqV0t7eTnp6tOknMzOTtrY2MjMz4w4Ol9Lzfgo4CMwAEAQhAAREIlHl6LYbGZYsE//w0rdZ/WA1//W139Fw/ByPz/sRK+5fyMP/cv91a3r6NCGRiJm+bArTl03hm089xPHdJ9n754/48K2jtNV1xiu6k2fmc/OXFrPknvnj2oiXU5rJoz/9Ig/9v/dyeHsVO57fy6FtxznyTjVH3qkmzaRh5QOLueXBpWQXZ4zbuOfDaNdx/99t4N7vraNy10m2b97DR1uP89G26D9LlpE1Dy3jli8vxmD79KQAIpGIaYuLmba4GGf3AO+8uJ/tz++j81wPz/zkLzz/0zdZcvts1j+0jKIZuZ/acV4rbFlGHv7Ber707dXs3VrN28/v50xNG6898wGvPfMBs5YWs/7LC5m15LNXqb5e+B9BbqVSKeFwOB6koFKpmDNnzsdK6rrayu3Q0BAnTpzAarUya9asC4inIAjXXAkNh8O0tbXR1tZGeXn5NUscLoZRGcL5hPlajrW2r49/P/ghrZ4BHCN+CtL0yAQxdQ4nkfN+ZyIRlBpM+IdDnGjvocg61vJEpVQyXaGkrc/D6R43xbrzzjkSYZbZxqmOXqr7eyg0jl0eMygU6OUK6jujxFQhlcQZsVQspsJiocPl4XhLguyNEskMrQajTEH/gC+eHgbRSq9cIqHcYqap24V7MIBvJEEGBQSKTEbCwTC1bb1Mzx7rxSiTSJhmsXKy3UGX4GVa0usqmRSdPIXQcJjT7qi+SqvVwNAwMrGYAm0qI+4hTrsTBF4sAolYRKFWg9MbxOMN4vYlmmIkIhHT0q109XqobuqmLDNBhuUSCUalEkdkkLqOmK5OHP2bq1NkFJuMEIbjbWPJsEWjJl079m9xtZXb4eHhq4p/7u3tRSaTodPp8Pl87Ny5k7//+79n2bJlvPrqq3zhC1/gueeeY+PGaFPbhg0beO6555g/fz6vvvoqy5cv/9QrtyKRyAZkAEqRSDSdxNxGS9Q94TODWSun8pvj/8aL//QX3nzqHXa9tJ8Dbx7h/h/dwR1P3Pq58eSUyqTMXj2N2aun8URMurDn5Q/Z+5ePOHOsiTPHmvj1959n+vIpLL3nJhbcNptU3fhYakllUm7aMIubNszC3edh958+5N1n99B0opVX/3Mrr/7nVspumszqryxl8Z1zUWkmJt1ZIhEze1UFs1dV4HK4ee8P+9n2+/fpOtfDcz95lRf/+XXmr5vBrQ8uZfrysk+VYBltOr74/XV84dtrOLLzJG8/u4eju06x808H2fmng0yalsO6B5ew5AYKsrhapCjkrLxzNivvnM2ZmjbefvEAe96s5OieOo7uqcOeY2TtFxew6u7ZaMbpO/g/BZ+phjKIJoGdj5GREQ4dOoRIJGLy5MmYzeaLfPLy8Pl81NbWMmPGxQstgiDQ2dlJS0sLZWVlpKVdOGsftQK7lh96IBBg//79WK1WSkpKPhYxh2hD2fz58y/6sO/s7KS5uTnuhpCMYDBIdXX1BU1CwWDwAqLe7vHw30ePsONcEwKQq1ahUao56UhUYoWkwy7Q6dBI5dR0JSqxRVYjtbHmrQqTBZVYyuGORNVzRoaNY91dKCQSJmnSiARC1HoSnf0FhjTOegZIT03FnKLC6RmmczixzK+SSvERpsJipsc1hMM7hDxFErfZAig0G1BLow1WEYGoO4Ar2mAlEYu4KSeTuq4+nENRb9wp6RZOdEfPIUOtIseo5+C5JJ/bLBuVnd0YVEpytFokgpjKJM3ttGwbp3v6yNeoae8fYpLVxPGOpNCHbCuCAF19Hvq8PqZmW6nqiGpkRUCJQUO3N4DLF23yK8+0UNPVg1gkYordgkoi4dC5RANaeZaF044+yu1mOno8pOs1sRjeKKbm2BCJoKHdyZB/hKm5Nqrao8djSlVRajNx8Gwbd88p45u3zIt/zuv10t7efsWgke9///vcd999LF269LLvq6mpYdOmTYTDYSKRCPfccw8//vGPaWpqiluBTZ8+nRdffJGUlBT8fj8PPPAAx48fx2Aw8Kc//elq4p8nOqFsE/AVYBaQ3MnlAZ4TBOG1iRz/fFxtQ9mV0HWuh9/+3QsceOMIAOmFNr76L/ez4LbLB3j8T0bAF+TgW0fZ9Yd9HN1RE+8fkMmlzLplGqu+vIQ5a6aPux+rIAjUH21k29O72fPKwbg9lkKdwuI757L2kRXXpQktEolQueskbz+9m0Pbq4jEJAq2XDO3PriU1ZuWoDNf3UrpRKPzXA9bN+9lx0sH8Lqizwe1VsnNX5jPugeXfqbDITyuId59+RBvv3iAnljBQp4iZcmGGWzYtJDCsvHTiH8a+Fy6JcCF5DYUClFXV0d3dzeLFy++al/Z83EpkgcJGzGxWExJSckFNmKjOHToEDNnzrzk65fCwMAAp06duuYIXYCPPvqI2bNnjyHFyTKEsrKyix7X1ZDbvuFhfnOsknqnk2pnDyalinSFCseAl57Q2L+HIIFMjQaDVMGprj5saWq6BhP6p2KriZFQiMDQCJ3eYaZmWjnenZT+lWEjIgi09rpxDfuZmm6hypEgZnmpKohEaPX6iQhg16rpTNKwVljNuIcDtLkSVl8yuYRgOIxeqcAkljAwEqZvOOGekG1Io3XATbnNgnNgCI1KwZneRBNbmd2M2x8gVSzhTLeL8mwr1Z2JY56dk04oFKG2vYdgKML0HBuVMbIol0iYl5vBibYeBmJjjr4eJ6diCYebkyKHs61Udzgos1sYcPswaVSx5rfYNdApQSzG54/Q4/FRkUSGJWIR8wsyOdvhpNcTrf5OzYmS1xSJmMkWPQqpnKPnksh3no1Wl5vstDROtzgoy7ZS1drNpsXTeHRF4h7jdrtxOByXdCUZxde//nWeeOIJZs36xPen8cD1cku4M6a3/VQxXuR2FMd21vCr7z4X15tOmpHPg/90L7NWTh23MT6L8PQPsv+1Q7z/8ofUfHA6LilLM2lY9oUFrHxgCYXTL+5s80ngG/Sz77VDvLP5A07ur4tvz6/I4daHl7H8vgXjVkW+HPo6+9nxwj7e2fwBjtaoXEsml7L4jjms/epySudNuiEmQQFfkH1bjvH2sx9QdzShI5+xrJT1Dy1lzqqKz6yvbDgc4cju07z94gGO7U2kf5fOzGX9pkUsWF3+mQy++NyS21HSBdGH7alTp8jOzqalpYUFCxZc835DoRDHjh1j7ty5Y7a7XC5Onz59WRuxURw9evSiHrSXgiAINDc343A4qKiooKqq6pq8auFCYn0pGcL5CIVCVFZWjokNhuh19vj9bK4+wUsnT+IPhaL6UomUk109BMMRDClynOEEubWoVGSkajjR2RNvfrLr1HGbrny9DlOKiqNtScQq00pltyMeWKAUSTnUlqiKjpLbNEUKhTo9Pl+QWmfCE9aokNM3EiQ3VY0oIqZ/yI83PLbNP02toECvo7ajF/9IGL1GQX8SuZ2bk0FXv5f2/ighLrQZONsXHcOuSSVPr+NQU3tczlCebaG6swe1PLqsL4pAZdKy/vQcGzWdPUyxWejodZNt0lGZdM7Tc2yMhCMMuH10urxMy7WNkQXcVJBFu9NNW1/0eKbl2Dje3o0IKLYa0SkUHGpMXKM8g4pznmEmm3QMDAax6zVUJzk9TM+1IQBN7X0MBkJMzbPFZRqGVCVl6WYOn21nJNaUNi3fzvGWLr6xag73L0j4Lvf399Pf339Fu7xNmzbxz//8z1cdJT3BuF7k1gb8M5AuCMIakUhUCswXBOG6xrSNN7mFqDfq9qd38dK/vk5/d1S+M2v1VB772QPj6iTwWYWzy8XuP+5nx3Mf0HI6ka6VU5rJ8vsWsPTeBdjzxj8VreNsF9ueeZ8dz38QD2ZIUcpZdOdcbnlwKeULiyecYIbDESp3nohXc0efzbmlmdz68DJuvm8B6rQbQ53TUNPK27/fw/t/OUTAF31GWDIN3LppMau/uBC95caoOl8LOs718vaLB9jx58PxBDS9WcOt989nzX3zMVo/O0Etn2tyG4lEaGpqoq+vjylTpqBWq685xGAUowljo/sQBIHGxkacTifl5eWoVFf+gVZWVlJSUoJSeWUdVCAQ4MSJE2g0GiZNmvSJInQh6j86depU5HJ5XIZwNbrdi5F638gIm48e51hXFx92tEf9Yk1mQsFw3K8VwJAiwxkOolcoyNfqONneQ0QctQUbhV2XikQkQi9N4VRnH8U2I7VJVdFpmTZGImHc3gAdA56oZ2xn0pJ9hhUJYuq7ehkOhphk1lPfn2jOKreaGQmFOeOIklGVRMxQrKFMIZVQajJxtrefwUCC8OpSFbh8forNRkL+MIFImI6BJOmDVY8nECBdreFUm4PJdhO13YmEsKk5NsQCNHT2M+gPjpERSEQibirI4kynk56Y3df0XFuc/BZbDOiVyjHkdJTclthM+H0h9GoFx1u7x7weDIXp7/fS4/VH3x97XSISMa8wk8bufhwxz858o4pG1zApUjFFViMKiYyjSbKFaXl2WpwDZOvTqG3poSzHwvHmxHjzi7Jwuoe5dfok7lqQSMzr7e1lcHDwikEnd911F88888w1R1mPM64Xud0OPAv8gyAIU0UikRQ4LghC+fUYfxQTQW5H4R8OsOWX7/LSv77OsMeHWCJm5ZcWc/+Pbseeb52QMT9LEASBs5XneO+Fvbz/pwN4nIl7ypSFxdz68HIW3TmPlHG2cwoGRjjwxhHeefZ9ju8+Fd+eOcnOusduZuUDi9DoJz4QoLull+3P7uGdzR8wEAuqSFHJWX7vTWx47Gbyy7Mn/BiuBl7XEO/+4QBbN++hqzl6X5fKJCzaOIuNjyyjeOYVpU43LHxDAXa/cYwtz+2j9WzsmSQVs+CWCjZsWkTpzPFfTRhvfG7J7cDAADU1NRgMBgoKCuL61k9KbpP34fP5OHHiBAaDgfz8/KvW0FZVVTFp0qQrdoo7nU7q6uou0Ad/knM4evQopaWlNDU1XVaGcD4ikQiHDx9m3rx5BMNh/nziFL89XEnf8DAz020IIjjX48LtD1BkSehlASyKFLIMemq7ohVRAIlMTCjmvmBLTSVbq+FYa1e86llsM1HbG72hlJhNpMlTONSaIHqj5FYplVJqNiEWRBxL0q+OktscXRoaiQyvL0ibJyFB0KTICRCmSK+j2eFmKBgict5lKM+w4PeFaIwRYrtBQ6c7+iAyqpVMNhs5dq6DUDh60EXpJuocfcglYgp0WmRSOSeSNKzl2VZOdvYwxW7G6RrCotNQlVzJzbURGAnjcnlxePxMy7ONIa83Tcqiy+mluSdaFUt+vdRuQqdQ8FFDoiI0LddGTZuD0gwz/a5hLPpUqpIa5mbk2RkJhWjpGmDQP0K+KUp2IRpFXJJh4ciZRKV2aoGNquZuJtkMiEKgVsiobnbwt3csZP2c4vh+u7u7CQaDZGdf/iG1Zs0a3n777XG1r/sEuF7k9oggCLNFItFxQRCmx7ZVCYJwYSrLBKJkUqnwzfV/zz3fWz9hLgeuHjcv/OTPbHtmN5FwBIlUwsoHoiTXljv+FcrPIkaCISp31rD7jwf4cMvReCpaqk7N8vuisoWJSETrbHTw7uY97HhhL87OmB5TIWPJ3fNZ+8hySuZOvFxgJBji4NuVbH16N1UfnI5vL7tpMuu+upyFt82+IZoTI5EIlXtq2frsHg69W0Mkttw4eXou6x9eypLbZiNXfPrHeS0QBIEThxp56/kDfLjjRFwfXTglkw2bFrJk/fQb4m9wMXxuye2xY8fIyMhArx/bNT9e5DY/P5/GxkZKS0svGONKqKmpIS8v75LV0kgkQkNDA263m/Ly8gssxD7JORw6dIhQKER2dvbHsg+LRCIc/OgjejR6djY1sedcS9xlIEUk5lB7ouI32Wygrr8fpUxKsU5Pt9ONI5ZkNgqpTIxOoSArVcOJDgc2rYaOpIawYpuJ4MgIIf8Ibe5hpmVZOZ4UMDAzy04kItDicDHgC1CRaR0TQDDFZmZ4aJhzsSaBTL02Tm7lEglT7dFUMVesGQyIk9tMjQr8IVzBML6kBjOrPpVAKESeTsfpth7SDVqanQn3hJIMEykSKc1d/bh9QUqzzAlPWpGImwozOdftossVlV9U5Fqpaosec6ndhFYu53BjUuU0VqkttpkY8YdIU42t1E7Ps+MfCTE8HKStx820goSMQCwScdPkTBo7XXTHxhuVEShkUkrsJmQiMUeTxpuab6Pd6UYrEdHWN0yOSU2jM6FTvqkkix7nEE2dUbI/Jd/KiRYH/+vepayanpAgdHR0IAjCFSuyS5Ys4dChQ8hkN8TN83qR2z3AncB7giDMEIlE84AnBUG4NhH9NcKSmi5MCy5FJpeyatMS7v3bDdhyP36D7dWgo6Gbl/7lNXb9YR+RiIBUJmHdYyu574e3j6tN1mcdw14fe17+kO3P7Kb+aGN8e3ZJBisfWMzNX1yEMX18JyLhUJiDb1fy9m93UrnzRHx73pQsbnloGTd/ceF1qea21nfy9u928d6L++LL5WkmDau/vJi1Dy+fsO/mx4WjzcnWZz9g+wv74g1oWoOa1V9cyNqvLMGWc0MExVwTejtdbP3DQbb/8SCe0XPTq1l971zWfvEmrJk3ltXf55bcjoyMXNSX9XJuAVeDUCjEBx98gNFopKys7JoezKdOnSIjI+OiFSufz0dNTQ0mk4n8/IvP2K+V3HZ0dFBbW0tFRQUWy9VXTiKCwPa6s/zn7n04/AFmZtsJRwS6+wdxeAeZmmGlKqnZa7LZgFoup2dxQCwAACAASURBVMnhwuMPoJVLcYcTFlkGpYJ8g54T7Q5GYjPFDL2G9lhVtMCgx6RSjmmempZt43hnNzKxmHKrBblIzOGWxOsVGVaqux2ka1MxK1QEAiPUOxOyhCy9hq6hIaZYLXT0uAlHBFyBhJ5WJIIciw4FUuo7ohVjlVLGUDAqU1DLJGRrVTT1DTISq9Rmm9No6Xcjl0oos5kJBEPUdiZkCcWZJuq7nZTZzQy4fehTlZxMruTmWhkJhQkMh2jpGaAiz0ZVcqV2chbdTi/NjiiBnpofJa8ioDTDjEYm43BD0jUqiFZqc7RKfEExdkPqGBnBjILohOBchwvvcCBeiQWwpqVSaDNwuK6NcOz8puRbqWlxkG/S4h8OopCJaXYmrMemFtogAl9YPIWbynLj29va2pBKpVfUni9cuJCqqqobZfnrepHbGcAvgCnAScAM3CUIQs31GH8U5WUVwr0VD7PvtcMIgoBYImbJXfO4+7vrKJyeOyFjdpzt4sV/+gu7/3gAQRBIUcpZ8/By7v7eesyZxivv4HOExuoWdjy/h91/PIA7tnQvloiZv34max+9mRkrysfdVquz0cH2Z3bzznMfxMdMUcpZfv8CNjy2koJpueM63sXgG/Tz/isH2fKbnZw72QZEbSjnrpnGhr9ZyYzlZTfE/SLgC/LB60d465k9nK1uAaLHOe+WCjY+soKpi4puiOO8FgQDI3zw1nG2PLefhpPRlUCxWMT8VVPY+JXFTJkz/isJ14K/ktvzcK1OBZBoTAsGgyxZsuSa/8C1tbVYrdYLjOUdDgcNDQ1XrAZ/XHIbDoc5fTraqRsKhSgqKroq83xBENh1tonXT9ax91wLIqDCbkUtkXGwJbH8PUpu5RIJUyxmIsEI1UnOBRqZFE8khE6RQoFOz+n2HpCKxthuZei1yMRiVGIpdZ19FKebOO1IEMUZ2TbCgkBXn5c+7/AYpwGAmdk2QiMRTrVFm9QmWQ3UxxrKpGIxMzNtnOsdoC/mDKBXK+n3R6u2eUYdaoksXmUdhUIhJUUqJd+go661l1S1nL7BRKXXlqZEr1TgcPkYGPKTZ9fT2BMl1CIRzC/MotUxQGd/lLSXZps51REdoyTdRKpUzrGmJGuuPCvVrQ5ydGrEghRdqoLqlsSkoSLfRigUYdDrp73XQ0W+LS4zkEnEzJmcSUO7k96YprYiRl5TFXImWQ2IBRHHmxLSjYoCG72eIUwqFafPOZiSZ6WmOTqeWCRibkkW7Q437Y6o/VlpnplTrb1olTIs6hQCgRE6XH5+eM88ls4sijuQNDc3o1KpLjuBEgSBRYsWfe7ILUBMZ1sUG7NeEISRK3xk3DGquW2t7eCPT77J+y9/GF+SnLmynPv+/jbKF01Mo1FTTQvP/vhlDm2tBKLd86sfXMYX/m4jluzPbuVrIhAaCXHk3Wree/4DDr51LG4rZs01c8uDy1j15SXjPjEYCYY4uOUoW5/ZzfFdJ+PbS+dNYt2jN7Pozrnjrgc+H4IgcPpQA1t/t4u9rx2OJ69lTraz/pEVrPziwhuiAU0QBOorz/HWM3vY+8bR+HFmF9nZ8PAyVtwzD2XqJw9v+jQgCAJ1VS1seW4/+7ZWEY7J0/JL0tmwaSFLN84gRfHpxfz+ldyeh2PHjlFWVvax0sKS3QrKy8uprq7+RNXf+vp6jEZjPOs+HA5TX19PIBCgrKzsijZlH4fcjrohZGVlkZGRQU1NDfn5+VdsINvT0MyvDhyh1tHLlAwLIsDRN0DvcJCZOekcTZIhTE23IBKJaHd6cA76KDDpaXAlqqbGFDk5JgN1HQnNrUIpjQce5OjTMCuVVCbpQUfJrUQkotxuQY6Yo61jnQQq27uxatTY1amIIoyxwZpk1dPQP0C53UJ3nxeFTEbrgDv+ukGtQKNWoBZLqWvvQyYRE0hKLFPLJBSnmznd0ksgdswGnRLnoA+5VEKpzYRnyE9zb2Kfdr2SLq+fSUYtbm+QNI2Ks90J7XFJlhkRMDQUlRGU5Vg42R6dBIhEMH9yFu29Htp6ovssz7NS0xp1iCjNNKOQSKhsSFyD8nwbtR29lGaY6ex2k2HRUt2cuAYzJqUTDkdoaOljOBCivMBGTaxSm21OI0On4VBde/zXW5Zvobatl2ydkmBQhF6r4lRrgvDPmGwnFIpQ39zDyEiEwkwjZzud/ODOmVjUIkKhEFqtlkAggNVqxWq9dPPQKLmtrq6+5HuuM64nub0JyCUpHEcQhOev1/hwYUNZT2sfrz/1Dtue3o1vMLqiUTp/Mvd+fz1z106fEPP9ppoW/vjT19n76iEEISpXuPWrK7j7e+ux5twYy9A3EpxdLrb/fjfvPvs+jpboxF8sFjFjZQVrHlrOTRtmIZF+PN/zK6GtvpO3f7uTHc/vZSgWGKPRq7n5gcVseOxmMiZdfnVmPDDQ42Hbs++z9end9MX0wSkqOSu+sIANj91M3pSsCT+Gq4Grx8O25/ey9dkP6I8VBFQaBSvvu4kNDy8jo+Cz20zpdLjZ+ocP2fbSQdzOqMxNo1Ox+t65rH9gIZaMjyfNHA98bsltKBS6aJLY1TZzjeJibgWfJIQB4OzZs6SlpWGxWOLkMyMjg6ysrKsizAcPHmTevHlXfG9HRwctLS1j3BBOnDhBTk7OJeOGDzS28sKxaj5sji4JldssKCSSMcRylNxKxWKmWM3IEXMkycIqz6SjyTWAJkVOoU5Hm8NF/8jY4pRCKcWSqkYrkXO6vZdMk3aM52xphhkiEbr7vLiGg0zNtVLVniBuc/LSCQRDnGrtIRKBipjnK0QrtTOyrDR0OuOBBjmmRABDnkmHISWF40lVUblEjJ8IepWCPIOO2uZuBImEYFJ12WJQk56mobVrgIEhPzZjKl0D0R+6RCxieo6Vlu4B+mKasUyjmraBoSg5zTAjRRwnlwAlOWbqOvoozTDj8fhJUys42ZYkW8izggDO/iG6+wfjGlcApVzK9IJ0as/1MBAjI1MKoq9rUqQU2EwQFsaQ3bJ8K77ACHJEnGnpozTPyqnW6HhyqYRZRRmcbenFORB9iE3OMVPX3keGSYtBpSAQGKGhM2GvVphpRJki4/Hb5zMpy0Q4HMbj8dDY2EgkEkEkEpGWloZer0en042R8Hxeya1IJHoBKACqgNEvlyAIwreux/ijuJRbgqd/kC2/3MHrT72Dtz/63c6cZOf2b93CygcWT0hyU8vpdl7619fY8/LBhETi7nnc8/2NFEzNGffxPuuIhiScYPszuzm45Sih2OTblGng1q+uYM1DyzHax5ds+Ib8vP+nD9n6u12crTwX3z77lqls/PpqZq2qmPD0sXAozMGtlWz59U6q99bGt1csLuG2r61k3q3Tx53cXwtGgiE+3HqcLc+8z6mPGoCoZGH2zVPY+OhyZiwtvVFWqz42goER9m2tZstz+zhTE+UIYomYm1aVs/HBRZTNyrtu5/ZXcnserkTuktHT08PZs2cpKiqKV1kBDh8+zPTp06+5EaapqQmFQkEkEqG1tfWiiWCXw8WCGJKRLEMoLS0dI8E4efIkWVlZFySnfdjUyq/3H6G6w0GWMQ2tIoXh4SDNfQOUZ1mpSQojmJWTTigcocvpodc7TEWmlaqkZq4Ckw5tSgpnOp34giFUUjFDQqIqmq1PQ6dM4WRrgshlmbS0ujxIxNFKLWGB6iSiN0pubdpUbCo1UpGIyiR9anm2ldruXsrsFjp7PRjUKdT3JKrHOSYdYokIhUhMfbsTk0ZF73BCP2rVqrDrtNS29sTdAcTSqKODUi6l2GbC4fLSPZBosLIYUukfHKY03UxP3yAyuZQ2Z6KSm2tLQwa4Bnz0DwbJMqtp7Y9+XiIWMWdSJi1dLrpjJKIk18yptl6kYhGlmRbEAtScS1zX0jwLLT0DTLIZaGp1kmPXc6IlcY1mFWcQDIxwuqmHSESgNM8av8ZFGSY0KXIqzyQcJ4pzzbT2uplkN9LS7sJmTKW+PSEFmVmcweBQkDMtvSBAboaec90uUpVyCu0G3F4/LZ0DPPOPd5GT9DCtq6sjPT0dtVqN2+3G5XIxMDCAIAikpaWhVCqRSCTcf//9XMmOqq2tjS9/+ct0d3cjFot59NFHeeKJJ+jv7+fee++lubmZ3NxcXnnlFfR6PYIg8MQTT7Bt2zZUKhWbN2++ZJrgebhe5LYWKBWucEOdaFzJCsw36Gfr07t446l36YmZ76eZNNz2+C1s+NrKCWkyOneyjZd/9iZ7XklIJOauncH9P7idknmTxn28/wnwOL3semk/b/3mPdrro6tpEqmEmzbO4tavrmD68injTjrPVDbx1q938v6fDhD0R4sW6YVW1n51Bas3LUFrHL84+Euhta6Dt363ix0v7IsnsVmyjKx7ZAW3bFpCmmnij+Fq0HiijTef3s37rx5iJBCTVhRa2fDVZdx8702oNJ9NyQJA7fFmtmzex75t1XHJQuGUTDZ8ZRFL1k2bcJeFv5Lb83D69GnsdvtlNa2jMgGfz0d5efkFMoFrkTYko7Gxkd7eXtRq9WWTzC6Fy5Hr82UI58+izj//Dxtb+e2Hxzges9GaYrMggTExrBXZNqo7upGIRFTYrSjEYg4lNXuVZ1qo7upBq0hhstHA4HCAMz2JCp9SKmZYiJCt16KRyqlr70OlkjGU5Cmba4kS4h7nID3uIYozTZzuShCtuQUZ+AIjnG6JamqTbbDkEgmz8zM409FLnyeqiZ1sN1AfO4ZCiwGDUjHGGcCsVdEzNIxZoyIjTUtLZz/u8xwd1Co5hRYD5zr68fqCqNVyBv3R98ilEqbm2mju7McZGzPdoqXd6UEqFlFo0SEiSqTj52hLo83pIUenwuUOkpaaQoszkcpWlmdFIhJxrrWXQX+Y4lwztW1RWYA+VUFJlpnqM534YjfJ4lwLp9t6yTKnkaaQQ0TgdJKMoCTPAogY8vpp73YzOddMXWx/utj+TpzpYji2v4IsI41dTjL0SlKkCgQBznUnJgjF+WbkIjENzX34AyEsplQc/UP84f/9AtakB9qpU6fIzc29YHUkFArhdrs5fPgwP/nJT+jt7eXBBx9k2bJlLFu27KKhJl1dXXR1dTFjxgy8Xi8zZ87kjTfeYPPmzRgMBn7wgx/w05/+FJfLxZNPPsm2bdv4xS9+wbZt2zh06BBPPPEEhw4dumC/F8H1Ird/Br4lCELXFd88gbhan9twKMz+14/w5//vbc4ciyY3KVMV3PLQMm77+qoJ8a3tae3jLz/fyrandxGIrbxMX1HOXd9Zy8yVE18h/CxCEASq3j/JW79+jw+3HI1PDqy5ZtY9ejNrHl6B1jC+ExKP08v237/Pll+/R29b9D4nS5Gx9J753P74LRPWmJiMIfcwO17cx5u/fo+upp7EMdw1l9u+vorC69AEdzUY6POyPSZZ6OuKNgirUhWs+uICNnx1GekTEN5xvdDXPcDWFz9k2x8P4okVb9KMqaz5wjzWPbBgwoIhPrfkNhwOEwqFLtheX1+PwWAY4xubDK/Xy8mTJ0lPTyc7O/uiJfaqqiomT558VYEN58PtdnP8+HGMRiPl5dfm236phLOLyRDOx2gzW51rkN/sO0p1ezcpKVIKTQaGfUGaewfIteg5l+Q0MD3HDoJAc0cf7kCI6bn2MUlaUzOtiMVi6tt68QVD5Bh1NA8kLLImmQ3IxGLqOhJkVa2SMxgIIpOIKbWZ8ftHONudIMTFWWZOd/ZiUSuwabVIRKIxaVrT8myc7uyl1G6mzTFApjGN6rYkxwa7AV/Aj0KqoLGzn1yLjnNJtl0FVj2pKXJOt/QQDguoU2QMhqJkW6tMwaKQ0u0JjiHgKpWMiCBQbDfR2jmASCKiP6nBLMuWhl6ppLWzH/dQkCxbGq0xTa5SLmVavp36lj4GvNHP5Nq0nOv1oJRJyEhTEg5Bc1+C7BblmOj3+rDrUqlv7iE/3UBdW+IazinJYsDr42xMf1eUa6KurS9a+c22IEQETjUlJimF2UY8vgBWTSr1TT1k2XU0xmQGUomYGUXpdDg8dPVE5SEZ9jTaetxkmKOyBOfAEN1JZNxuTcOsVfGPj96MTpMIJDlx4gSFhYWXDSlpa2vjiSee4Nvf/jZ79uzhhz/84QUNlhfDxo0befzxx3n88cfZs2cPdrudrq4uli5dSn19PY899hhLly7lvvvui16ToqL4+66ACSW3IpHoLaL3SQ0wDTgMxGP7BEHYMJHjn4+PG+IgCAJVe07zyr9v4dh7UcsokUjE/PUzueOJNROScuXqcfPaf23jrV/tYDj2m8kqTufOJ9Zy8wOLb1j/zU8bfR39vLP5/THa3KjrwUJu+8Yt5I1zSEI4FObw9ire+u1Oju2oiaePVSwu4bbHb2H+uhkTLheIRCIc3XGCt367kyNJx1C+sIjbv7GaeWtn3BDxuaGREB9uq+LN3+0eI1mYu7qC2x79n+Gy8ObmfTSeiq4QSmUSFt06lY0PLqZo6vh+7/5Kbs9DY2MjarUam802ZrsgCLS1tdHR0cGUKVMu23B1JZ/ai0EQBFpaWuju7sZisSAWi8nNzb3qzyfj/ISzUChEbW3tRWUI5+Pl9w/wRkM7tQ4nImBKugV/IERDUqU132agsbc/6n5gj1ZyjzUnyGyBQU2De4g0hZwCgwEhLIzRw2boNLR7veTqtaikclp7BhgOj/1bGNOUZKZp6ehx0z/oJ8uspdWZ0NzOLszA4/VxJka+KnJtVMcqtSq5jBl5dk41O3DHTM/Lc61x8luSbiJVIuFY0pJ+rlXHub4BMg1aDAoFzoFhujwJopaqkCNPkZBtSONMSy+BYJhw0v1Yo5QzKd1IQ6uTwVg1SadV4hrykaqQU2g14HQP096XOIcMiwb3cJBCq56mVidGvTpu6wVRqy0JcLYlWgnNsadxLkYszZoUbDoVp1tdCDHT8EnZJs529FGUaSboCyGTSTiTJCMozbcgFYs519zLkD9MYbaRsx3RikqOTYdJo6aqriMelJGToafbNcjkTCOdnQMoVSm09yRkFVOL7PiGRmg4F6seG1U43cOY9Wrseg1tHS7cgwHe/OWDKJKIRlVVFaWlpZdtjKyrq+Pf/u3feOWVVy75nvPR3NzM4sWLOXnyJNnZ2QwkTaD0ej0ul4t169bxgx/8gIULFwKwYsUKnnzySWbNuuI9cKLJ7ZLYGE8Cf3feuE8KgjD3oh+cIHyShLKG4828/tQ7vP+nA3G9Z9HsAu753npu2jhr3EmEp3+Q7c/s4s1fvktfe/R+YLDpuP1ba1j32ErU2k+/a/6q0dgI//Ef8OKLMDgIqanwpS/B974HBQXjOlSU8FXzxi/e4eiOhLa9fFEJax9ZwcI75o77BKGz0cGbv9rBu8/uiU9IzKNygYeWXRdf484mB2/+6j12vLA37plrzTbFJAuLr4ts4mrQeKKNN367iz1/SbhB5Jaks/GRFSy7a86E6NuvBwRB4NTRc7zx+70c3HEiHnpRMiOXjQ8uYsHqCqSyTz7Z+Su5PQ/Nzc3IZDIyMjLi24LBICdPnkShUFBUVHRJLesoLudTezEEg0FOnDiBSqWiqKgIh8OBz+cjP//a4vuSm+IGBwepqakhOzv7ojIEiH7ZPjjTzG8/OEqnawBPaIQp6VbcHh9tTg+pajlef2JJvjjDjEoqpc0xgNPrY2qujaok263Zeen4/UHOdDgZCQtk61U0exL61QK9GolETkNsSTtFKsEvRB+CSrmUEpsZR/8gXUlRttmWNFr63OSadChEEsQiEbVJsoSKXBtNPf1MshhoaO+n0G4Y4wlbnmMlLAgMeqI2WZPTDdQ5EoS9IifqKVvf2gcC2PSpcXJrTUslU6fhRHN3PG1MLIKQGAypSrKNaZxt6SNMhGAooR3OtGgxpqpobOllOBDCZEilxx1dltGrUyhMN3KysZtAMHruWTYdrb1u7AYN5lQlg8MBmrsTBC03w4BIJCI4NExnn49sm4aW3ug1kohFlOUY6e334YgFK+RnGWjo7MeoVZFl0jI8HKShPXHOeVkGZFIJ4WCYc61OstMNtMT+JnqtkoIMA7UNDoZjujmrRUuva5AMoxLCUvyBEfoGEn/XSQVmJIKIM409CBEBiUxCKBzhnacfGfO9O3bsGNOmTbvs76iyspLNmzfz7LPPXvI9yRgcHGTJkiX8wz/8A3fccQc6ne6i5Hbt2rX88Ic/HENuf/aznzFz5swrDXG9ZAmVgiDMOG9bjSAIFddj/FGMR/xuf/cAb/36Pd76zXt4YhV9e76FDV9bxepNS0jVXV3T7tUiNBJi76sf8cq/baHpRCsAKq2S1ZuWsuFrq65L5/4nwvbtcNddMDIS/TcKmSz679VXYc2aCRm6rb6TLb98lx3PfxB3w0gza1n/NytZ/zerxp10DnmGeXfzB2z59Q46G6JFBplcyvL7FnDHt9aMe/X44sfg470X9/HGr3bEJQtyhYwV9y3g9m+sJqck4wp7uD5w9XjY9txe3n52D65YcSNVp2LtV5aw/uGlmMa5OfB6wtHez5bn9vPuyx8xFJtoGG1pbPjyQtbcNw/NJ7hHfG7JbSQSYWTkQvvItrY2BEGIR4OORtxOmjTpqoMN6urqMJvNGI1X9hfs7++ntrZ2zP4dDgder5fCwsIrfPriGLXzcrvdl5UhRCICe88088s9hznrcCIRiykyanH5gnS7E6QlTaNgYNiPSi6jxGrCHwhR25HQbk7LiyZlWbVqMjQaxIioTKrkjtp2ZWkUhIMRwhERvb74iityiRi5Qsoki5HGNieD/iDaVAVuXyJEYXZBBu5Bf7zSWJxppLYr+t86lYKydBPHm7rwx4ji1FjggVQspjTDjFIs5UhDollqlNxOthsRhSASitDYm5Ba2PSpSOUSdPIUalt60CoVDPgTx2NQy8kw66lr7iUUI7QSmYhQRMCqS8WmVdPS3Y9nODEp0KWpUMilpEpFNHd4MBlUdLsSDWhTJ9kJ+kPUN0cbtLLsOlp7BhCLRBRlmZCIRGNkBLkZehyuQSZlGGlrd5GqktGeJFsozjWAIKaxuY9wWCA7U09z1wBSiYjiHAvhkXB0rBjSrWmIRCJ0KgVnGhwYjGocsWY2lUJGSb6V5hYnLne04qLRKBj0BZicYyYwPEJnr5tgrFInFonIzjKgSZHxbz/aOOZ7d+TIEWbNmnXZ5bW9e/eyfft2nnrqqUu+ZxQjIyOsW7eO1atX893vfhcYKzf4jMgSvgZ8HcgHGpNe0gAHBEH40kSOfz7Gg9yOwjfk573n9/KX/9oWJxEKdQorH1jMHd+8ZdxJpyAIHHm3ipd/toUT+xJd83PWTOfO76xl2tIbw+h/DBoboaICkppYL4BKBTU1417BTcaw18fuPx5g62930ljdDEQ1qisfWMzt31xDTunlUwU/LiKRCJU7T7DlV+9xaNvxuFxg5spybn/8FmatnjrhGupRycKbv36Po+8lslJmrazg9m+sYubN5TfE92UkGGLfm8d483e7qK9sBkAiFbN44yxue+xmimbkfqrH90ngGwqw67WjbHluH22N0XtEilLOijtmsfEri8gu/Pja/b+S2/PQ2dlJIBAgJyeHs2fP4vF4Lhpx+/SBY+QYdMzJzSBNOfa1s2fPotPpLqnbhegNuKGhAZfLRUVFxZj99/b24nK5mDx58jWdW3V1NaFQCJlMdlEZQigc4Z0TZ3l2XyUSsZhml4vydCvdTi+eIR9DkbGNdlnmNCxqNQ1tfXj9QSZnmqhPqprOm5SJLzDCqZZoF/60vGiMK0RJzowcK609Lnq9UUJr16XSGauKpsolZGpUtPYPxz1uAXQaJQM+HyXpZgLDISIINPcmKnHZBhWD4QhZeh11zT3RZqrzNLeCINDp8OD0+KjIS8gSRCKYkWejo3cAhytKWPOTAhYKbHr0SgWVZxMEXZeqwOXzk2NJI1Ump6m1F/953+psexoamZy65l6EiIBSJY03Y+Xb9KgVMk419sR/DSajml73EEWZJkKBCL7ACF3ORLU6J0OPVpVCX+8gDudgXOMKYNCqKMwwcOpMV7yBLCtdR6vDTWGmEUYi+PwBupLicbPT00hVptDa2s+QL4TdpqWzz4NIBIVZJlIkEk6fSVxDg0mNSAR2g4bGxl7kChnuWFVHpZAxKc9ER6cbZ6xJADFIJGIm50ZlEU2tfWhTFfzpV18Zc52OHDnC7NmzuRy2b99OZWUlP/3pTy/7PkEQ2LRpEwaDgZ///Ofx7X/7t3+L0WiMN5T19/fzs5/9jK1bt/LUU0/FG8q+9a1vcfjw4cuOEcNEk9s0QA/8K/CDpJe8giD0X/xTE4fxJLejCIcjHN52nDf+7zsc330KiKU2rZvBnd++dUJ0uWcrz7HlV++O6dwvmJrLnd9Zy5K75yOTf/ywngnB178OTz89tmJ7PmQyePRRuIoJ3yeFIAic2FfLq/+5lY/ePhbfPnVJKRu+vnpCPHM7Grp5/Rfbefe5vQRicrL0Qisbv7aKVZuWXBd5SWt9J2/8cgc7/7A/3qyYVWRn49dWsfL+hSjUN4YU4PSRRl7/9U4OvFWZWNafnc9tj65gwbrpSGU3yPf6YyISiVC5r543fr+XY3vr49tnLi7itocWM2NR0VVPdv5Kbs9DT08PfX19eDwerFYrubm5F73h3v/snznV1RuNOrVbWFmcT5nNwtQsG+0tLRfV7Y7C7/dTU1ODwWCgoKDggv339/fjcDgoKSn52Ofl9Xo5fPgwWVlZF5DjYCjMeycb+PX7R+hweVDIpMzMsXOmsw9nTP806ucKYFAryTPqcDi9dA4kNTJlmqjr6iPXpEMjlSOXiOPOBADTcm2caO+hLMOCo8+DXCTQ5k00Vtl1GkJEyEjTUNvcgxCBEVFiOV8iElGaZcLlCdAZ06jm2PWci5FPs1pOnsVIZWMXozkcU2NpXBpl1MFAIoiobEyQ4RLhKQAAIABJREFU0ym5lmiyWYaJ/v5htEo5dV0JzlBgNyCTSwj6QzR39JNu0tLhShDNshwLI8EQDbGuX7lUjD/2nZ+cYUQUhrNJ+laIevXmWvXRfba7SNWk4I3dtKUSMeWFNrp7vXTHpAVmQyo9A4NoVCnk2/W4vX5auxKE3m7VIhKLkIZG6HIMY7Fo6IjFYEolYqYVp+NweOnojhLgdJuWjl4PVkMqRo2CPucgvQOJ6rPVosaYpmag30d3jweDQR33sM3LNKBSSqmt74lXUxRqGWplClqFiB6HD18oROy+ik6rJMuuo6PdxYDbF628D/tJt6bx9L/fN+a6XA25ffXVV2lvb+cf//EfL/u+/fv3s2jRIsrLE3Gj//Iv/8LcuXO55557aG1tJTs7mz//+c8YDAYEQeDxxx/nnXfeQaVS8eyzz16N3hauY4jDjYCJILfJaD7Vzmv/vY1df9gf1xPml2ez/msrWX7fApTq8bVAcvd5eOs377HllzsYiE0QdZY0bnlwKWsfufnTD4XQasHrvbr3ud1Xft84oq2+k9d/sZ2dL+6N22rZ8y3c/d31rPzyknFPI/P0D/LOs++z5VfvxW3m1Gkq1n51Bbd/8xaM6RO/DO9xetn2+z289dud8WCIVL2atQ8vZ+Pf3DzuPsHXip52J289s4ftz+9jMLbaas7Qs/GRFdzywEJSb4CUtmtFy9lutmzex67XjhKITUyzCq3c/tBilt8+84rpZ59bcisIAsHzrJ0EQeDMmTN0dHQwc+bMC7xek/HQC29wrC1hHTUzM1qtTJFKKDLpmJttZ3FZEcV2M9KkBopRb9ySkpJLdn8PDAzQ0dFBWVnZxzqn9vZ2WltbUavVZGVlxffvC47wl8On+MP+atINGs729VNsNdHY6USvVtKc5BIgFkerlNl6PXUtDoKhCFZDIowAYN7kLNxeX9zzdFp+olKbIpUwuyCT+rbeeJTt5HQj9Y4oKcwyaElP03CsoTM+45SIRYREAikyCSV2Mx3dA4xEIniSdL5ZZi0RIYwkLNDWO0xJroXTST63cyZnEAxFONPcgz8YZmqhnapYlKwyRcb0PCv1rX24Rq3AMg3UdbmQScQUZ5qRI+J4EhnOMGnpcg9SkmXG6/EzPDyCcyixZKiQicmPvdbR7UYsEhESR89HLpVQnGXCOTBEV2/iuqlToz/GdL2Svj4fSMW4vAmyWZhtQimTcrbJQXAkgtmUSo9rCJEIJmWZkEsknD6TmERYrBoGhwMUZBhobx9AniLFkeRWUFFsI+AL0dDUhyAIGE2p9LqGSFVKybbq6Ov30udKjJ+WpiTdrGXIG6C9w4UyVc6QL1btyjYilYg429gHgoBUIiaIQIYtDZ1aQXfHAK7BxL7yso2oFDL8wyP895N3j/meXg25ff755wkGg3znO9+57PuuI/5KbicALoebLb/awdandzEQ0xOq01SseXgZG7+2atxJZ9AfZNdL+3n9v7fTfCpmMi8WMX/DLG57/BYqFn9KBvpiMVz+GZp430UsLK8HhtzDvPfCXt54ajudjdEVHp0ljY3fWM3aR25GZ756L/arQTgU5uBbx3j9qXc4sa8OiHbXL71nPrd/aw2TpueN63gXQ2gkxIEtx3j9/75L7aGGxDHcPY/bv7H6hrES8w8F2PXKR7z+m520xzTMCnUKq+5fwG2PLv9MW4l5XEO886eP2PL8fpyxwo1Wr+bW++df1krsr+Q2hpGREU6fPk0oFEIul1/RhusbL7/N/sbW+P8fJbejyNZpaHN6SU2RMz3HzsycdEyMYE4RM7Wi4rKd4h6PJ66VvRqEQiFOnz4NQGlpKY2NjRiNRmSqVN6urOP3e47h9gXQq5WUZ1o41tjB8GgWtzGNtlgyV5YxDbVIREPPAMnJxHajhs4Bb1Qi4AuhlEs5nay5zbfT4HAyyWrkXHs/2eY0atoTxHNyupEQAgok1Lf2YtaqcQwmlss1yhQK7AaaO/rxxCoDBp0Sp9eHSAQFFh0hf4AWZ6L6W5RlpK7TSaZRi0GlRCoSUdWUIH5TC+209AyQa9bR2NJLfoaRmnOJ13MtqcjlMvqcfga8PvLTDTTEGsyUcinleTbOdfTHK5kmnYpe7zDKFBmTM4x0dbno8yZ0w1KJmBSVjAKbgdaOftxePyKJKF7ZNOvVZJi01Dc54g1kqRoFnuEA+RkGFCIxDqd3DNm1mrWYdSr6ncN093iiMoaYRtdq1JBuSeX0GQfB2P5MplRcXh9FOWa8bj8+fzB+/ACTCy2IwgIN53qJhAU0aUo8g360qQoyzKk4HG4GPInfhEItIy/TiLt/GIfDQzg2RxOLRRQXWBgeHqGlJTpp0ev+f/bePEyOut7+f1VV7/s+0zM9e2Ym+0YggWxAwhbCvougoogLF/Wq93qX7/XH9affH+rVe5UrKAIiiiKEYCAhCQFCwhYSQvZt9n2f7pnpfavfH1XT3YMEkJsZ4oX38+R5Mt1VXVWfrq46dT7nfY6JUDjOtCoP2WSWWCRB98AYNZUe/utDgNtf/OIXuFwubr/99vdcbgrrYwVu66unyzcv+QpXfeVCZi+dfPuhZCLFznW72HDf1hyIEEWBpVeeyRVfveiUSxZkWebI6yd45v7n2fHk6zlXh6rZ5Vx558Wce8M5GC1TaKB/GjO376xMJsur69/kj/c8TeO+VkDR5Z5/01Ku++ZllE8/9Y1Yx3Y38uRPNvLK+jdzpMic5dO5+q5LOPuyM6bE2/jIrgae+vlmXv3znvw+LKvn6jsvZskkRVD/tZXNZtn9/CHW37+NfeoDgSAILLl4Lld9aTVzzqk7LfTDH6bSqQyvPLefpx58mQY1/UyjlVhx6Xyu+vxKps2eqAf/BNwCwWCQI0eOUF1djcVioaWlhblz37s5+Z5NOzk+OMRwLErb8AjzA8XsK2ii8ltN9IYmNgcYENHrtCyo8LOwsoRFVSXUFnuQ3vGjCIfDNDU1MW/evPc9jrGxMQ4ePEh5eTmBgPLlvrHvIC809LLlUAszSn10hUbx26wcae+jvsTLwa68rrLEacVo0KIXJCUQQAZRIgfKNJLIwuoSuvpH6Fb1oLMqfbkYWLfVxKxSL3sauoir2s9Kt4nmUBRBgBmlXmwaHbsb8s1cHjUgwWMzUeZUrLViqfQE+OBzWyiymxkcHKNvOEKgyEb7YIFMIOBgZCxOtwp4Z1f7ONimAO4St41qn4M3j7aTTqueijXF7G/pxW0z4tBJ6DU6jhU4B1SXuhgKRyn32GnpGMZpNdExmL+JVBQ7cFgNNLUOEY2nMOolouoNsdhlochh4VirwrjmSoRKvwujRsOJpgE0eiHnpiBJAjNrihkJxejsUphzi93AaCSOw2qgvMjJwOAYfQUNYg6HEbfDRDwcpacvisNhZFhlou1WA9XlHlpbBxkZVQCyzW5kLBJXNbApBoMRxiJ5QF5d5cGg0dDY1E86lUXSiaTTWdxOE16HifaOYWJx5Rh1OgmdSUugyEZ3RxBREAmpn2W16Kmt8tLeMcyQqvENlDoZjSQ4c345X//q+bltyrLMnj173hfc/vjHP2b69Om5xq/ToP427wgfsoqsJfL87GoAqmaVcfmXVnP+DedMiebw2O5G1v98Mzue3EVGjbeumBngsjtWs/rTyzFZT+6P/GFquDfExge28ewvnyfYp/zmTVYj5924lLV3XDA1Eb+nmeb2g5Qsy7z94iHW//w5dm3cCyhAasW1i7npO1dRPffUj1tPSz8b7tvKcw+9RFS99pXVl3D9t9Zy/k3LpkRD3dPSz4b7n2fzIy/nrMRKpxVxzV2XsPpTy065TOPDVvOhDtb/cqKVWO28Cq7+ygUsv3zh36wuV5ZljrzVytMP7eC1LQdyDxpzl9Rw1efP5azzZyCK4scb3CYSCZqamhgaGmLOnDmYTCai0SjHjx9nwYIF77n+vz31As/uVwTPZr2WeeXFxNNphqIx2oZCeEwGBgtYOAC7Ts9ogUvArBIfbX0h5lcWs6CyhDOqS5le4iGdSnL06NH3jQUdlyGMuyG09A2zYc8x/vDafjJZmUqvg3KXg1ePteaY2JllPg539yvAs8SHHpF9bb0TPlejEdBqNEz3e+jsDWEy6mgvAHqzK3wEY3HcRiNHW/uZU1nM2wXAfnaFD0EUGR6O0DM4Rk0BKwpQW+JGr9VwtKU/d2IKGgVQWww6av1uhkJhOgfynrBVpW5a+4PMKPMSHUtgNuo4XBAtW11sJZZKoxck2nvDzJlWPIGpXTQ9QDgco6FtCFlWomrH1w/47JR5bOw52pkDwwGfnY7BEcp8dqx6HSMjUXoKnA1Meolinx0dIidaBjBoNUSzygVEEgXqK7xEoynaO/MODJJewKDX4ncYGRqKE09miCfzdnQ1VW70ksSJpn4yaRmL1cBYNIFOK1FX4SEcSdDekf88q92AzWrAbtRzorEPg0lPeBxwmvVUV7jp6ggyHFQesnQmDal0lrJiC0JGoqtvJOf0IAhQVelGI4g0Ng6g1YgkVGBRXurApJdoaB4iq1qhOewGzFYDNrOB5sY+PG4rXeq0clWFG5fDxIEDncyZVcrd383nD6TTaQ4cOPC+5/bdd9/NihUruPzyKc0ueK/6WIHb+fMWyN+45l/Y9NB2QgN5+6GLP7OSy+5YTfEUaFQHu4Z59lfb2PzwdoZVSzyT1cgFt67gii9fSKDu1LosJBMpdjzxOhsfeIHDr+WbWWYuqWXtly5kxbVLJi8Y4jRxS/iw1dXQw5M/3cjWR7bngNTiSxdy7TcunRSpR3QsxpbfbGfdfz2X0+W6/A6u+PKFXPrF1ac8be2k+/DbHay/dwt9BRHUa29fxWW3r8I5Sclbf20F+0d59uHtPPvQdkZU2ZqnxMkVt5/PJbcu/5vW5fZ1DrPhNzt57vE3iIWVe19ppZcrPrecyz+z/OMJbjOZDK+99hpOp5OamprclEIymWT//v3vyyz94JmXeXLP4dzfcwNFHGpVGFGjTiLgUDrNR1Mp+sJxMrKM12RicCx/8ZpTWsShtjyLurDSz9H2fmYEvPiNIpecvZDZ5UVYjBPZknEZgiAIzJgxg8OdAzy6/W12Hm1lTmUxo5EooizQ0jvCghr/RFuugBe9VmIoGKV7cBS3zcRAgZbUbtRR5rTQ3jdGRBVxFzZz1frdeC1G3jjWmftWx5u5jDqJ6SVetIjsacjrkcedCOpKPYhpmaFghMHoRODvc5spcVg50TpAPJHGYdMRjCTV8dQyf5qfpo4hBlWAObPax6G2fiRRYEa5D5NWy56jnfltFltoHghT4bMiZgV0osiJ7ry2eGaVj1Q2q0zTtw4yrdzDCdVmTBQE5tf5GRmL09KuvOZzWegbiaCRROrK3ISDY3QO5mUSJoMWtAI1pW56OkOMjMUo5GD8Xhtuh5HG5oGcjECjk8hkZeorvSSjSboHx3LsN0CJ347LbqKtdZBIJInJoicSTSKKUF/lI5nK0NySb2IzWnS4HCbsJgONDX2IGjEngXDYjZSVOmhvHWJ0VH3A0oDBqKOm3E1oKJprRAOw24yUlNgZG4nT1RnE6TQxPBJFp5MoLbagFUQam/MPLKUlNiw2oyJh6BmlpsZLY+sgS8+p4R++dXFuuUQiwbFjx953VuIf//Efufbaazn//PPfc7kprI8VuB3X3CYTKV5Zv5s/3/88x3YrDmWiKLDk0oVc9sVVLDhv8m210qk0rz69hw33b81pLwEWXTiXtV9czeI1C055537r4Q42PvACzz/6co4hdPjsXPTZc7noMysJ1JWc0u0BH6nP7amqgc4hnvzJsxOikWsXVvPpf72aJWvPOOXnSjqVZvvjr/On/3g2p6HWm/Rc/NmVXPuNS6ekUTCTzrDz6d08+Z+baHi7FVA9e288h2u/voby+kk4Vz5EJWJJXnxiF0/d9zwdDQrxM67LvfpLqymu8HzEe/jhKzIWZ8vjb/Dn3+ykvyuIw23hj2997+MJbkGRI7wzIjeTybB7926WLFnynuv+dMurPPpaPtVlVomPo+15JtGgEUkkFVZMr5Uo9zlxmQwMx+K0DgZJpDPMDxSzv7XAZaDCz4GWPBCt8Dro6AtRU+xibqWfuZXFVHssDHa2Ul5RQXMwyYa3jrHzSCuSKDIr4MOgkSZIAMbBrdmgo77YDSnYV6ANdpgNDMfjlLps+Cxmjjb1otWJRJP5poXqUpfCTEaStPWEmFNdxIECUF5bZEGr1dPaEyKeSDOrsohD6lhoJJGFNX56h8boVKf87BYDQZXBrixyYtVpaegcmDCl77LrQZQoc9tpbhukyGOjqXso9/5c1Ruzp3uEoZEoc+r87FcbwvQ6DYuml9LcPpib1i/3GWkbiqPViNSWujHrdLxVAIZrKzy0D4xSV+ahv3cMo05Da3+eJS33O3FYDXR0DDMyGsdq1jIaV4BoscdKscvCsca8/lWnlUjIWWorvMipDK2tQznNKoDFpKOq3E1PVyjHrEp6iVQ6S3WZG70o0tIxOGFMvF4rPpeFtpZ+IpE0OpOGRDKDRhKprVIiiltb82MkaUXKAy70Gommxn7S2fzPMFDiwG430NTQTyKRwWTSEUmkKPJZ8TrNBPvDdBfIQGqqPRj0Wloa+ojH0wQCTjp6QpQFnJj0GhLRBG2dyvcrilBf7yOZyFJW6uTr37oo9znRaJSmpqb31ZPfeeedfOUrX2Hx4ikN5nqv+psGt4IgPASsBfplWZ79fsu/W0PZ8bea+fN9z/Pyk2/kNKqBOj+X3b6KC25ehnkKGKCm/W38+RdbePEPeWsvT6mLNZ8/n0s+f94p72KPReK89IdX2fCLLblgCFBSvC657TyWXb341CZFNTXBT38Kjz6aTyi75Rb4xjdOS8b2ZBUaGOWZ+7ey4b6tjKjM/7QFVdzyf66ZFJAryzJ7XzjEuv/axJ4tyn1Z0kis+tRSrv/mZZRPQSCDLMscfOU4T927mTc25j17z167kOu+voZZZ384a89TXdlslrdePMy6XzzPvh3Kw6IoCiy77Ayu+eoF1C+c/Ea9yapMOsNrWw8RjyW58NqzPr7gNplM8s79lmWZ119/nXPOOec9133ghd28dKQZs1FHOJVCK4kcKZgm14gCmfTEz65wOWgfCCGKUO5zEnDbGQ5H6QqOEozEmVdRzMGCqfRSl43ugql5AEkGvVaDLAjEkinKixw4TAZ6B0YZHIkyr8Y/QSKwaFopmazMibZ+Yon0X0gEZpb5kLMyx9sGct+S2aQhnEij14hU+xwIMhztyK8zp6aYA629BFwWNJkMDouFAwXHPrOyiLaBELV+Nx3dQawmPW39edbUbjbg99lJx9M0q9ZaGr1EUp0GD3ht+BwWDhzvyckWqstcNHUP43Na8DutZFIZjrTktzmnzk/HwAjlXjstLYNUl3vY35hnjxdMLyWVVkBmNJairMhE+1C+Waw24OHgsR6iqjtARamTlr4gZcUOHEYDY6Mx2gvSwjxOM06nGTmdobl1CKspLzkxGrTUVnjo7R9lQAXXGkkkhUyg2I5WyNLTE56QZmbQa6iu8hIaitDTo4JEnajISwIujFoNTS39pFL5c8rts+D32OhqH2ZkJAaSQFbdfk2lh+Bw/rO0WglZFKgI2ImOJRgJxnNNhRpJpL6uiFg0QWuTwgR7PBaCkQTTqr3EwnHSiQzdKrOr12uYNctPX88o3Z3KmNTU+hgORRX7sbZhnC4jLa1B5i3wcuPN83E6nTidTpLJJO3t7cycOZP3qs997nPcfffdf7VjyCTW3zq4XQGEgd9+WHA7XsO9ITY/8jIbf/1izibJYNaz6qalXPGlC6Yk2Wl0aIytj+5g0wMv0qn6UUsaiaVXLOLyL1/InOWT0ID22gk2P/wSLz/5es4Sy2w3ceGtK7n0i6snpZHqb70SsSSbHtjG4z/akJOW1Myr5MZ/vIJlVy8+5VHMAC2HOvjTj5/hpcdfI5tRrrGL1yzgum+unRQv5XerrsZenvzZczz/u1dIJZR7yoyzarjmrksUj+BJOO4PU82HO3nqF8/z0rpdZNT70awl07jmKxew+KJ5p81+fpj62Gpu4d3BLcBrr732vuD2ke17uXfzG7m/q7x24rEENrMeNBo6h0eIJNITjrzG66S5N88GLqj0s6+pBxnwOcxMK3ETTaQIRmJ0DIXw2iz0D4eZUFmU26ys/NOLAqlMfiMVRQ5aBkOUOs24zRY0iBMa3aqKnbQNjTCrzMfYaJz+4TFi6YnWMlWlTmwGPU2tg0QTKUo8ZjpVdlEQYPH0AJ09Q3QPKq/Nq83bbhU7LdQUu9l7vDMfK1ukgHqjXkt9wMPoSJzWgnEA0BpEiu0GNIKOts4gPq+V3oJjP3NWgLFwgobmAWRZZua0Ig6r4LbS78TvsrL7YHtOEzqjxsvhtgHKiuzYjHq0gsiBAhutGdOKiCWTiJksrR0h/B4j3UOKVEISBebNKCU4EqVVdQPw+5TAA6NeQ62ayNXQlpcE2K0GjGYdbpuRpuZBJFEgol7UNJJIXZWXWCxFW7vykCCKAhlkfB6VjW0eJFxgfabXaaiZ5mV0OEqX2nCGqHwBfp8Zm9lEY/Ng7uItigJFJXacViPNJxQtc1JW3vN5LRT7bLQ0DxJWHR5sNgNaoxa/10pH6xBajciQ+h0XFdko9ds5fqKPiKpjKit3IYgCOgk6WoYpK3fT1DKIpBGpqfZisRjY91YbsvowMntuKTIwfYaftVfNYnh4mGAwSDKZRBAEqqurcTgcaLXvrmG8/vrruf/++6momIJmng9Wf9PgFkAQhErg2f8puB2vTDrDa8/u5ZlfbmP/jnwS2LwVM1h7+yrOuWzym1ZkWWbf9iM8c//zvLZhT+73UDGjlDVfOJ9VNy8/5frL6FiM7Y+/xnMPvsjxPfkwudlL67nglpWsuHbJlLDYf0v1biA3UOfns/9+A8uuOmtSnAZ6mvt44ifPsvW3O3Is/4zF07j5n6/izIvnTwnIDfaNsOGXz7PhVy8QViV1/iof1359DRd+ehm69/Fqnaoa6A6y4YEX2fTIDiKqDKekysc1X72A1Tecfdo0yf019Qm4/ZDg9vFXD/DjZ17J/e016xgssFGSgXKHDZfDBKLAUCSKUaOloTsPiMbB7XjNLPNxrHV8Oh9qy3ykU2m6giOEVaAoAuMBYgKgl/KMJzJYzTrGxpII6mEVOS30jqeBGXTMqSyisWOQIdXwWSuJJNUxqCxyYNXp6B8eY6Agfre23EP74Cg1RXZ6e0exGkTahvN607nTiokmU2iRONHST32FV3FeGF+/zINJr1XAcjylsN0JZazMBi1+p5HQaJzhkXyznc9nY2gkyvQKBeDp9BqaOvNT7rNqi5GB6FiC9s4gc+r9HBhncESBujIbkQR0qMBQeb8XvVairsKLQSvx1qECWUKVl57BUfxuM329o5gMGnoLPGBLfSZsVjOtLUMkkhl8Hgt9wQiiKFBX5UWDwOEC8Gwx69HoJAJFNrragyTiaWKZ8WhaqKn0kM3KNDcPgqwyu3KWYp8Nj9NMZ8sgI7H8+WSzGigvc9HfO8LgQBiNRiSVldHpJGqqFDeE5ub8uWWx6Ckpc5JOpGlpGsBqMTAaSSBJAmUBOxajgcNHunO/zGK/HYfTRCKcpK15kNIyRXZgseipKHcjAYcO5OUuM+eUgCDQ0TLI2Eic6bP8NJzop7rGC9ksOq3EkUPdXHXDIj79+WW59QYHB+nt7cVoNBIKhZBlGYfDgdPpxOFwIEmKdnLt2rU89dRT7xlhfdttt/Hss8/i8/k4dOgQoASg3HDDDbS2tlJZWcmf/vQnnE4nsizzta99jU2bNmEymfjNb37zvk1t76hPwO17VOuRTjb8chvbHnuFhBo57Sp2cPFnV7LmtvPwlr67p/eprIHOITb9+kU2PfhizvVAZ9Cy4prFXHr7KmaefeptkBrfbuGZXz7Pi394NZeqpTNoWXrlWVx823nMWznztLCIOl0qGU+y9bc7eOI/NuSimGvmVXLr/3MdSy5dOCmAM9g/wjP3P8+G+7YyqjZU1S6s4qbvXMk5l0+NjVg8kmDr73by1L2bc8ft9Nm58isXsvb287E4zJO+Dx+komNxtj72Kut/uY0+td/E7rFy+efPY+1tK7G7rR/xHn7w+liD21QqRbbQ0FWtDwJun3v7OA9s20Pn0AgyUGy30PcOltWuzydSAcwp95FIZzGZdMRSKcx6HW8V6GPrSz00tOcBiiQKZFQmUgY0gmK1ksrKuVutUavJd9zLYNHriBSAIqNeSzSVRMiAkAWTTkM0nZ6wjfpyH/FYktYuhU0t8lhyrKnPYaa6xM2h4z1EVSZyZrWXQ20DaCWRcq8FTTZDQ3feSaC+wsuxzgGmlSra0bHROJ0FsbJGvRa7zYDbYqCxZYBUSsZo1hJVn65ddhPVARcNTQOMqsxhTaWbxo4hHFYDFcUuyGQ5WAAm59T7ae8L4bFqGeiPUlnmyYFdgAUzS8lkZFpaBohEk8ysK+awakReXuKkxGNl78EO0qrGtbLMRVtviBKviWQsCRmBgQLwXV7qxG430t0ZZHg4istpZkhtFqyp8GDRazl8rCfHJJtNOiSDBr/XTHf7MOkUOcZcoxGprfaSiCVpbVET0HQa4pkMleVuTHoNna1DhOP5JpNAqQO73URb04DSbGbSEYmn8HotFHmtBAfG6O7Lj3l5uQur1aDodceSeH1W+gfDlJQ4cNqNxMKJ3LYFAWbNDZBMpmk+0Uc6laWm1kdXd4iSEivxcAqr1chxNaq32G+nrNzJicM9jIZUa7YFAVLpLEuX13LpNXkQOZ7+V11dDSjNkaFQiGAwSCgUQhRF1q1bx549e9i6dStW68kvpjt27MBisXDrrbfmwO0//MM/4HK5crG7wWCQe+65h02bNvHzn/88F7v7ta99jV27dp30s9+l/tcQKWBDAAAgAElEQVSDW0EQvgh8EaC8vPyMtra2v3obkZEo2/7wKs/++kXajyrXNlESWXr5GVz2xdXMPcVygXerVDLNG8/uZdODL/DW8wdzr1fNLuOyLykJaKfaTiw6FuOV9W/y/G9fZv/LR3Kvl9QUcfFt53PBLStOm1Sr06HSqTSbH3qJ3//gKYZUaUv9oho+9S9XTxrIjUXibPzVCzzxk2dzDz+BOj/XfXMtq29ePiU2YplMlp3r3+SJn2ykcb/y+zJaDFzy2ZVcdedF+MpOj6auTDrDK8/s5cl7t9Kg7qfeqOWCG8/hqi+tprSm6CPew/evT8DtScDt2Wef/Z4/sI27jvC9P27HoBMpL3IpcaOROJ1DI7npaJ/ZlEvpAphdVsTh1nwj1ryqYvqHw7hdFkRJQBThQGMv2cKxzAJ5LIsgwPgey7KMw6AnHEuSlWVkQQlECBeAW7NeSzSazK0vCgIZQVa+kSyIqryh8Nbt99owGbToRYnjzf3UVXo51pZnYs+YESCVztDeMcRoOMHsOj8HmhSgqZEEaooshMIpBlR21++10T08hiBAXbkXjQxHm/snnBVmiw6fy4JRo+VEUx8+70S98cLZpSTiaRoa+0in5QngtCrgwms3svdgV95ce0YJBxq6qa3wImaVpr6DxwtY8rpiEAUiI3E6OoPU1fg4rsocHHajcswnehgbU8YyUOKgo2+EEp8ZkSyJaIbBUB7s+ovtuD1mhnpH6esbw2E3EhyLKxZbFR4shr8EuwaLnmKPhc7WIdLpbO7hwWTSUVPlYXAgTK+qmTWZdKRkmcoKJ6PDYaJjacZUhkyrlair9RGNJmltVrTTTpeZsViSmmoviUiC6FiCfpW1MBg1TJ/uZ7AvTJcqkyircBGNpSguttHbGcTuMNLcPIQgQEWVB4/HzKG3Okiobg4z55YiCwLhYITO1iFmzgtw5FA3FWrjmVYjcOjtDm798kouvyHvPNLX10c8Hj+p3CAajfLkk0/y05/+FJvNhtfr5Xvf+x5nnXXWuy7f2trK2rVrc+C2vr6e7du34/f76enp4dxzz+X48ePccccdnHvuuTnf3MLlPmD9rwe3hfU/TSgbb67Z8Kttium9Khcoq/ez5rbzWP2pZVNi19TT3MemB19iyyPbcwloBrOeldcu4ZLPn8eMxbWnHEj1tvaz9bcvs/nhlxjszMuQ5p03m/NvXMryaxafcnD9t1rJeJKNv9rGH3/45xzgnLN8Bnf86BbqzqielG0mYkk2P/wST/50I32qtMxb5ubGf7iciz577uTZvRXUeAPcn36ykX3qw5CkkVh10zlc//drKTvFNncftmRZ5sCrJ1j331t5U31QFASBpWsXcN3fXUz9wsqPdgffoz4Bt+8Cbt944w3OPPPM3BTpO2tgYID123fz0GutudcsBh2RSBIZJbpVJ2XwuBz0BsN0DY2SlWXmVhRzsDBFq8rPgcY84NJrJeLpDJIAWknR0o6DNdQLsCQIpOUsggp6zTotsUSe0TMbdSRSaZBlUmkZs1FHNJbM3ZolUSSTyUL2HXfrCTpekVRBs5PPZaAvFKeqxIVJo0EviewrYEVn1/rpGhqlzGuntW2IIreVhs48A+2263HZjYwEEwwOR9Fq8lIIvVaitsJLLJagpS3ftFbstzMYjFBX4SU8GkOn1dBYoHGdM8NPVobRYJSu7hDlpRbaehT22GLWM6feT1PLQK6ha/aMEg4e78brtuB325Bk2H8s33BWV+Mjnc2iE0UaGvrxuQ30qAERJqOOmXXFdPeEcg1axUVWegbCFHlN6EWIR9IMjrwD7LrN9PeOMtA3hsWiYyyWQiMpGlUJOHasJ/fLsFoNOD1mTHotzQ396HUaxtSHlJISO16XhcaGfqIqoLXZjZgselwOE+3NA+h0GobV0JDSgBOvx0LDsV6iqp1asd+OwaJDyKbpbA1RVGxXInt1GqqneTHqNezb25bbn+mzSxBFkb7OIMP9Y9TNKqHxRD8lZTa0oojRZODIAUXW4fPbqKjy0HSsj2E1bnjOGeWkUxnOXzOb89bknRG6u7vJZrO5wJGT1bJly9i3bx/d3d3o9Xo8nndnNN4Jbh0OB6FQvvHP6XQSDAZZu3Yt3/nOd1i2TJFIrFq1invuuYdFiz7wte8TcPsha7B7mE0Pbee5Ar9anUHLymsWc9kdq6mfJBBTWMlEilfX7+aZX23j0Ct5O7GKmQHWfOF8Vt+8DKvz1ILtTCbLni372PzwS7y56e2c/6veqGPplWdxwa0rmH/e7L/ppp1TVfFogo2/2sYf/r+nGVVn+VZet4Rb/u26SWvUS6fSvPzEG/zxhxtoO6JcyzwBFzd+WwG5U6UzbXi7lSf/cxM7ntpFNisr4PGKRdzwzUupWzj5v40PWm3Hu1n3i+d58U95t5S5S+u47u8uYtGq2add8tnHGtym02ky75LTvXv3bubNm/cXEbnZbJaGhgbGxsZIGt38/a+fy72nlUTSyYlAucJjp6MvhE4rEShy4HdbCYbj9I9E6A+FqS1RptonfEYqM4GplQFZVP42GXQIskxE7ehHUMBtNJHKjbBFr8sBIFAsqeKZNFpRRBJFsumsImtQ1x8voYAh1kgC6fEmNVnGbNASDadyixd7rPQElQtQdamLIqeFXQc6cs1ENeVuGruGKPXZcVuMBINRuvrzHqqSKGCzG/B7bHR0BIlEkkpgQUTRuHpcZioCLk6c6MuFEtRUeWlsG6TIY6XIaUHOZDjckGfBZ9YXMxZNYjPoaWzso662KMfUiqLAonnlBIcjNDUpzObM6X4ON/ZiNumoLncjCQL7D+Q1uOVlDmRRxGbS03Sij+Jie062YTLpmF5bRF/PKD2qptfrtTAQilDkM6EBYuEUwyP576G42ILbY6OzdYjRkRgOh4nQaAybzUB5wEUskqS5Oc+Oe7wWvD4rY8EYXe3D2B1GQuEEBoOW4mITBo2e48fyD0olAScOl4nQQJieziBFfju9/WO4vRaKi2xkEukJy8+aGyCTydLe2E8smqK6TpEdVFZ7iI8pwRENx5XxDVS4KC5xcOxgF+ER5TuafUY52UyWsWCUzpZBZi4o48SRXiprvcgZRXN7dH8nX/2XNZxbAG47OzsRRZGSkpN7P8qyzPLly9m3b9/7XjA/KLi99NJL+ad/+qcJ4PaHP/whZ5xxxnt+fkGdXlfuv7IEQfgDcC7gAfqA78qy/ODJlj+V4Ha80qk0u57bx8Zfv8hbLxzKvV63sIq1t69i5TWLpyQBrfNED5sf3s7WR1/Osbl6o46V1y3hktvOmxRt7lgwzM51u3jhsVc4uDPffOctc3PBLSs4/8ZlU2JXdbpXOBThsf+7nj//9xZSiRSiKLDq5uV89t9vwBs4uf7+f1LZbJZXnnqT331/fc4r11lk55qvreGyL1+A0Tw1McxdTX08+Z+beP53O3MPQvNXzuSGb62dEj/pD1pDPSHW/3Ibmx7ZkUtoq5xRwjVfvZDzrjnrtEk++wTcvgu43bt3L9OnT5/ggRuNRjlw4ABFRUVUVlZyuKWPe/64HYtZTyqbpS80xmAoOtEdochJS3eejZxf42f/iTzgMui1RFMpDLoC3WzmXYZKlRAIKAA4lc3mNuO0GkgkM7kpbYtem7OzAjDqNcSiqQl3ZllU/hIAnSSRSmcUYKoupNUor+WswbRaYvFCdlhLOJZEyCqg2GLWM6Z2+ouiQF2Fl0Q8RZtqH+ZxmhkYiShT9KUOtIJEQ9vQhLGyWHUUe2xICDQ2DlDst9GlTlNJksjCOQGCw1EFAMowfXoxRxv70GlFait9GHQa9u7ryH3e7FkldPaNUFbsoLt9mBK/g0PH8mzzwnllxBMpGhv6SCWz1NUVcbyxD51OpKbSi1GrYV8B2K2ocJMVwGrU0XSiD6/XRqcaCmG3G5lW7aWjY5iBPuVm6XabCYUT+Lx6MsksyViG0Fh+jKZP95NJZ2g+0U8mncXpMhMcjVJZ6cGg1xAaGKNX1cwKAtRNLwYBmk/0k05m8HgtDAWjVNV4EWWIjsboVlllg0FL/Uw/oWCUdhXMl1e5CceS2B06QgNRHA4zLU2DiKJA5TQvDoeJg2+1kUoov4dZC8qQkRnqHaW/K8SMeQGaTvRTVGpFQMBiMXBkXyeiJFBZ48PpsXDk7TZikSSCAPOXVJOIprj0xkWctbI+N45tbW0YDAaKik6u2RoHt/v37z/pMuP1iSxhcmoywG1hdTX1senBF9ny6A7GhpUZF5PNyKobz+GSz51HzdzySdv2eI1rczf++gX2bstrcwO1fi78zEou+PRy3CWnXifb09zHtt/v5PlHd9BbYGdYPaec825ayrnXnzMl4QOncw10DvHYD9az+eGXyKQz6E16bv6Xq7n6a2smTTaQzWZ59ek9/OGep2lUwxgcPhvXf/My1t6x+tT6Gb9HDfUEeernm9n00Es58Dj9zBpu/PZlLFmz4LQBuZHRKJse2cnTv3yBIXVGxlvq5JqvXMjFn142JQ+q71WfgNt3AbcHDhygqqoq18zS29tLU1MTs2bNwuFwANDYOchnfvD4hPWKbGacdjMGo4aBYAi7xcKR1vzFq9Rto7s/ryO1GHWEw0ly56qYHyitRgAEUsnshLuqTiuRVNldZLDqtbkkMRkFeKbSGSRBIJ7KoNNIJAsiXseXE94pS1DfkGUwagTiySyCALKg7GckVsAOG7REou9oWkumcmBXpxFJZvIstsmgxaATyCRhLJxQdMMqwLZbDZT6bASDY/T15/XJRX4LiWSWQJGDzvZhvG4LDS15ZnNatR0BDV2dI8RiKWbPLOHgsR5EQaCmyoPLYWJPoTXVzBKaO4apKncx3B/G6TBxpKAhrW6ai0QiRX93mEQiQ02Nj8bWASwWPZVlbkTg4MF881+gzIXBqEUEmk70UVRky/nABgJOXA4DJ473kVDBosttIiPL2KwaQgNxNBqJUCiuvmemvNxNV8cwgyo49visZAG/305vZwhREBhQQxX8JXaK/Xaaj/flGrj8AQc6oxa9TkPriT58fjud7UFMZh0VVR50Oon9b+VlB7MXlJHNyHS1DDIajFI3u4TOjiDlVR6iozFMZh3HDnYjSSKV07w4PWYO7G4lGU8r4PXsauLRFF1Ng4yFokxfUMbYaAyb3Uhv6xAev4PGI9185yfXseCcablxa25uxmaznVRmAMrvctWqVezdu/eky4zXO8Htt7/9bdxud66hbHh4mB/+8Ids3LiRe++9N9dQdtddd/Hmm2++7+cX1OlxR5mimmxwO16JWJKXn9zFpodf4uiuxtzrM86q4dIvrGLF1WdNyfRwV2Mvzz34Ett+vzMnnRAlkcVrFrDm8+ezaBI8P7PZLAd2HOWF3+/k1ad3Ew7lm3I/sRVTqqe5j1//82PsXKc0f5bWFvOF/3sz51y+aNJAnizL7Nl6gN/++5McV1P5nEV2rv/WZVx6+6opA7nhUIRnH3iRp+7dzIh67a+aVcYN31rLiqvPOuWpfB+2Usk02596kyd+toV2lbyzOs1cdtu5XP6F83B4bR/Jfn2swW0mkyGdTv/F64cPH6a0tBSr1crRo0dJp9PMmjVrgidn58AIN3z3dxPWcxgNjIbz9lH1ZYq9lCzCaCyBzagnEk+SUQGXXlKBqloCCrgsBJ6ykB88nVbCoNMwGknk3reMg1t1/C16LdFInmXVSCJJsmglEZ0kEU+myMmM1Q8RgWw2v12tJOQ1tzl7sQQCAgiKzdSYKheQJAGjXksknG9a046DW1lGkFFsyd5xBmh1EnpJIhJOKtIH63i0rEBlwIkoZGlqDubWq6p00dk7SlWZg9DQKA6HjRNNebC7YF4Z6XSWnq4gw0MRZs8u5eCRbnVdDz63hbffbiOlSkdmzPTT3hWkosxJX9cwVouetnYFnAoCzJtXRjyeokl1C6is8tDSNoTXa6XIZyWTSHPseB4cl1e4sVgNii9t+zAOl4HgaAK9XkN1tReNKChWWurxeLxmjGYNqViKvu6w0ow2HMVg1FJV7UUSBA4dyEcce4pMOFxm4mMputqGKClz0d0VorjUgctlJpNMc/zouJm9yIy5pSSiKVpP9JNOZaiuL2JkNIbVriU8HMfpstBwtBe9QUNFjQ+bTc/bu1rJpDMIosD8xVXEoyk6GvuJjMaZubCcUCiCRiszOhCnpNzNkX0d+MtdOF0mBEHg8J42BAEC1V48JTZajvRw1/97FbPPrMyNU0NDA263G5fr5NZQIyMj3HTTTezcufOkywDcdNNNbN++ncHBQYqKirj77ru58soruf7662lvb6e8vJwnnngCl8uFLMvceeedbN68GZPJxMMPP/zX6G3hE3A76dVyqIPnfrOdbY+9SkS1IrS6zKy+aRkXf3YllTPfW6d9KiqTzrBn6wG2/GY7rz+7l4zqaOIJuLjg0yu48JbllNae+mafZCLFW1v389Ljr/H6M29NsBVbsvYMll+9mLMuWYDRMjVT5Kdb7X3hIP/99YfpUPskZi+t567//gKVs8ombZuyLPPmc/t49HvrOPFWMwB2r40bvn0Zl3/pginzqI1HEmx6+CXW/ddzudCU4kovN3xzLRd8empcHj5IZbNZ3ti8nz/9bAvH9ijjpTNoufBTS7n2zgspLp9aJ4hPwO27gNtjx45hsVjo6OggEAgQCAT+4ilxKBThuw9uJZpM0TM8ymgkgc9qZrDg6dtqVK3AxpuG9FoisZTypwB6nUg8nZ1g+SW+o79NEFBE5ipINOg0xMaZWEGJsk2lM8TjKWRZxqjTEo/nrcF0WoW5FQq+AVkAWRCQBNBpJDLpDOl0Xpag10pKAMO4LEH/LrKEaDIHhg06iZgK0iVJwGzUE40llMQTQciBdmQ5xzgLWRkKxlSUFP9eIaMcq2INphyHw2bAYdPS0z2WA6f104s50TzAtCovZLLotRoOHc03iM1Xwe5A7wj9vaPMml3KoaM9CAJUV3nxuMzs3duWE8bX1xczMBSm1O+gtzOIw2mmsUlh3fUGDbNmlTA8GKFNlUWUV7rp6ApSXeNFIwjEI0naxhviBJgxswQEaG3oIx5L4S910NM7SkWlB5NRS3QkllteEAWqa90kk0l620dJp7L4iq0ERxKUV7qIjIwhyhLd3Qr4drjMVNf66O0M0aO6HVTUeEESMJl0tDf04fM7aGkcwGo3UlruRKeVOLC7VfmONCJzF1USDSdoPd5LMp5m+vwywuE4VquB7tZBSivcHNnXib/MidNtQaMVOfBGCwDF5U4CVR7ajvcy0D2CIArMO6eGRDRFT9sgocEw0+aUIggCt/3DxdTMyutrjx8/TnFxMXa7nZNVV1cXX//619m8efNJl/kI6hNwO0UVjyTY/uQbPPvACzSo08OgGPCv+dx5rLjmrClhz4J9I2z97cs899BLdDcV6PvPruOiz65k5bVLJsX1IGcr9ugO9m8/nHtdZ9By5sXzWXnd2Sy+dOGUaUFPl0ol02x6YBu/+/5TjAyMotFKXPety7nxH6+Y1LGQZZk3Nu7lsR+s57gK2jwBF5/6p6u46DMrpwxcJhMptj32Ck/8dFPufPQGXFz/92u56NYVp03QgizLHN7VyBM/28KurQcAZRbkvGvO4rq/u4jKKdKWfwJu3wFuZVlm7969RCIRFixYcFKfzUgsyZo7H1DWAdx2I0VuK/2hMMOjMTKyjNWoY0ztVhdQbbnGQaIsK1rbeBoxq2I+AVBnGkRRkSWIspwDvgDGcXcEFeyadVqiqt5VBkxGLalMFkmAZCqrWH9l3oGY38EO5+zF1O/QrNMQiaVzsgSb2ZD365Vl5TgKdL0GnYZ4IpWzLdNKIukCXbBBr0EEYvG0Sk2rO1uAFwSV5R0vjar7FbKywiZr8g4OkihgNWuJhFN5X9pqD22dw1RXeZGQ0Ws0HDyUlxHMm19OJpOltyPI8GCY2uk+jjcOoNVK1NR4sZj0vL0nL2OYVldEMpPBbNTReqIPf6kjF5JQ7LcTCDhpPN7HiJo6E6hwMToWw+MxMzocx6DX0qk2oHl9VgLlbjpaBhlSZQclZU5kQcTpMtHdOoTJrKe7K4ggCpRVODEaJVqOD+Y0sKWVLix2E8loktaGPsqrPLS1KAyuw2WCrMyR/Yrm2GTWM31ugJHBMC0nepEzMrWzS0im06STCYZ7IpRVezlxuIfSCjd2pwmNRuTALgW8+stdlFa5aT/RR7/aMLdg2TTisRRdLX2MDsWYvqCcRDyF3qChq2kAX8BJX1eIQJWHVCJFMp6ks3mQHz/xZcpq8/raI0eOUF5ejsVy8s70hoYGvv/977Nu3bqTLvMR1Cfg9iOohrdb2PTwdrb/6fWc/tDiMLHqpqWsue28KWFzs9ksB3ce4/lHd7Bj3a5c9K7epGfFNYu55LZzmXVO/aRMk/e3D7LzqV3sfGoXR14/kXtdb9Jz9mVncP5NSznjgnmnDXs3FRUZifLrf3qMjQ9sA5SmvDt+dAvLr148qXrUcSb34f/zOM0H2wEoqvRy8z9fxeqbl01ZI1Umk2XHul089sMNOS9pV5Gdq++6hLVfOP+0Yvdbj3XzxM8289K6N/NRyBfN5fq7LmbW4mnvs/b/rD7W4DabzZJK5UFaKpXi8OHDxGIxysrK3tOuKJ3JsuqL9014TSOKpDN5PaxZryGSTIMqLTAbtEQTaVABlFYUyaQmAk8ZBeiNm9lqtSLJjAIINRoRi0HHyGg8d6c1G7RKaIM6wqbxBjL1Ry4IkBGUAAiNJJJMZfMMqrqARhJIp7M5twTDhGAIGZvZwOhoXm5hsegIx1JIkoBOKyEJApGxvN2YKAqKxdo4SwsTgCsyyMiQyZO3Gq1IOiOj12uQZRk5nck7NgA6rUgykWeTTQYNsVh+Hw1GiXgknRsXu93IaDiB3WZAlBXQ39WVd2yomuZAbzDS3jRINJKkfqaf48d6cXssFBfbkQQ4WNCgVltfjFavYWxY8XWtqPHS2jqIyaynvMJFPBahrTH/+ZXTvBgteiLBKO1NgwQq3HR2DuN0mykpdUI2y+H9efA9fW4pkiTS3TJAaChCUcDOUH+Eimlesqk0iXiC7g4FGDu9ZsqrPPR2hOjrVMDntFklSBqRbDpDy7FequuLaTrWQ3mND6NJiyDLHNmrHE9plYfiMgctx3oZVpvW5i2pIplIM9ATYrB7hJmLKgiPxDFb9fS1D1EUcNF0rBe334TVoqTpnNjXgafYjrfUgaQROLy7Da1WonyaD5NZT8vRHn7wxzsoKstLEA4ePMi0adMwGk/OeL399ts8+OCDPPLIIydd5iOojxW4nT9vgbzxqc2njVl7PJLg5SffYONDL+XYM1DY3Es+s5IV1yyekpt6LBxn51NvsuWR7RzcmbcUK51WzKqbl7H65uUUV05OM9hg1zA7nnyDl594naO7GnKvWxxmlly6kHOuPJNFF86bMk3oR12HXzvOf3/tYRr3tQJw5sXz+ftf3THpYRnZbJad697k0e+to/2Ycg0vmVbE5+6+gRXXTi7Afud+vLrhLf5wz59pOqCAbavLzLV3reHyL60+rbyUe9sGWfeLrWz5/au5KORZS6Zx0zfWcMb5k+ME8Qm4VcFtKBTi8OHDVFdXk0op4LCs7L31PNd/6xEGQhEFyAkCRq1ELJ6eCDzHbbpk1PczyvsC6HSK5lYQcqQpZOQJd1Gt2kA2rlu1GLQTkqrsVgPpdIZ4IkU2K6PTakglx+N4ZSRJAdB/eerIyDJoRAFJFBTQqy5kNGqJxVI5gG0xaPP2Y6oGNxxO5ICrTqchrmrTdJKAXqchHEnmWFqhMHlivNLZCSe0RiOQLmie02hEhYEWBbSSiCiSB7MCWEwGYvFkjpU2G7QTLNCMBolYAdg1mVSLNFUeYTLqciy6KAp4vRZi0SSjwRgCUBJw0D8wRqDMhYQSmdt4Qo1G1krMmhcgFk3QdLyPTCpDoNJFX+8Y1dN8ZFMZ0sk0LU0K02u26KmfVUJwKExbYz9yVqasykM8kcZXZGOgO4TeoKWjdRBJEikKWDFbdHQ2hoipx1Q3pxStTiI0MEZ36xD+Sgf9PWGKy2xoRBGdRkvDkR5ESaC8xoenyMaJ/R2MBqNKEMMMN3qtgcHuEYb6Rpm1qJLwqAJee9sGKSpz0nCoh7IaLzqdhEZSNLRWh5HSSg9Gi4FDbzaTSqYJVHnxBZx0NQ/Q1zaEw2OhalYJo8MR2o/3otVpqJldSjKe4ps/+xQOT372Y//+/cyYMeMvbPYK65VXXmHDhg3cd999J13mI6iPFbit8NfIM1KrmL9iOms+s4KzL5l/2rCDTfvb2PjQS7z4x9eIqT0ORouBc69bwiWfO5e6hVVTAjC6GnrY8sjLbH10B8M9efu5eStnsvrTy1hxzZJJA9w9Lf28/MTrvPjYKzn7KlAszc64cB7Lr17MkrULMdv+dzejZTJZnnvwRR7+1z8wFoxgc1v52i++wPKrF0/Jtrc//hq///56OlXf9/oza7jtezcwfwqtu2RZ5s0t+/njj57hyBvKQ4/VZebqv7uEK+5YfVo1JIYGRnn6gRd59sHthFVdfe28Cm74+sWcvWbBKW3a/NiD22QySWtrK319fcydOxeTyURXVxepVIrKysr3XP+8z92LnB33iJUxmlSdqHpOW4w6JS0sp03V5BKekGU0KvDMs6ggSALZrIwkCgiigEaARIF/biFTK8gqU6tqU2VArxWRRRGNKBCLpxAFIZeKNb5fggxyAYiWRNWBTGV0zTpNTu+KoAQMxBIpNJJEMqFYl8UKZAl6vYZEPJUDu5Io5JrmkBVT6mxazoF6AEESMeg0ZDNZEsk0oiDkJAGgAv+CBwW9TkMikQfYRr2G+Lh+GbDaDaRVUJlKZ7FZDEoTnACiJKDVCMRjmdznGU1q4516zKZxQK+exyazjuhYniHX6zWkUqo+Oi2siDoAACAASURBVJXBXNBUZ3cYsVoM9HWHSKsPFsWlDnRGHcgyXS0D+MtcdLYN4/RY8Jc6kESBg7vbAGX/Zi0oJ5VK03aih3gkTWVdEaFQjJKAk9FgBL1Ooul4H3qjloppPqw2Awd3tZBMpBU7ruluEok0wd4w0dEk9fPLSMTTaLTQ3TJAWXURjUd6qKgrQq/ToNGKHHyjGaNZT/k0H1aHkcO7molFknhLHZTX+ejvCNLRNIBer2HmWVVEwwnaj3cTj6SYc3Y1qXiaYP8ofW2DVM4OQFYmMhpjsDuIp9iBIML3n/jqhCSqvXv3MnfuXDSakwOlLVu2sGvXLn70ox+ddJmPoD5e4LakRp4vXUxC/Z07fTYuvmU5l9yyDN8k+Y3+tRULx9m5fjebH9nO4dfzTGbN3HIuue08zr/+7Cm5sWfSGfa+cIhtv9vJq3/enWOmxpPQLvzMSmadU4coTk5YQ8fxbl79825effrNXHc/gFavZdGFc1l+zRIWr1lwykMqTqca6h7mx1+4n7eeVzSe595wDl/+j1txFjkmfduZdIbNv9nOo/++Lue0MW/lTD5793XMOqf+fdY+dSXLMm+/dJhHv78+B3ItDhNXfPlCrvzKhVOSCPhBKzoWZ+PD21l33/OEBpTZw9KaIq77u4tYdf2SU/Ig/bEGt7FYjL1792K1Wqmtrc1dfHp7e4lEItTU1Lzn+qtvvZfCgDODXjNBD2vUCsRSck6WYDIqzV6yCqgEVGBcUJIImbRcwIoqTWcAep2EyaBjdDSOPM4Wjzd7qSOs1yqgcEKJgMrSZlJZREkgJ8MVwGhQpAzqn+g0AqlUXrpgNesYG807NBiNWqLJNHqthJzJIiBPYH41GukvwihyZ8C4JCI7kbkVVI2xJEAqlcGgk0iokg2tTsKg1xAeSyiSDkGYsM+gMLXxgr8tVoMSOCAroFqnl0ikFXszSRDQaCAeVRluQcBmUxjwZEyxhzOadDnWFBTv2ESkIBxDLykPKqomWKfT5C3XZFkB5wUMutGkIxZOgOI5gcGoJZ3OIkkCqUQag8o8a7USRpMOnU5ioHdUCdXQiHhL7MSjKUaGw2TTWbwldrJZhVEeGRjD6bMw2BfG7jYhZ7MIYpbhngiSRsTuMmO2GuhpGyadSmM063AX2wkHo4SGwggyFJe7iEUSxMIJErEk7mI78WiCTDJNPJrA4jATjyXJpjNkM9ncw8d4abSS+j1COplBq5OQNBK/euNf0Rvy06S7d+9m0aL3tvFZv349LS0tfPe73z3pMh9BfazA7aJFi+TtL+zghT+9wcaHX85Z/AiCwKJVs1hz6wrOunDOaWNH1Ha0i82PvMy2x15hVI2Z1ht1LLtiERd9ZiVzltVPGrgsrMhIlB1P7WLrIy9z+LW8RraowsP5Ny7l/JuWUjGJOuHBrmFeWf8mO9a9weFXjzN+XxYlkdlL61mydhFnr104KY4PH3XJsswz923lge/8nkQsicvv5N8e/wYzz66bku3HInGevncLT/zHM4TVtMhlV57J579/45SOtyzL7H/5KL+/588c2KEEhphsRq6+8yKu+upFWBzmKduX96tELMnWP7zGk/duoa9dCbTyljq57q6LuehTS/9HTXIfa3CbTCYZGBj4C8/NgYEBgsEgdXXv/aNY8/n7iY9LBAQBq2ncMkspg1YFpurYGHUaYlGlUWt8ul5G0cLKMmSyWaQsZAvG0mDQEourzgSyEq8biSVzA2qz6kmnszkmVauVCmQJ6h05O1HqgDhuOaYATZ1GJDlu/SWA3WYkkUgTT6TVxjeJRDxvWWY26YgUsJpabUHog6y6IBR841qthE4nkUqkSeWsz2S1g075rygobPJ4KeAwDx71Bi2JhPJgIEoiFrOOsZG4KlJWwGwymUYUBZKJFCajjshoPCfqtVj1jI3ECgC6jti4Vjkro9eLJBPj9mcy/z977xkmR3lnff8qd5g8o5xzGuWckZBAYEwGyYCxWfN47fXu4ucxixdsr+11WnsB2/uu7bXXGQxIBGEbBEIooRxQGmWBhFCWJs90qq6q+/1wV1f3CCWk0WgwOtfFJaamQ3V1T9epc5//OdE8i8aGBBlOEw4bpB0PTVNxUg6GoUpyqyiEQgamqdFYnwxM85E8C88VeI6LnXIIh02SSelTFsK/aGm0g/0zQxp2Djm3woZUzTI1xSGDlF/Hi4BQxAgGWwCi+SFi9Yng53CeSaI++/tQVCeVcOTDuR55hWGptiOnkPPyQthpF01VcOw0pqnjpF00XcVJOyia/FdXZboGisBzhPysegLdUFEUVXq8HRfNUNA0nT9s+17uJ48NGzYwevRozoWnn36aWCzGww8/fM7btTA+duQ2M1AmhKBi9V5e/f1brH41WyNb2r6IWfdNYtanJ9Gm09mj3VoSdirN6r+8zYLfLmXrW9kmsA492nL9Z6Zw3X1TKO1w+dU8kE1oC/+wnMXPrqTycLbMp8+IHsy4bzLTZk+4rBmgVcdqWPnSOlbOX0/Fyt3BdxNA534dmXjzKCbcMpp+o3u1CPFvKRw7cJLHP/cLKlbsQjc0vvDEZ/jkF2a2mE2gsTbGCz9+lRd/soBUwkbTNT75hRnc+9htFJa1bOZrxao9/OkHL7N5qUzdyCuKcNs/zuLWL85sVSTXdVyWvbSBuT99jff9ZtHitgXc/sWZfOKzU4nkf3h7z8ea3AohsG37A9urq6s5fvw4AwcOPOf9b3zgF5Ig+CkB+Zmlav9vKBoxZdmBTzJ1TZXxWJA9Im42JUAgVcq062EZqm9LUInFssNa0bBJLBMvJiRhTuaUNOiaKhVB4Q91+TxTURQ/gQGZwJBjAbBMX4XMDMKFDeI5RCsSMbBtqdh5niAU0kgmM9FfKqapyWYq//aKogTqNDkqdc6Bz2ScBeTU0DUcTw6U4ROwwMKBbxOIZQfnwmFdKrWZhIeoSawxh+zlWZLcZqwW+RaxWBpVU7AsHUPXqK+JBV940XyLdNrFTbu4jocV0kkls0psOGySyFFuwxGTRCyZVdgtHTs4hkK+j7abvbCJWiQaEgGZDYUNknE7GC40Qzq2Lf3XUvlVSSUkedZUhVDUJFYnyauiKkTzQ8Trk3i+1zmvMEw8lpLvuSuwIoa8v5cl25lpc4TACGmkAw+zQjgiybRmaNJaois4tovuW0dcN42KhqqqOLaDIOdzLASaqUlN2r8YEQh0U+N3236Q+85fELn95S9/STQa5Ytf/OI5b9fC+NiS21zUVjaweO4aFvxxBUf8OCJVVRhz3RBuuH8yo64tb/ayg4vF8fdOsfCpt3jjqRVUHpHkUtVUxt4wjOvvn8Lo64a0yIS753lsX7mHxc+s5K0X1wUZvpquMeaGYVx7zyTG3jj8skY5NdQ0svGNbax9ZSMbXt/apDCirFMJ424ayZgbhjH0mkF/ExFjTtrhV488zcv/LeMEx39yJI/87kst6j+tPFLNH779Am/8YTlCCCL5Ye76yk3c+X8/0eKxXRUrd/PH777ENn8IMloY4bYvXcft/zirVXlyPc9j9YItPPvEq7xbIb3keUURbnlwOrf+/bXkF184Ib9Kbs9Abuvr6zl48CCDBw8+5/1vuf8X2WgvIGRpJHyCo3gQMrTAUpAZIAPwHA8n43n1s2CDxzA1UgknR2E0iKXkz5YpSxzq6hLBqTZkGVJhhUABxTnD4c5JSNB0maurqHJ5X1dV6nOU2EjYzA5nBWQ3Z0k+k1zgOxEUTclwNCxLw9BV4o02uZ8JRfU9tRmiKzwC5k3WjpFVg3OTHQQhSw9ep65r5OWbJGJpSSiRymw8bgcDdIYOdo7anFcQoiFDDsmQ0+xFQiisk8xJX4jkm8Trssqvaao4jvRCO2nXJ6dpNF3FtHR0XaWhJh681rzCME7aJRm3Ea5HJM/C8Qfk0qk0hqmTaLTRDRXD0NENJbi/YemSDDemSPs+44KiCOm0S9p2cFIOeYVh3LQLilzaiUQtUkkHRZVKqmnpxBtSGP7Fgm6oxOqT6Lrqk1udREMq+FwYIZV00kE3NBRVRTf9QURVwUk7GJoqebLnSfVcV0EoKIpcUfAUD1XRUBTpsUZ45BVHeXLpY/6FlSQ8b7/99nnJ7ZNPPkmvXr247777znm7FsZVcpsDIQTbVu5hwR/eYtWrm4O86LKOxVx/z0Suv29iq/Hmuq7HpsXbee33y1j76uagmKGoTQHT50zg+k9Pofugyx8pBvJvde0rm3jzTyvYsHBrdqUnP8zEW0czbc4Ehk8bdFntHk7aoWLlblb/eSOr/7KBU4eqgt8Zpk75pP6Mun4oo68fRreBH8x4/yhh2bzV/PQffk2sLk6/Ub34/oJHW9x7/O7Wg/zm68+xcaGsE2/btYwHv/8ppt41rsWP7da3dvH0D14O7Ap5xVHu/vKN3PLF6654XW4uhBBsXLyd537yGjvWyubCSF6ITz44jdu/OIPC0jNHtObiY01uAVKp1Ae2xWIx9u3bx7Bhw85530/9/W+prG70LQYQNjXisdOGoBw3IBAZzytkD4hqqIQMqY4lbQdL14NlP/DV4IasQhgJ+xmz/vEOWYYf/SVvrxsajuNhGhqu58mMXLepv9U0VemX9B8zFDICCwICueTvD2OBHCiLJ9MyMsx2MQ0tSwTJWCGcwN8KEERAZNRb14Ocpa9QWEdRFFKJNJ4rsPzkCE1XUVUVVSFYNgcIhwzpgfUPXCTjic0ot3kmjTkRaeGoQSIuB9W8tCs9uI0pNF2Vyq2hUVcdC8hrQWGYdNrFsdM4tkckTxJ8XVMRnkDVaKJ0hiIGyRylWNoGcm0EejCMA4JQxGxiIwhFdJKNOep4vq+sZpTpaMaj6//sv97MUF44YpBoSKLpGoqqYFo6sboEhqWj6xqGqVJfHccMyZ81n3wbpoaiKBiGRqw+EVhjwmETOyUvDjzPQ9EAoUj/rqJiGKocTPQEiqagqNI9rKgKhqWTVxShtEMxHbu3odfwbgy7ZgAFpfm4rosQAs/zcByHbdu2MXLkSPken2Up9Lvf/S7jx4/n1ltvPePvrxA+umf4i8CHybmtOVnPG8+uYuHTqzh6QCaKBN7cz0xhzMzW482tOVHHm8+s5I2nV/D+7mzpS79RPZn1GVnMEC1omQil6uO1LJ27mqXPrQ4asEBWvV4zewIz751Mr2HdLnt2675NB1j7yttsWLiFvRv3NxEl2nYtY8wNwxlzwzCGTSv/SMaMHTtwkq9e/12OHzhJz8Fd+e5f/5WyK2Cj2bp8J7/4ylPs3yYHiQeM7c3nf3Qfg1rIE5yLipW7+cN3XqRi5R5AXujN/spNfOLB6a2mDCKD7Wv28cyTr7Jp6U4ArIjJJz4zlTv+YeY5LUZXye0ZyG0ymWTHjh2MHDnynPe97+9/y8mT9dnIrIjMfwU5WBONmKSS0meqBE1dounR8AS5p3jTJ8SGquA5HpGIH7uVsSVELbn87hNTQ9eyPlYhZMZs2guIqQBQQdM0TEP6XnVNIZXK8dBmlvQzBDqIzcoQR4tYXTJ4TMvSSdr+PgqBrqpyeMon+aaly9Yz248w85U8qdTmeDByjoNpyiSGjEXDsDTslIumKagoGKZCIi7Jpaqp5BeGSCXSgTUhryBELJZCVeVThUM68Yas2nx25Va+H+EPkGVLelh9kh7Os0g0JIPfG1ZO5BoiO2ClKOiaihU2srYIVSGvIEQqnpL38QShqCnVLk/g2GnCeRappIuqIsm+Ja0eqHKpPxw15fNn3rPCMLEcpdiK6CQbU6iahmFqmCGDxtqEP9iloumqJL+GhhACw9RJxlKomoKqSILquV42sUKVnlohPFRVQSgeoXCIvMIIJe2L6NC9jD7DezLs2oGUtj9/rmQqlWLr1q106NCBtm3bNjmBqqraRN199NFHueWWW5g5c+Z5H7cFcZXcngee51Gxai8L/riiiTe3rEMR190zkevundjiFZxngxCCPRv3s/Cpt1j2/Frivl/diphMvnU0M++dzJAp/VvMi3p47zGWPLeKJc+t4ug72Ta0bgM7M33OBKbeNZ6OLZA5XF/VwNuLtrFh4VY2vrGV2pPZ7G4zZDBkykCGTS9n2DWD6DWse6uxoJwPJw9V8q+zvsfhvcco61TCE0u+SYeeLZ/h7LoeC3+/jD9863lqTshjO+WOsXz+R/fRtkvLrnRk0hV+/+0XguzoknaFzHnkZm78u2mtJvovg91v7+eZx19l/aIKQK4yXH/vRGZ/+YYzev4/9uTWtpsun4Msc9i8eTNjxow56/2EENz7wP9S5RMMOD1LVQ5qpZ1sU5dpyiV7O5mWBQUK2QisjGJnNlVF5WPmeGwtXVofQCp4YRNFkUNB6bRsRVC8HAKJXDYmx2NrmD4h9oTvJzWCODFFkQUIqZRDMpGWw1YhTZLhzD6GdJI5/lNNU3H8x2qi3soDJXc0x18L+MvxBq7rYSfTUrn1PaeKqmAaapP0g4wNIKvcGpL8BZ5Wk3jOMF+0IOSTS/m8kXyLeKONbmqoqiyfaPTJrmZoRPMtUok0KZ/gRgvC2GkHFXBSLlbEIN6QxLR0NF1tYkPQTU3uX8wOosAiBaHsQFnSJpoX8t8f4SvVOolYEsvvJ9d0hcbaBGbIQNOlUlpfFZfPZWiYYYOGmhggUBWVSNTM2iAU6aGK1SfQNXl7w9JJNCbRDQ0hwNAVGVHk20NMS8d1PRkLh5DeWj9NQtUhlGfQqUcn2vdsQ+9h3ek3pjuKJaiurqa+vp5IJEJJSQklJSVEIpFzqkuJRIKtW7fSu3fvYHjT8+0NnucF/y8/LoKHHnqIL33pS4wfP/6sj3kFcJXcfgicyZurKArDp/Zn1qcnt6rc3GQ8xcqXN7Lwj8sDTyJAu65lXHvPRK67bzIderRtkX2RpPtdFv9pJUvnrg6SH0AOok2bPYFr7h7fIsqj53nse/sA617bxPoFm5uoyyDLIwZPGcDwaeUMn15O1wGdWrWFob6qgW/e/jg7Vu+h3+he/Hj5t1usVex0xBsSPP/EK7zw41dJJWysiMV9X7uN2x+6scX/LoQQrHt9C09/b35Qd92uWxn3PXob135qQqtZdcngnW3v89xPFrDqr5sRQqAbGtfdI0luu5wLhKvk9gzk1vM81q5dy4QJE854H8dx2L59Oz/97w0cPSkzSHVNQ1OhocFXgk9v/jo9sQCCwSMn7eG5ssAgmicVSEVV0DQ1iMAKEhgsXSY0+GRX06TCmwtFVSQpc1wUFDRdxXUFembJH9F0yT+co1oKqeTGM+RVCCJRk1hDKngXQ2GDlO1gWbpUil1PLsHnWCOEK3CdnPIIr+k+Bkou8nWYIQM7kR2+M0wNO+2hqTLJTDfVQLnVDY28PItE3Jb3QdoQHMcn2rZDKKTTWJ8k0+wWjlg01MYDMhwpCBGvSzQhx7k2AMPKGbjCJ8t12TSCSL5FPKe1LbAd+ATfDOlNorKsiE4qlkZVFVRNJRQxaayNo2oqhqlhhU0aamIoAsywgRnSidcncB0PM2RIJbg2jvAEiurfvy4mj5WhE4qaJBtT/heRVGbtVNof7pLWEdfxpJ3AH1LL2AlKOhTRoXsbug/pjF4G3ft2pVu3bqd/WrNvnRDE43Gqq6uprq4mHo9TUFAQkF3Lyi5dNjQ0sH37dgYOHEhhYeFZHzNDcPfv38+sWbOYO3cuU6ZMOevtrwBa71n7MqC56ncz3tzX/7SKlX99m7R/YV5Yls/MOeO54dOTW00LGsCRd0/w5jMrWfzMKk68XxlsHzypH9ffP5XJt45uMW9i2nZ4e9E2lj+/ltV/2RgUViiKwpCpA5g+ZyKTbhvdYh7S6uO1bFm6nc1LtrN1+U6O+xaUDEo6FDNiejnDrx3MiGvLKe3YOhI0ctFQ08gXRn6VU4eqmP3ILXzue5+6ovtz8lAVv/yXp1jx0noAOvfpwOd/dC9jbxze4hcKQghW//Vtfv/vLwa1vl36deDTX7udybeNbnWJGgf3HOXZJxawfP4GhBBousqM2ROY/dAsOvZse5XcnoncAqxevfqM5La+vp7t27fTvXt3Hn9iObt2Hmua/5p0AqXM0BQSCYczfkb9p9RVJZuggG87yPHYmqZKKp3x12pYliGrcD3hEzcNx3GbHmHH9XNj5fMYvh0hsxumpcviBFUuoZuGKskryEizghCpVBon7eI5HqGw+UEVNZYl3LJuN6vcZh4nA0NT8YTXpGrYChuoqoLrZ8sahoqT9lA1FU1T0XSFRKMtq4gVRU77N6ayZDRiNCGjEV+5zSCvMCwngjNkNj8kf+/vY9gnx5ldjURNYnU+WVVktFYylpLDJ0Le306lEZ7ATTvSRpBwUFQQrlS3E4128IUUjhrZ5wPMiE6qMat2RwvCxOsTwZWn3L+kTGqwdEIRWSLhuR6GqWOENGJ1CRQUVFWqq+mUi2EYwbCiY7u+jUHeR5JZhXCeRX5xhOL2RXTu1Z4+o3pSPqUf+YXZydNkMsm2bdvo1q0b7dp9OLLheR4NDQ0B2XUch6KiIkzT5Pjx4wwZMoRo9PxTrtu2bePzn/88v/71r8+5anKFcJXcXiIaamMseX4drz21gvd2ZqunB0/oy/X3TWTSTSNajafT8zy2vbWbN55ewcqXNwQxfOG8EJNvk7aF8omXr5jhdKQSNutf28LSuatZt2BzMGiqGxojZw5hyh1jmXDzqBadfD924CRbl+1g85LtbFm6PVhmz6Bjr3YMGNuHAeP6MnBcH3oM7toqVMDtK3fz8LXfxvMETy79FuWT+l/pXWLjom38/Mt/CJrOxt44nH/6rwdoewVsPK7rsXTuGp7+/nyO+RcwPQd35XPfuZuRMwa3OnX+0L5jPPvkApa9uB7Pk9bM6XeN419+/ncfb3KbTqdlfNJpOJ3cCiE4dOgQR44cCU7WX31kHhXbDssbKH70V453NWidzcRhCUmEgs+GPxgkUFAQJJMOEcuQqql/m7w8i8YcsqvrCo4jgsdUNQXXdrMfOEUus1umjmu7pFLpgDhmnjgSNonFctIRIibxnOQAy1KzSQNC+j1TSUeqa54gFDZJJdN+SoCG8LwmMVmaP5GfIbNK5hicjpwWMytsSEuADz2zz57cqVDEkHYNxc/NtXTpifUfo6AkQtr2cNMudsImryhMvDGFFZJpAZqu0lgTR1EUrIiBFTKI1SWk71VRKCgOYyfTpG0H13bJK4zgOC6qopC205iWQaIxiRk2ZFSWptJYKwe2NF1DN6RNQVHkcJcZ0onVJvAcF1XXCOeHpPLqT0eH8kxSsZS8EDI0wvlWkF5gmDq6pZFoSAUzeGZIHh8Zs+ZhmjqZ0C0F0C2dUNiiqE0+JR2L6Ny3A/1G9WTghL6B9eFsaGxsZPv27fTr14/i4kvvZXddlwMHDnDkyBEsy0LTNEpKSigtLaWgoOCMhGDFihU88sgjzJ07l/79r/zJ5gxoXd/olxmXg9xmIIRg99sHeO2pFSyfvyH4u4/kh5h+51iuv28SfYaefeWgpRGrT/DWS+tY+Ifl7FqfbQBr162Maz81kZn3TqJjC/o3Y3VxVr68niXPrWbr0h1SWEB6EEfOHMLUu8Yx4eZRl63690wQQvDejsNsXlzB5iUVbF2+s8kALcjGtn6jezNwvCS7A8b2oeACpt4vBx7/3C9444/LefAH93D3wzdfkX04HWnb4a//s4invvMisbo4VsTi3sdu444vt7xVAWSqxsI/vsUz//FnKo/WADB0ygAe+PZdDBjTu8X353w4uv8kz/30NRbPXUPbLqX8fuP3r5Lb85HbjA3BMAz69++Ppsmrz6//6wts2nRQTpALIZMMcvywlqnjuYK0na19zY3kAjB1SOfU60aiJrFYGk1V/Agpk5iv+CmqQjTPIhlP46T9TFVFkepm7vE/LV7MtDQZmZXx2EZMEkkHTVMwQ4bMfK2NBcNf4ahB2vYQnofreIRCsuo2sCWEZMZsNtfW55jeGTy3yOE6AOFkW8wiEROhKDipNGnf02qnHKyQ4Q/eebLkAEngrYiOnZQ5tAiBGdZx/OPmeXLwLlBuhSBaYGWVWDJKbtYfHZQeZNINIgYpP3VCQQ6WyDQCaeUwwwaxmjiapqKbOlZYp8G3CVhhaRtINKSwU2mskIEVMYnVxfEcD8PQpGe3PonrVytH8kMkGhLSQqIqqLpsKlMVOVxlhXVpi/B92XpIw00LPFwKivNo07mYsk6ldOnXgfIJ/eg1vPtFXVFXV1ezd+9eBg8efEHq6oXg0KFDnDx5kiFDhmAYBrZtB6puXV0doVCI0tJSQqEQZWVlvPrqqzz++OPMnz+fzp1bJpLpInCV3F4GxBoSLH9pAwv/tJI9m94Ltvce0pUbPj2Za+4YTbSg9eRwHtp7jMXPrmLxs6s4mROhNXhSP2beO5nJt40mkt8yaQsANSfrWPXyBpa/sJZty3cFq5BW2GTcJ0Yw9e7xjL5+aItPwLuOy4GK99m5dh871+xl17q9HNt/8gO369y3Q6Du9h3Zk24DO7fIvj7/5F/536/+idv++Qa++MRnLvvzfRhUHavhF//vj7z14joAuvTryD/+1wMMnzboiuxPKmHz518sYm5O89r4m0bw2X+7s8Ui9D4Mjh+spPJYDYPH971Kbs9FbjM2hB49etChQ9MKve9+Yz5rV70T/GyaGqm0K8mmz+NEDuHQdRXLUEklHenFVbKRVpkc2GjYIN6YWxbgK7mZKX1dljSAvFo2dE0ulTsuMq5A5s6aho4CpPx0BMdv0wI/0D+nzSoStYg3JgPlNhLNKSzIKLcpB8+RhNe0DNKOixUy0HxbRaC6+sql8FyctBcolbKCjOB1qJC1MoAcWkvk+IAzHlj/k9NE2fXJrZ1wgvvnFYZozBnuyw6U+TaGfMt/PD8dIddjKyAUNUjk2gYKQ0EaAcgg6Vhd3LcR6ET89AQn7WCGDEIReczcp5zzNQAAIABJREFUtINhaqiajDkTnpDe6YhJojGBpmWiu0xSiZSfFCDVWsd28YS0lBghlVCeRXH7Yrr07Ui3QZ0w2sLYSaMpKGielpvjx4/z/vvvM3To0CY+2YuFEIJ3332XeDxOeXn5WZdsM37d3/3udzzzzDPYts03vvENbrnlFjp16nTJ+3GZcJXcXmYc2HmY159eyeJ5a4OTqBU2mPTJkVx3z0SGTOzbapZEM7aFRX9awYqXs+qzFTYZf9MIrp0zkZEzylt0Gb76eC0r569n2bw1bF+1J9geilqMmTWMSbeNYeyNw1tU0c1FzYladq17h11r97JjzV72bnxXDrnmQFUVOvZuT/dBXeg6oBNd+3ei24DOdOzTvtnKJU4cPMV35/yEPRvf5br7p/Lwb1pVWUyAjYu28bOHfs+Rd44DcMPfTePzP7z3ipUuNNTEeOGnC5j/s4Wk4jaqqjDzvsnc/43bKWuF/uqPvefWcRxc1/3A9lWrVtG5c2eOHj16Vs/gkz94lSWLdmKaOrqmoiCkLzQDP0OUnPICTWlK6jLDWpnG2mieSSLuBE1duq4Eg1Eg/bJp25X2hszznK7ccpo6bMpYLYQAT0hyG0+j+pmvmiporEsFMVx5hSFs20V4HmnbxbL0JpYB09KbfCnJpC/RhLw2GRjLsObMPikyTsxOOVLNBUJ5VnBc0imHUEQnEXOwLNmKpWlKkG5ghAxfPU6R9oe28gpDuI4czEvFpS3BTjlomobrOBimTrw+iWkZKCqBWq1qMvkgFDZoqJUeWE2VHt+G2nhge8grjhCvSyKE9LOGohaJxgTCk0kDpqX7ZFnGZ1khk3TSQVGVwKqQKV0AD02XrytSEKa4bSFlnYvp1Fv6YQeM64NpGSSTSaqrqzly5Aj19fWUlpbStm1bSkpKCIUu/oteCMHBgweprq5myJAh6PqlL3l5nsfu3btRVZV+/fqdl4R4nseTTz7JunXreOyxx1i1ahVHjx7lJz/5ySXvy2VC62BVLYQrQW4zsJNpVr2yideeWsG2VXuD7R16tOH6eyYyc86EFqvQvRDEGxK89dJ63nxmZZAbClDctpBpd49jxj2T6NXCNouT71eybN4alr+wln2bDgTbzZDB6OuHMeWOsYy7acQVI7ogl+H3bz3IzrV72bVuHwe2v8+h3Ueb1ATnoqxzCZ37dKBDz3a079GW9t3b0qZTCaWdSijtUIR5FvuV53lUHa3hvR2HeO23S1j98gY8T2CFTb6/4FEGTxpwOV/mJcFOpXn+iVd45vvzSdsOZZ1KeOhnn2PsjcOv2D7VnKjjmR/9mVd/vRTXcbHCJrf/0yzu+vKNrart7Cq5PQO5TafTrFixgjZt2jBw4MDAhnA6fvmTRfz1xU3BWU/TFNxM5FVugYF/oldUhbyoheN4pJI2wvNrXRPZcoK8PIvGukS2CCJkyGSDTMyWqmR5rO8/VQTYtm87UBQMUy6lK4DtK7fpTK6tokirg79krwBWWCeVGRgTQg6MJbI/y+rY7BK/pmugCDRdQ7geruPIgH8FSR4VQTrlBikOqk8eM6kKwvUwLQ2BgqaqOI6LphLUv2q6hmEqxGqlp1bVVKyItCE4aRfheuQVRbBTaZ8Mu4SiBnZc1usKIdMOEg1JGa3lx2PVV8UwTA3d1NFN6cFVFQXD1DHDJvG6GK7roWkaoagZqEeqqhAtCJFoSAYDb4alk4zbqP57a4R07LiN57nouvTcuo7MiA1FLQrKohSWFtKuexndB3elfHIf2nc9t09PCMH7779PVVUV5eXlpFIpqqqqqK6uxrZtiouLKSkpobi4+IIJqhCCPXv24LouAwYMaJaBGNd1qaiooLCwkO7dz2+PcF2XRx99lPr6en7zm9/IobjWj6vk9grg2HuneOPZ1Sx6dnXg+1M1lTEzB3P9PRMZPbP8isU5nQnHD55i6bw1vPnMKg7vPRZs71HehRn3TGLa3eMo7XDpvvYPgxMHT7Hy5Q2seGk9O9dkLxbMkMGYG4Yz+fYxjLlhWKuwf9ipNIf3HOXA9kO8v/sIh3Yf4eCuwxx790TQgnc2WBGLvKIIkYIwqirLaFzHo+pIdTAQCPL8NfWu8cx+5BZ6lHe53C+pWXBw52Ge+Pyv2L1erhRPvXMcX/rpZylq0zyreBeDI+8c57fffJ6VL28AIL8kyqf+5WZu/sLMVhHzd5XcnkZu6+rq2LFjB0IIRo4ceU6F7I//s4znn14bKHOapshiAC9LaLMkV/5o6Gr2j1QIovkWjfWJLLktCBFrtAmFZJqAqiCVWx+6KSOdhJtzSD2vyZlXUZSsHUAIwnmmXHLPxFSFDeyUi6r5cWMhjYaarE2hoDiC43ikU2lfRTVJJWRlrGTWIojgwo8sczO5uacj93PRJLhfwXOyxz0UMUk2Zl9nJK9pY1coz8zm2gpBOE96VjOvN5JnEatPommqXPYPa8TrZEmBbmhYYYN4nWzk0gwNzQA7ngY/Kk0OmMXlz6qC6TeA6bqOokrSbvs2AhTFb4JzgwsOI6ShWTrtOpXRtmspXQd2YcCYnvQZ2fOiCKTneezZswfP885IQl3Xpba2lqqqKmpqaj4wtHUmgum6Ltu3bycvL4+ePXs2yxJvOp0OyhkuxFJg2zZf+MIX6Ny5Mz/60Y9aXbzMOXCV3F5BuK7H5mU7ee2pFax9fWuQMFPUJp/pd47junsn0r1/xyu8l1kIIdi76QBvPrOSpfPW0FAdA+R31bBrBnLtnAlMvGVUi/pzAU4drmLl/PUsf2FdE6JrmDrDpg9i4i2jGf/JkRS3PXts35WA67icOHiKw/uOcXz/SY6/d5Lj752i6mgNlUerqT5WG9QqnwmFbQro1Ksdw6aX88m/n9kqY8rOB9f1mP9fr/GHb79AKp6iuF0hX/nfv2fMrHM3qV5u7Fy3j998Y15ghenQsy2f+85sJt0y6oraiD725NZ1XRzH+UAawr59++jTp885h2xeeGo1f/zZsmCISqYjyEYrzbcpOJ5oQvryC0I4aQ8n7eCkXRlhlWNlyMu3aKzNJhnoRtPCBVWRPl5/9gvdTyZwUk2JouI3ayUTNqGwLmOqVBXdUDEtjVhtMlCVzbCGHXfIvE2yMCHr87XCBqncNARDw7WdpsQVciwJmbgIFVVV/NciJAFGXjmbIQ07ng62hQtCOCl5oeGmXcJRy1dmZURuKKQFNcNCCDlAFviEBdEi2dilaiqqphDOC9FYEwvauTRDJdloo2qyMtYKSzKdUbhlGkHKtxGovo1A+pSF8NANXQ70FYQpbJNPaadi2ndvS88hXVFKPApL8unbt3migRzHCZTQHj16XNAXhG3bgaqbKVkoLS0NShZs22br1q107Nix2XytyWSSrVu30rNnT9q0aXPe2zc2NvLpT3+aa6+9ln/5l39pNf7JC8RHamcvFa2N3Oai5mQ9b85dw6LnVvP+nqw62m9Ed66/dxJTbx9NtIVJ47lgp9Ksf30LS+auYf1rW4Lmtow/d8Y9kxgxfVCLx2SdPFTFipfWserPG9mxak8wjKaqCuWT+jPx1tFMvm3MFamq/bAQQpCMpWisjckVNyH8c4FKSfuiVrVcfqk4/t4pHn/wf9j21i7gyntxQR7/9Qu38r+PPcsh/29y4Lg+fP4Hn7piyQpXya3rkkgk2LFjB6Zp0q9fPzRNo6Kigm7dup1zeGfBCxv55Y9eByTh01RFZqGK7JmwqR9Vek1TmUQFIcgvCNFQF5eZYYoscUgkbCxLRyAQnucTT4Jlf8DPoM3Wv+YeYVXNKXbw1eFYzgCZFdFJxZ1AVQ5FjCDHVtVUTEshlXQDP2w4avn7IkglbTRVxfMEZshAVSCdSvsDa2CFTDRdxXEcbD9hwbR0jJC0FaQSNngekYIIwvM9sokUoYiF8DwUVZWkEg83LQetZECztBnohuZHh+lygEyVByZTqqAbKpqqYoYMko0pWSiBkI1dDQlfeZWNYGnbRcuQ2ZBMttAMjXDUoqA0j6K2RbTvUUa38i4MmtiPtp2b1iPats22bdto27YtXbt2vfAP3TmQyZvt0qXLBwYYLxRCCGKxGNXV1VRVVZFIJLBtm86dO9OtW7dmsQE0NjZSUVHBgAEDKCo6v/+xqqqKOXPm8OCDD/LZz372o0Zs4Sq5bXUQQrB383ss/NMqlr20Xq70IC/GJ988iplzxjO4BbNoLwQNNTFW+DFeuf7cknaFTL1zHNNmj6fviAu7oG1O1JysY+2rm1j18gY2vVnRxAIwcFwfxn9yJONvGkmX/h0/in+7f3NwXY8Xf/wqf/jW86RthzZdSnn0j1+ifOKVjVF00g6v/X45T333JeoqGwCYfNtoHvzeHNp3O78A0pz42JPbmpoatmzZ8oE0hJ07d9K+fXtKSs5+1frWwu088dhLTV+dIv/Tfe+nIsh+USgKBUVhHNvFttO4tusTz5wygtOSDHRDleH8ucNaqnKaSirAzf4uGrVIp10cWyYcRAtCJJNpNF2qqIauB8NZZkj3kwNsOSQmBJH8kPS24uHYsiXMsV10Q1bXoijYcbnPqiYbtxDg+GqupmtohoJw5dCAEIJQxAQh8DyBnUwTihgyUUJVcNPSIuE5nk+MXXRdIZ3y0A352JqhBp7XTC5uvN6P6lIUrKhBOpH2c2DxybQDKAjP9UOGFTRNwzB1IoVhwnkW0ZIIhe3yyO8UofuQzvQY0I3S0lIKCwvP+SUei8WoqKigV69eF6RaXggybV79+/dvlrxZyNpsunbtSjKZpKamBiFEYGEoLCz80Cf/2tpadu/eTXl5OXl5529HOnz4MHPmzOFb3/oWN9/cOjIlLwIfqzP6R4Hc5iIZT7HylU0sfHoVFauzy+3tupYyY/Z4Zn5qAu2vQCD+uXDi/UoWP7eaxc+s5PC+48H2jr3aMe3u8UyfPZ7OfS7uAvdSEKuLs/bVTaycv4ENC7c0GR7u1Ls9428eycSbR9F/bB80rfVcOHwc8d6Owzzxf/6HPRv3o2oq9//bncx+5OYr/r7E6hPMfeIVXv7ZQlIJG8MyuPOhG5j9lZtabIjxY09u6+rqcF33A/aDvXv3UlxcfE7isnHFXr7zz8/6g106ih/4L3KqdjPtYBl1NVBJMxFWBU0jrKyQju14aJqC4gkEPmlELp3LRrKsKooi27A8V/qSHNsJhtA0TUUIGbOVyG0gKwzTUJNt7wpHrZz6XalypnO+0AxLJ50T06Vqygf9Taf5bRUVMoYEz/UwTdV3Qci6XlWX8RCapsrqYU3BS7sIv9LCMHV53BSB53hYYZk+gCLVbCti4tpZ5dqwDNy0iydAVTOJCibhwhBqSNB7SE/6DO1JvzG96Nir/RmJayaPtaqqqsnSfmlpKeFwdpkzkw07aNAg8vObJ4S8qqqKffv2NWve7KlTp3j33XcZOnRok/1Pp9PB68zNnS0pKSEajZ6T1J88eZIDBw4wdOjQC0ps2LVrFw888AA/+9nPmDx5crO8riuEq+T2I4Kj+08GtoVTR2qC7cMm9+e6eyYy8abhLZ77ei4IIdizcT9L561h+QvrqDmZbfrqO7In186ZwDV3jqOobcsPDyUak2x8Yxtr/rqRda9toaG6MfhdcbtCxt00gom3jGbYtEHBquJVtCyctMPvvjGP5598BYChUwfy1d//Q6uwk5w6Us1vvj6XpfPWAHKF4v5/u4PrPj3lshPwjz259TyPdDr9ge3vvvsu0WiU9u3bn/W+e7cd4pH7fv1B72kAkR22Qvpno/khUsk0yYQNniCvIEQiZmMYGq7noeDJ/FZ8T63pE80mSV+iyb8Z1TODUEQuyWdgRQ1Z/Zohs3lWk0axUFgn2WgHsVWhiEG8IYkQAkWTcWHppIPnughPoOpqNs7s9NiWzL4pksgqiiS3hh9tpqjgpT30kO5nAcuMXk1XcGwviEQzQ4avBIMQHqGQGdQMK6pUcjVVI5RnkV+SR2nnYtp2KqXroE4MHN+Xdt3acuTIkcBD/WGjszJL+1VVVVRVVWHbdrD8Xl9f32zZsCCVzWPHjjF06FBMs3lOuocPHw6qb8/3mJnc2aqqKuLxOAUFBYGym3vfzGMOHTr0gqwN69at46GHHuLpp59myJAhl/yarjCuktuPGDzPY8uK3Sx6ZjWrXt0cKJDRgjBTbhnFzE9NYMDo5hmsbC64jsuW5btYOnc1q/6yMbBaqJrK8GmDuObOcUy8eeQV8Ve6jsuONXtZ/ZeNrP7LRo4fOBX8LpwXYuSMwYz9xHDGzBpOcbvWNZD2ccDGN7byn5/7H2pO1FFQmsc3nvsyQ6cOvNK7BcCOtfv41b8+w+4NsuGv5+Cu/MMTn2bwxH6X7TmvktuzkNv33nsPwzDOOXxz7GAlX/zET/0BKR3hCdLJdFbVVBSssIadcIL0gnBe01itaH5Ok5YQWBFTZsrmkMSMQutPUwUqqaYpqLqGpiskYza4HoqmklcQIp1ycGwHx3aJFoVJp2Qjmet6GKZGY008UIJ1/2fPL2iwwgZ2Mh3YFMIRC1d4eH6CgqbJ3FnhWy6E50kirMidFR4YpuqXCgOehxkyEJ483kIIDFML6nld10HTVRSh4AkPXdPQTAXPkfEukXyLgjb5FLcrokOPdvQa2oUBE/qSX3xm1VQIwd69e0mlUgwaNOisUW4fBo7jsHPnThoaGtB1HV3XAwKYn59/USfITOlBLBajvLy8WfZTCMH+/ftpbGy8qMcUQlBfXx8Mp7muS3FxMalUCtd1GTx48AU95htvvMG///u/89JLL9G9e/eLfDWtCq2HAbUAevfoL24c8vfMmj2WqZ8cQTT/yuWhNgca6+Isf2kDr/9pJfu2HAy2d+rZlhlzxjNjzgTadGzZiK7zIRlPsXbBZhY/u4q339wenFcMy2DM9UOYdvd4xswadkVUaCEEByoOserPG1j1543s33awye/7je7F2BuHM+GTo+gxuEuruoD4W0bNiTp+9Hc/5+1FFaiayhce/zS3/MN1reL4CyFY/sI6fvONuUG737S7x/Pg92ZflhKIq+T2LOT20KFDCCHOOSgUq49z75jvNNmmG5r0yPqtZ1bEbJKxZ4U1Uo3Z58srCpNKyMxbJ+VIYpn2sELS5uA5riS7fh6rbmrgybxYz3FRNZVIvoXryAzYdDJNJD+EnUyj6Sp4oJsqsbpENvPV0miojsuUAJ/MpuIpkok0uq4Qjlo4aVc+XsohHDVByOVsNy19sQqyjMJzXFRVQSDkbBeKtCSo2R4HVZFpBcIVIDyp6GoKwhUIxSOUF6K4bRFFpXmUdiyhc/+O9BralT6jemGYH26pK5M0UFBQ0GxxV5kIrWg0Sq9evVAUhVQqFaidDQ0N5OXlBRaGC1F0Xddlx44dhEIh+vTp0yz76Xkeu3btQtd1+vZtnjandDpNRUUFqVQKRVEwDCN4nXl5eR94DiEEc+fO5Te/+Q3z58+nbdu2l7wPrQRX/uzQgmhf0lUML7wTkOkrU24axqw54+g/rFurOFFeCt7bfZTFc9eweN5aqk9IC4CiKIyYNpCZc8Yz/oYrQxjPhfqqBlb+eSNLn19LxYrdQbJBpCDMxJtHMX32eIZOGdDiiQsZnHy/krULNrP+tc1sXrKDdCp7jmvXrYxxN41k3CdGMHhy/6v2hcsM1/X4/TfmMvfxvwJw/Wem8k//3wNnLbloaSTjKZ7/8avMe/JVOX8TtZj98Ce5859nNes+fuzJrRAC27Y/sP3o0aMkk0l69ux51vt6nsed5V/3Y7/AttMYmkradtEtHcPQMAyNhrp4kEtbUBIhnXJwHRc75WBaGulEGt3UZa6tqgS1sJkYK8+VS/fClWkChqniupJYem7Wf6oocp9UTcFJyQGwTOxVQ1UDmq6hGxqhsEmsIYFju5iWTihi+kqtjaapWGFpAXBSjt/IZcgLAA9AoOsawh8OUxRkeoLioaKiKsiBN987C0LWAUc0okVRStoV0alXRzr2b4/ISzN6yohmI0DxeJyKigq6d+9Ou3bnLki4UGTSCzp37kzHjmfO0RRC0NjYGFgYHMehuLiY0tJSioqKPqB0ZlIW2rVrR5cuzRMi7jgO27Zto7S0lG7dmqcNKUPq8/Pzg0iyTGtaVVUVjY2NAakPh8MUFRXx85//nEWLFvHiiy82mx+5leCjzeg+JEaOHCn+8+u/5PW566hY926wvVvf9lx/91im3zaSwpLzDxO2ZriOy6ZlO1n07BrW5ER0ZWwL184ex6CxvVsdma88Ws3yF9axdN4a9m1+L9he1KaAybeNZuodYxk04cqlRCRiSbYs2cHaVzex9tVN1JzIeoitiMWwawYyetYwRl8/lA49/mYuflsdls5dzZOf/xWphM3gyf359otfIa+oeeY5mgPHD57iV//6DKv+8jYg83H/8cn7GTWzeSxsV8ntWcjtyZMnqauro0+fPue8/219v4pwPRkFpmXyVFPShqBAXkE48K8KT3zAlhCKGCQbsv5YzfBLHpqUHwQ7K2+jZ328IJVZNyUzWVEgHLGINyTQdc1v9zJkG5ff1JVJGhCerJI1LJ1UPIXwPFRNQ9c1bDvtl1HIHZBf8LKwAQXZxKVpKIqCrmtYUZO8oigFZXm06VJK++5t6D2iF31G9cDyr8aSySSVlZUcPXqUhoYGysrKgkSKS42nqq6uZs+ePQwcOJDCwubxe11seoHrutTU1AQFC6ZpBmqnoijNnrKQSqXYunUrXbt2PadH/MMgU87Qvn17OnfufMbb5JL6b3/726xbtw7TNPnhD3/IzJkzLyhJ4SOE1sVwLjNyPbeH95/k9efWsviljdRWyYEi3dAYN6OcWbPHMnxy64rbuhg01MRY+uI6Fj23poltoUOPNsy4ezzXzh7X6tIWAN7fc9QfRFvLkXdOBNvLOhYz5Y6xXHPXuCsSLZaB53ns2fAua/76Nutf3/oB+0Lnvh0Ye+NwxtwwnPKJ/VpFs9XfEt7d8h5fv/U/qTpaQ8/BXfneK19t8Ya882HLsp38/OGnOLjrCAATbx7J5//jnkuODrtKbs9Cbquqqjh16hT9+587N+7Ovo8EaQbgk9VY1jMbiVqybABAQKTAIubHcMmkA0uS4YyP1tDwXE8esNxhrYz31vNQ/YSBTKCuaWnYSUcWJqgqoYhBoiGFbkryaYZ0+bOuSjJq6qQSSb86VkE3ZaKDz41RNMADT3gIBKGwRShkEsq3KCjJp7RzCW27ldJrSA/6j+tNfvGFkRghBAcOHKC2tpZBgwaRSCSorKykuroaRVECAni2hq2z4VIGx86GTNLAkCFDiEQubXgjmUxSVVXFsWPHqKuro7S0NCD1lzpA1tjYyPbt2+nXr1+zxYdlyhl69OhxQap6Op3my1/+MoZhcPvtt7NkyRKi0Sjf/OY3m2V/MnBdl1GjRtGpUydeeeWVZn3sC8DHltxm4KRd1i3ZwRvz1rNx2S45VAq07VTMdXePYeYdY2jbqXWdOC8GB/ccZfHctSyet5aq47XB9qGT+jFjzngmfmIEkVbmQRZC8O7Wgyx/cR3LX1zHiYOVwe869mrHNXeOZcrtY+k+qPMVVaKrjtaw4Y2tbHh9C5sWb/dbISUi+WFGXFvOqOuHMnLGYNq1cC7q3ypOHDzFo5/4Dw7vPUb7Hm34jwWP0bFX86xsNhectMP8/17I0z94mWQshRkymP2Vm7j7/33ioq0KH3tyC1L5Oh21tbUcOXKEQYMGnfE+clne477BXyOdkvFfruNiRQyclIumq3Lq3zJorPWbsjQ5/GUnZTOXpqmEohaOLW0KTspBtzQ5iCUEnuvJogZNQRFyG55UiYWbbYrQdQXhyYla4QlCESObTSgERsjASTrBPJpmKriO50fyKhghAzNkEM6T5QUFbfJQo9CjvBvjZ42mXZdLXzrKeEwty6JPnz4fUHoyDVsfxsN6OQbHhBC8//77VFZWMmTIkGYpPAA4fvw4Bw8eZMiQIU1e66VkztbU1LBnz54Lzpu9EGTIcv/+/S+onCGRSPDAAw8wcuRIvvGNb1xWBe/JJ59k48aN1NfXXyW3lxnnS0uoPF7Louc3sHDeOk4crgakb3X4pL5cd/cYxs8cjGl9tFU41/XY8tYuFj27htULsmkLVthgwidGMGP2OIZNGXDFM0VPhxCC3RveZdm8tSx/sWm0WJd+HZhy+1im3D6G7gPPvCLTUnDSDjvX7mP9gi2se20zB3cebvL7Tr3bM2LGYEZcW86waYOIFvzttIy1NOoq6/n6zT9iz8b9tOtWxo+XfatVRIWdjsqj1fz6a9nosM592vNPP/0swy4i9eEqueXM5LahoYEDBw6cMcJICIHruggh+Oywr+PYDoqqIlzpd000pjBDOqqmYZqqTCJwBZqpEo5apBNpbF8pDUVMHNvFc10c20Uz5Bel8ATCdRFC2g6EUBCeBwJ0U8N1XCnmCg8rYuGmPRQEQoAZ1oM6XkWRQ226oREtiJJfGqW4QxFtO5bQeUBHeo/oSfvubYKr+fr6enbu3Env3r0pK2ueZbhEIkFFRcU5faunH9+GhoaAAHqeR3FxMWVlZQEBTKfTbN++/UNV1J4Pnuexe7cc1hgwYECzEDUhBAcPHqS6upohQ4ag601P+I7jNMmctSyLsrKyoDb3bK/rxIkTAVluLrW6traWXbt2MXjw4Asiy7W1tdx7773cfffdfOELX7isitDhw4f5zGc+w9e+9jWefPLJq+T2MuNCo8A8z2PLqn0snLeO1W9UyGFaIL8owvTbRjJr9ji692v5IoLmRqw+zvL5G1n8/Fp2rH0n2F7avojpd41lxpzxdOt3/u+2lobremx7axfLX1zHqr9spL4qm1PbbUAnrrlrHFPvGEun3s1jZ7oUnDh4ig0Lt7LpzQo2LdnepMxI0zUGjOvDqJlDGHXdEHoP7/6Rt8K0NBKNSb466/vsXv8O3QZ04olEj9efAAAgAElEQVSl36SglfrmK1bu5qf//LugynfGPRP5P9//FEVtLjzr+Sq5RaqGp+9/PB5n9+7djBgxosl2IQSOk8mhVXhgyGMkYrLmFaSK2libwDB1NF2Vym1dI54ra2jNsEEqZuOkpY3AsAycVFoOZ+H7aV3Xb5WV7V+q6icLIPuyFU3BSaUBgaKqqDqYlkleUYSitgW07dqGNp1K6T6wM31G9aTkAj02x44d4/3332fw4MGXvBSfQU1NDbt3777gmtYzIZcA1tbWYpom8Xic7t27N9tAViYVoKSkhG7dmmciPEOWAfr3739BX8bxeDwg9YlEgsLCwqBgIaMiHzx4kKqqqjOS5YvFqVOn2L9//wWXMxw/fpw5c+bw8MMPc/fddzfLPpwLd955J48++igNDQ08/vjjV8ntZcbF5Nw21MZY8vIm3pi3jv27jgbb+w3tynV3j2HqTcOJFoTP8QgfDRx77xRLnl/Hm/PWcCwn67Xv8O5Mv2ss19w2+kOdhFsKTtph61u7eeuldaz880Yaa2LB73oP687kW0cz+bbRrYLouo7Lno3vsunN7WxctI3d69+RVjwfhWX5DJs2iKHXDGLY1IF06nPmYp6raIr6qga+Mv3fObjrCAPG9uaJJf+GbrTOFRY7leaFnyzgmR/+hXQqTV5RhAe/N4dZn5l6Qe/1VXLLmcmtbdts3bqV0aNHA1kbguf5UVb+wX1w+GM01saDBAHdUInXJ32yq6Cqnu+H1VDVTCmD9PgqqiSvniNQFDm0pagKTtrGMEwZo6UqWGEdKxohWhCmsCwP10jTsVcHRk0bRp8RPQlHQx9Y1s/Pzw+W9c/n6/Q8j3379pFKpRg4cGCzEabDhw9z9OjRZlUXq6qq2L17N23atKGxsRHbtoNkguLi4ouyJmRSFi7UY3ohyKQXXApZ9jyPurq6IHNWVgsLdF1n6NChzWLDAOlZzpRIXIgN45133uH+++/n8ccfZ8aMGc2yD+fCK6+8woIFC/j5z3/OsmXLrpLbFsCllDgIIXhn+2EWzlvH0j9vCooITEtn4qwhXD97LIPH9vrIK29CCHauf5dFz67mrT83LVwYOW0gM2aPZ9ysoa0uVgxkLfrmJTtY9sJa1rzydrDvIAP2J98+him3jb4i9b9nQmNtjC1Ld7Bx0TbeXrStiacYoKxTCUOnDmT49EEMu2YQbVvh8F9rQeWRar489VucfL+S+75+O/f/251XepfOiSPvnuBn//cPvL14OwDDpg7kof9+gI49z+0bvkpuOTO5dV2XDRs2MG7cuLMSW4B/HP9Nqo/XShuByNbECuHJmK6w4acfSDKr6arMf/UTCDI1saGoSX5pHqXtiyjpUkrXfh3oPbwH7Xu0DZ6voaGBHTt20LNnz3OSsNwg/qoqGZZcUlJCWVnZB4a1bNsOFMvu3bs3m2K5d+9e0uk0AwcObDYSlmnyGjJkSODDdV2X2tragADmJhOcr0oWskvxgwYNoqCgedSWzEBWt27dmi29wHVdtm3bFmTNnqse+EKRGfCrr6+/4HKGzZs388UvfpHf/e53jBw58mJeyofGo48+ylNPPYWu6ySTSerr67n99tt5+umnW+T5fVwltxeBZMJm9evbeOP59Wxdk13Ob9+1lOvuGsPMO0dT1v7iVnRaE1IJm7Wvb2XJ8+vYuGQ7rt8YGckPMfnmUcyYPY5B43q3SkKfSti8vbiClfM3sGbB5iZ2gJ6DuzL1jrFMuWPMeclES0EIweG9x9i8dAdbl+1g21u7qKtsaHKbjr3aMWzaIEZML2foNQMpLGt9SvqVxNblO3nkuu+hqAo/XvZNBow9dyrUlYYQgmXPr+XnDz9FfVUjZsjgvsdu445/nnVW5fkquUUuSXte0xpZIQRr1qxh/Pjxgb/2dGIL8JVrvsPxA6cQkrFihg3shI3AIxwJE84PYVkm0eIIhWUFtOlaQuc+HejUryM9h3TBtC7sqj5jGSgvLyca/XBZdel0mqqqKiorK4NhrbKyMkzTZN++fc3qr82Q5UzeanOR5X379mHb9nnJciaZoLKykng8fsZl/QyOHTvGoUOHmlVZzsSHXYoN43ScKZYrUw9cXV1NZWVlUA+cUbDPp74LIdizZw+e512wZWL58uU8+uijzJs3j759+zbLa/uwuKrctgwuR/3u8UNVvPH8eha9sIHKYzKFQFUVRkzux8w7xzBuZvlHfggNoLaygeXzN7B43lr25uTQtu1SyrQ7xjD9rrGt0p8Lcil40+LtvPXSeta8uqkJ0e01pCuTbh3NxJtH0bV/x1ZjA/A8j4M7DrNl+U62LJVkNzeFAaBr/06UT+pH+YR+lE/qT7tuZa1m/68UfvWvf+KFJ1+lc58O/LriP1vlhdfpqD1Vzy+/+gxL5q4G5Gfy4V99np6DP1i2dZXccnZyu2rVKsaMGYOqqmf9Q/jvf/odJw6eorA0j+IORdh6kl6DujFh1jjyCi89MDmjgmaI3aVaBjLDWgcOHKCqqopIJEKbNm3OqOp+WGSU5eYkyxkvbFFR0YceHPM8j/r6+jPGjZ06dSqoqG0uG0ZlZSXvvPNOs8SHZZBIJNi6det5c3E9z6Ompobq6mqqq6vPWQ+cSa6IRqMX3OI2f/58fvrTn/Lyyy9f0FDg5cJVctsyuBzkNgPX9diyci8L561jzaLtcmULOYR2zc0juO7uMfQedGUn+ZsLh/Yd4825a1ny/FpOHakJtvca3IXpd41j2h1jKGnXPLnczQ07lebtNyt468X1rF2wqYl1oUu/Dky+dTSTbh1Dz1ZWr+s6Lvs2H2Dz4u1sXrqDnWv2ZtODfJR1LmHwxP6S8E7sT7eBnT4S5K45YafS/N2gr3Dy/Up++PpjDJ9efqV36YLx9psV/NdDv+f4e6fQDY1PPXIzsx/+ZJOc5Kvklg+S24wNYe/evVRVVQVK57n8q5kSgX79+lFS0jwRG6lUioqKCsrKyppdBU0mkwwaNAghRGBfqK+vv6DXeiacOHGCAwcOMHjw4A+tLJ8N8Xicbdu20aNHj2ZpHLNtOxiccl03ILoXWpl7Lhw6dIgTJ04wZMiQS86uzaC+vp4dO3ZcVDHF2eqBCwoK2LNnD23btr2gYTwhBL/97W958cUXmT9/frNl6X4E0XrO3i2Ay0luc1FfE2Ppnzex6IX1vLvjSLC958BOXHfXGKbdMoKC4tbTqnSx8DyP7Wv2seT5daz4y9vEfEVUVRWGXzOQGXePY/wNwwhFL+176HLBTtpsXraTlS9vYM2rm2iozg6jdezVLhhG6z2seaxtzYm07bBv0362r9xDxcrd7Fyzl4acYTqA/JI8yif0Y/Dk/gwc34few7q3mrray4k/fvsFnv7eS1x7zyS++vt/uNK786GQaEzy668/xyv/uwSAHuVd+Mr//B/6DO8OXCW3gBz+cV2pHuTGfOV6XSsrKwP/amlpKWVlZUG96MGDB6msrKS8vLzZY5makyyfz1+bG8FVWVmJECIgf4WFhWf80hJCsH//furr6ykvL2+2XNjMxUJzemEzQ4IdOnSgU6dONDY2Bu+r67qB0llUVHTBV/FCiCYXC83lL25OFfj/Z++8w6K80/X/oYgivap0pJeZoQoWsOJgT0x2E1NML7vpyZbkZGPM7kmy2c2eZJPsSc5mS/aXnBzXxJJItaBgBQGZoReRDtJBOsy8vz9wRlBUxJE6n+vyuuL7DjPfl4wz9/t8n+e+VUlidXV1VFZWYmBggK2t7XXjgVUolUr+8Ic/IJPJ2LVr15j6eqcRk+sb+w4zXuJ2KOfzqjl4eQjtUuvgtrK+gR7hq/2JujeU4Egv9PQ18+9rIunr6SftcDZJu8+QdihbXbmePdeAJesCWHHPIoJX+k7aKfaB/gHkxws48UM6J39Ip7WhXX3OxsGSJZuCWbIpGNHSyfn/S6lUUp5XTc7JgkHBe7KAxstezSr09PVYKHbCe5E7XiFueIe64eC1YNpVd6tL6njM91Xmmhiyv+nvE72cMSFLyeejn/+d2gv16Onr8dCbd3PfaxvR19fTiluVuFUoFOoK7vXexCpXAlX/qkKhwNjYGD8/P41U7ARBoKqqirq6OkQikUZ7QXNzc28p9rW/v1/d06mq6qqEvYGBAQMDA+Tm5mJoaIiHh4fG7thHGhy7XVThBB4eHlhZWV1z/mq7MUNDQ/W1Xk/UKRQKcnJymDt3Lu7umsugr66upqamBolEorEqcGdnJ9nZ2Xh5eWFqanrdeGDVEJ5CoeBXv/oVPT09/PWvf9XYTcsURitux4m+3gHOHMrh4HepZB4vUg/7WtiYsHprCGt/sgjHSZawNFbamztI2T/on5t/tlR93MzKmMi7Qlh5bxg+IaNrHZoIFAolOScLOb4vjVMHMmmqvdJ6YWZtwuINQSzdHELASl8MZk/OzxBBELhY3kj28XyyTxSQn1pCRX71NUPmc00N8QpZiFeIG16hbniHumNlN7V3sioKqnlS/EvmOVvzdfEnE72cMdPT2cs/3/6O/Z8fBMBvsQcfHdmhFbf9/f3q1oSRhsZGQjU4NG/ePJRKJc3Nzejp6WFlZYWNjc0NDfivh0KhID8/H11dXby8vDRWBbydYTQVquqfqtI5MDBAb28vDg4Oo+7bvBl3ymVBVQUdbZKXIAjD/GZ7e3sxNzfH2tpabTc2tAqsGvK6XVRV8EuXLo3avWA0tLW1kZeXh7+/v3q3YSiqIbympiaysrKIiYmhq6sLf39/Pv7442lXrRgjk1Nd3CEmUtwOpaG2laR96Rz6/izVQzxlfYJciLo3lMgNAdPCOxegrryRY3vTSPo+lYrL5vUAC1ysWXVvOCvuCcVxklhzjYRSqaQwvZSTP2Zw6kA61SUX1efmmhoSvi6QJZuCCIkSY2g8ueKLr6brUjdFGaUUpZdSkFZCwdnzNFY3X/M4KzsLvELccA9wwVXkyEKxM/OcrafMZ2byd2d498FPCFsfyO/2/3Kil3PbZBzJ4U/PfInBnFn8K/dPWnH74osv4ubmRnR0NA4ON8/erqmpobKy8hqxePWkvsp/1dLS8qZCpauri5ycHOzs7DQmlpRKJSUlJXR3d+Pn56exwanm5mYKCgpYsGABXV1dtLe3Y2RkpO7VHUu1VTU4ZmFhoTFLMtBML+xQu7GWlhZ0dXXp7u5m4cKF2Nvba0zY5+fno6enh5eXl8auXyXsJRLJqNoKWlpaePzxx9HX11f7CH/33Xcae09OYbTidgIRBIH8zDIO7k4jJTaL7s7BVEmD2foskYpYc88iApZ6TLoo3LEgCAKlOVUkfXeGo3vSaL54JT7XTeTIynvCWL41FJtJXDUUBIHyvGpO/HCWE/vTuZBbqT43a/YsAlf6snhjEIvXB2ExSQfqrqappoXC9PMUnj1PwdkSijIuXOPKAGBoPAdnXwdc/R1x8XPA2dcBFz9HLOaN3No3UeSnFvP2PX+itb6dh9+6h4ffumeil6QR2ps7aK5rxdXPUStuCwoKiI2NJT4+ntbWVlasWIFUKiUsLGyYIFQqlRQWFjIwMICPj88NxaJSqaS1tVU9qa+KVR1pm7uxsZHi4uIxDQ5dj76+PnJycsbkMnA9hrZMDG0ZuLqqq1Qqh/nq3uwuVrVlfjP/3ltd69AqsKbupFtaWsjLy2P+/Pl0dnbS2dl5Q7ux0TAwMKAW9poaHITBm7Dq6upRtzc0NDRw//3387Of/YyHH34YHR0d9Y2LpqrIMHgTGBkZSW9vLwMDA9x777288847Gnv+O8Tk+VYaByabuB1KT1cvx+PlHNlzdph3rvUCc1bfHULUvaHYu46u9Wqyo1AokR0v4NjeNE4cuOJYoKOjg2iJByvvDSNiczDGZppxZ7lTVJ+/yKkf0zkVk0l+aol6y19HRwffcHeWbAph6eZgFrhq5vN/PFAqlVQX11GYXkppdjkXsiu4kF1Jc13riI83sTDCycceJx97HL3scPKyw9HLDltnm3G9Kevu6OGH/z7IN/+5h76efoLWiNjx75eZazI9dkBUaAfKrqK9vZ2DBw8SGxvL2bNn8fX1Ze3atXh4eLBr1y5eeuklHB1v3fpEtc3d2NhIb2+veniptbWV1tZWRCKRxvorx9JfezNUUbKCIODt7X1DsXN1r+6NqrqqwbHrbZmPBZVYNDMz05iwh5F9cVV2Y6pt/aF2Y6OxVuvt7UUmk+Ho6MiCBZrZchQEgbKyMlpbWxGLxaMSphUVFTzwwAP87ne/Y8OGDRpZx43W19nZibGxMf39/Sxbtow///nPhIeH39HXvU204nYScrGqmcN7z3L4+7PUVV7ZNvYLcWX11pBp1bagGkQ7tieN1INy+nsHY+BnGegTGiVixd2hLForYs7cyem4oKLlYhtn4s9x6kAG547m0d97xabL1c+R8A2BhK8PxDPYdcps7w+ltaGdstxKLuRUUp5XRXleFWW5VSNWeQH0Z+kxz9mG+a422DpaY21vibWDJVYLLLCcZ47FfDPMrE3GPGDY0dpJeV4VF3IqKUwv5UxMhjr0YsNTq3nu40cm7fDi7aAVtzdAqVRy7tw5PvroI+Li4pBIJERGRhIdHY1IJBrzPzyFQkFDQwPFxcUoFArMzc3VXrO3O0BVV1dHWVmZRi25+vr6kMvl2NjY4OTkdEtiUVXVVQl7VVXXysqKS5cuqVsGNDU41t3djVwu12g6mCrJq62tDZFIdMOKfV9fn1rYD7XgGknYqyrWnp6eGnPEUFWsVbsLo3mP5uXl8fjjj/P555+zdOlSjaxjtHR1dbFs2TI+//xzwsLCxvW1b5EpL251dHSigT8DesDfBEH4/fUeO1XErQqlUknu2Qsc+j6N43EyeroGI86nY9sCQGd7FydjzpH0XSqyE4XqSugco9ksjpawYusiglb6DvP9nIx0Xeom/VA2J39MJy1RNiw0wsLWjLD1ASzeEETgSr9JGWM8WgRBoLm2lYqCasryqqgqqqWqqIbKwtoRe3lHYq6JISZWxhibzcXQeA5zjOdgMHsWevq66OrpgjDoXdvf2093Rw8t9W201rcP+52q8F7kzva37yUkSqzpS500aMXtTThz5gxvv/02X3/9NQBxcXHExcWRl5dHaGgoUqmUlStX3lLVUTW57+rqiq2tLZ2dnddYUllbW1/XfmskBEGgpKSEzs5OjQYTqAbnPD09R3QZuFUGBgZobGyktLRUXcFWtWvcrsBVDU5pMh1M1QurGvK7lRuaq9s1htqNARQWFiISiUY15DbatarcG9zc3Eb13jl9+jSvvPIK3377Lf7+42firVAoCA4OpqSkhOeee44PPvhg3F57jExpcaujo6MHFAFRQBVwFtgmCELeSI+fauJ2KF0dPZxMzObw92nIz5xXH7eab8aarSGs2RqKg9vU2f6+GY21LRz/IYPkfWcpyLigPm5iYUTE5mBW3rNo0kb/DqWvt5/s4wWciT/Hmdhz1Fc2qc/NnmtA8GoRSzYGsSg6ADNrzezyTQZ6unqpLa2nrqyexupmGqtbaKhqouViKy11bTTVtXKp6RJK5dhklMGcWTj52OPi58hCkRMBK/xwC9Bc+9tkRStub4Iq0OHqrd3+/n5OnjxJbGwsR48excLCgqioKKRS6Q1toVSV1etN7g8MDKirnKMNVVANY5mZmWnMuUC11vLy8ttyWbiaoYNjzs7OdHV1DXNgGCrsb+XD+OLFi5SVlSEWizXmx6paq5WV1S1XrEdCZTdWVVVFS0sLFhYW6or97a55YGAAmUymrq6PhoSEBN5991327t2Ls7Pzbb3+WGltbeXuu+/m008/HVdxPQam9DeBjo7OYmCnIAjSy39/A0AQhPdHevxUFrdDuVjVzJG96Rzee5ba8itiyTvQmdVbQ1i+MQAT86kfEqGitqyB5H1nObonjfKCGvVx6wXmRGwJYcXWUDwDJ1/QwtUIgkBpdiVn4jI5HZNJ8ZAYY11dHbwXuRMWHUDYugBc/G4+BD7VUSqVdLV3097UQVd7N10d3fR09NDb3Y9SoUSpUCIIAgaGBhjM1meO0RzMbU2xmGeGsbnRtP/9jIRW3GoAVY+jqqpbXV3NsmXLiI6OZunSpcyePZu+vj6KiopQKBSjdi5QhSpcL0BCR0fnjvTXCoLA+fPn1ZZUmqoC32xwTCX+GhsbaWtrY+7cuWphfz2/X9XvvqWlBZFIpDE/VlV7g4uLi0bS0VRUVFTQ0NCASCSiv7//Grux0bprDEXVt+vs7DyqtQqCwLfffsu//vUv9u3bp7H3zVh55513MDIy4he/+MWEruMmTOlvBx0dnXuBaEEQnrz894eBMEEQnh/ymKeBpwGcnJyCy8vLJ2StdwJBEAbbFvakcTxWpnZb0DfQI2yV3+WQCG/0Z02+0IGxUppbxbG9aRzbe3ZYFXS+szXL7w5lxdZQXH2nhgtKQ3UzZ2IzOXUgE/nxfHXwBYCtoxVh6wIIiw5AstxnRiSLabk5WnF7B+ju7iYpKYmYmBhOnjzJggULqKmp4YknnuDJJ58c8/bQ0ACJjo4OZs2aRXd3N2KxWGMuCwMDA+Tk5GBkZKTRYIKmpiaKi4vx8/MbVQuHaujo6qru0ASxofZZnp6eGtt2u53Y2+uhSjLr7e3Fz8/vmrUqlcphwQr6+vrqGxlVsMJI3GrfriAIfPLJJyQnJ/P9999rrCXiVmhoaGDWrFmYm5vT3d3N2rVr+fWvf83GjRvHfS23wFQXtz8BpFeJ20WCILww0uOnS+V2JHq6+ziVmM2RvemcO3ElJMLcypiVdwWzZmsIC33tJ3iVmkMQBPLTS0nZn07K/vRh1mLO3nas2BrK8rtCsVs4NVo1ui51k5mUQ2p8FmcT5bTUX7meOUazCV7tT9i6QELXirGcr5n2NC1TD624vcOcPn2axx57jMjISIqKiujq6mLlypVIpVJCQkLGVBVVCaW2tjZMTU1pa2tTB0jcTAzdiK6uLrKzszU6jAWDXrNX24fdKldXdefMmUNXVxfz58/Hzc1NY2ttaGjg/PnzGom9VaFQKNRJbqO9YRgarNDZ2YmpqSnW1tbD7MZuFs5wNUqlkh07dlBXV8dXX32lMXeOW0Uul/PII4+oEwF/+tOfsmPHjglZyy0w1cXtjGxLuBmNda0k7c/g8J50KoeEDrh4LWD13cGsvCsYqyniwzoaFAolOaeL1dZil1o61efcxU5E3hVC5JYQ5jtbT+AqR49SqaQo8wKp8Vmkxp3jvLxi2Hl3iTOhUgmLoiV4hbhNm4FCLTdHK27vMN988w3Lli3DxcUFGPRJTUxMJDY2lszMTMRiMVKplKioKMzNzW8qfK7XX3s7ARIwWFktKirCz88PU1PT275uuOILrFAo8PHx0ZhXakdHBzKZDHNzc3p6ekas6o4FVcuAWCzWWHtDf38/crkcW1tbHB0dx/QcQ+3GmpsHJ2sNDQ1pa2sjMDBwVCK8v7+fF154AXNzcz766CON+tbOEKa6uNVncKBsNVDN4EDZA4Ig5I70+JkiblUIgkCRrILDe9JJjjnHpdZB2yZdXR0Cl3myemsIi9eKmDOFJ/avpr9vgMxjeSTvO8uZeBldHT3qc15BLiy/O5TIu0KwXjB5wyKupr6ycVDoxmchS8mnr+eKzZiJpREha8QsipYQEiXG1HL8d620jB9acTuBKBQK0tPTiYmJ4fDhw+jr6xMVFUV0dPSIwQMql4WbhR3cSoCEIAhUVlZSX1+PSCTSmCXXnUoca25uVotwVbVyYGCAlpYWGhsbaW1tZe7cueoq9vV6dYdypwIfVH27KlcMTVFZWUlFRQUmJiZqv9jr2Y3BYEX+0UcfZfHixbzxxhuTfmp6kjKlxS2Ajo7OeuBjBq3A/iEIwrvXe+xME7dD6e8b4OyxfJL2pZN6JE/d32loPJuI9RJW3x2C/6KF0+rfUV9PPxlJuSTvT+dMooyeyz3JOjo6+IW5E3l3CMs2BmE5harYvd19yFPyOXtITlqCjNoL9epzuro6+IS5EyqVELJGhJvEeVr9/9SiFbeTBkEQqKurUw+lFRUVER4ejlQqZfny5fz444/Y2toSFhZ2y32S3d3dNDY2DguQUKWHFRYWoqOjg7e3t8b+cd+JxDGA6upqampqbtjeIAjCMAeG/v5+LCwssLa2HrGqq1AoyMnJwdjYWKNOEyoLNU327QLq4TlVOMNQH+GhvckWFhYYGxvT3d3Ntm3beOihh3jqqadm5NSshphRv7iZLG6H0t7SSUpMFof3nKVQdmXL29begpVbglm9NRhHN80NnE4Gerp6STuUTfK+s6QdylaHRahS0SK2DApdC1vN7PCNB4IgUFVcR1pCFmkJMrJPFqIYuDKUZmZtQvBqESFRIoJXizCfQtemZWS04naS0tfXx/Hjx/nxxx/5/vvvMTMz46GHHmLLli23VQlVKBQ0NzdTX19PXV0dc+fOxdHRcdRVzptxq4Njo0Hl4dvd3Y2fn98tbamrrldV1TU0NFRXsXV0dJDL5djb22NnZ6eRtcKV34Em+3ZHW11WVbHlcjkvv/wy/f39REdH88Ybb+Dq6qqRtcxQtOJ2hlNRcpGkfekk7c+goeZKxKqn2HHQVmxTIGbTbKu781I3Z+JlpPyQTubRPPr7BoWurq4O4qVeRGwJZunGIMynmO9sZ/vgUFrG4WzSD8lpqBoepOAR6ELoWjEhayV4hyxET1/bxjXV0IrbSYwgCNx33314eXnx8MMPEx8fT1xcHA0NDURERBAdHc3ixYtveTBI5Qbg6enJ7NmzhzkSqLbzbyVAQrVWVXuDWCzW2LCSqrJqZGQ06mCCG61RVdW9ePEily5dwtraGkdHx9vq1R1KTU0N1dXVSCQSjf0OlEolubm5zJkzZ9QDaUVFRWzfvp3XXnuNS5cukZCQwJtvvsnixYs1siYYbI/Yvn07dXV16Orq8vTTT/PSS2EPvJUAACAASURBVC9p7PknGTNK3Pr5iYX/3PElq6QizMw1c4M2XVAqleSklXJkXzrH42R0dwxu4evp6xK6wodVd4cQttoXg9ma6dufLHS2d3E6Qcbx/RlkHM1Vt2vo6ukSEOHFsk3BLNkQOOWEriAIVBbWkH44m/SDcuQnCodFAhtbGBG4wpegVf4ErfJnvsvEWidqGR1acTvJqa6uxt5+uC1NR0cHR44cIS4ujlOnTuHh4cHatWuRSqXY2treUPzU1tZSUVGBSCS6pqo4lgAJGD44psme1Z6eHuRyOQ4ODhqtrKr6dn18fNT2ai0tLeqqrpWV1S2HKqgietvb2xGJRBob2BoYGEAul2NtbT3qcIbMzEx+/vOf869//YvAwECNrGMkamtrqa2tJSgoiEuXLhEcHMz+/fvx9fW9Y685gcwocWu/wE3wc3kUfX1dFkd4Id0UQPCihdpp86vo6e7jzOFcjuw5S+bxQnWKlJHJHJatk7Dq7uBp158L0NHWxam4LFL2n+Vccj6KASUwpKK7OZilGwMxt5l62/s9Xb1kHy/g7CE56YfkVA9x0QBYsNCWoFX+BK/2J2C5L0Zm2pu/yYhW3E5xlEol2dnZxMTEkJCQQF9fH6tXryY6OprAwEC1yFJt7Xd1dY0qRGI0ARJwxQ3AysoKZ2fNRfqpela9vb2xsNDctG5NTQ1VVVVIJJJhfbuqqq5K3Pf19al7dS0sLG745aRUKikoKEBHR+eWI3pvRF9fH1lZWTg5OY3amu3o0aP85je/4bvvvsPd3V0j6xgtW7Zs4fnnnycqKmpcX3ecmFHi1tvLX7hnw5tkpJ5XCzZrGxOi1otZuyEAe8ebeyrPNJob2kk+cI6j+zMozq5SH7e1s1D7506n2F8V7c0dnI7P4viPGSML3SnauqCipvQimUm5ZCblIEvOo+OykwYMVq29Q90IXu1P0Gp/vIK1LQyTBa24nUYIgkBzczMJCQnExcUhk8kIDAwkMjKSf//737z99tsEBQWNSYBeHSBhamqKiYkJ1dXVuLu7azTl6k54zQqCQGlpqTp17WaVVYVCMcyB4XqOEwqFArlcjrm5uUZdIbq6upDL5Xh4eGBlZTWqn9mzZw9/+ctf2L9/v0Z9ikdDWVkZkZGR5OTkaMxKbpIxo8Stque2sb6dQ3FyEmNl1AzpS/SXOLJ2QwCRq3yYa6QZh5XpxGB/bgZH92dQX9OiPu4hdmTlliCWbwrEcgpWNW/GpdZOziTIOP5DBpnHrjhN6Orq4L/Yg2Wbgli6IQirBVMzXEGhUFKceYGMI9lkJuWSn1oybDBtrqkh4mXeSJb7ELDcFxc/h2lXtZ8qaMXtNGZgYIDdu3fz2muv4erqioGBgbp94XYqjIIgUFFRQVlZGQYGBhgYGNx2gMTQ521sbNSo16xSqSQvL49Zs2bh6ek55oALleOEqqprZmZGRUUFjo6OLFiwQCNrhSs90aP1HBYEgS+//JIff/yRvXv3Ym4+vl8cHR0dLF++nDfffJOtW7eO62uPIzNS3KoQBIEcWSUJB86RkpRP72X/0DmGs4hc5Yt0YwD+EketG8dVXK8/V+Wfu+quYJZIRcyZO/1uEC61dnI6XsbxH9I5lzw8Mtc3zI2ITcEs2xSEjf3U3QXobO9GlpJHZlIuGYezqTk/vIXBzNoEyXIfAlf4EbjSjwWu069yP1nRittpjCAI/OQnP+Gtt95CLBZTXV1NbGwscXFxlJWVsXjxYqRSKZGRkaPuMR1pcOzqAAlzc3N1mtZoe09VW/uCIODj46Oxu11V24SNjc2oe1ZvhkKhoLa2lpKSEvT19TEyMrquj/CtcqtOC0qlkvfee4+CggK+/fZbjThe3Ar9/f1s3LgRqVTKq6++Oq6vPc7MKNV2I7eErs5eUpLyORibRY6sUn3czsES6QYJa9aLsdFaKV1Db08fqYfzOPpDBunJBWqxN2euAUvWilh1VzABSz2m5bZ2R1sXZxJlnDyQSXpSrtpeDMA7ZCERm4JYuimI+U5TIxntetRXNiJLzicrOY+sY3k0DqnaA8xztiZwpR8By30RR3hjNYUCMqYaM1Lcfvfdd+zcuZP8/HzS0tIICbly/e+//z5///vf0dPT45NPPkEqlV7z8xcuXOD++++nubmZoKAgvv766wmLMh0rPT09pKSkEBMTQ0pKCnZ2dkilUqKjo3FwcBixAjMaAXorARIqVIEPlpaWGu3bvVMhCq2treTn56tjb4f66vb29g7z1b2VwbK6ujoqKioICAgY1ftpYGCA1157DYDPP/98TFHOt4MgCDzyyCNYWlry8ccfj+trTwBacTsCVRVNHIyVcShOTlPjJQB0dCBo0ULWbpCwJMKL2XOml2uAJmhv6SQlNouj+zPIyyhTH7ewNiFyYwArtwThKXGalpXwrks9nD2czfEfMzh7OJve7ivOBO5iJ5ZuDGTpxiCcPDW3GzYRqLx1s5LzOHc0F1lKPh1D4o4B7NzmIY7wRrzMG1GEN7YOo2tB03JzZqS4zc/PR1dXl2eeeYYPP/xQLW7z8vLYtm0baWlp1NTUsGbNGoqKiq4RKD/96U/ZunUr999/P88++ywSiYSf/exnE3EpGkHloRoTE0N8fDytra0sX74cqVRKWFgYs2bNoqmpiQsXLmBtbX1LAvR6ARIq662uri6ys7M1LkDb2trIy8vTeIhCfX09Fy5cQCKRjFglVfXqqhwYVOLeysrqhpXY8vJympqaEIvFoxKpPT09PPXUU/j4+PDb3/52Qvq6Tpw4QUREBCKRSP367733HuvXrx/3tYwD009l3IBb9blVKJRkpJWSeCCLMyeK6L9clTQyns3KKH+kGwPw9FkwLcXa7VJT3sjRHzI4uj+T6gsN6uP2LjasvCuIlVuCsJum9lM9nb2kHc7mxI+ZpB3OViejATh6zGfppiAiNgWz0H/kgstUQqFQUiov59zRPGQp+eSeLqJ7SOQxDDoxSCJ8EEdoxe7tMiPFrYoVK1YME7fvv/8+AG+88QYAUqmUnTt3DvMGFQQBGxsb6urq0NfX5/Tp0+zcuZPExMTxv4A7RHt7O4cOHSI2Npa0tDQcHR0pLCzkk08+YeXKlbcVIKEa0mppaWHWrFl0dXXh6+uLtbXmtqNUAlQsFt92m8BQhrZjjLYfeKgDg6qqa2VlhYWFhTphrKSkhJ6eHvz8/EYlUtvb23nwwQfZvHkzL7744pT/0J8izKhf8u2EOLS3dXPsUA6JsTKKC2rVx10W2rB2g4RVUhGWVtMr7EATCIJAcXYVR3/IIPnAOVoaLqnPeQU4sXJLMJEbArCwmZquAzejr6efzGN5nIjJ5EyCbJgrwQIXa5ZuDGLJhkC8g12nxZCWYkBBcVYZ2ccLkJ8oIOdUEV3t3cMes8DVFtEyL/yXeOG/xBM7t3naz/tRohW3Q8Tt888/T3h4OA899BAATzzxBOvWrePee+9V/0xjYyPh4eGUlJQAg4Jn3bp15OTkjP8FjAPx8fG88sorREVFkZmZiSAIREVFIZVKEYvFY/6Qqampoby8HBsbG9ra2m4rQELFnRpIG4sAHQmFQqFu2WhpacHAwID+/n6MjY3x9fUd1TXX19dz//338+KLL7Jt27Yp+UFXUVGBg8OUmyKeer/o20BTCWUXSi6SGCvjSGI2bS2DYkVXT4fQcHfWbpAQttQDA4PxbaeZCigGFMhOl5C0P4NTidl0X65o6urpErjUgxWbg1giFTHXeHx77MeLgf4B5CeLOHEgk1Nx52gdIvQt55mxeF0ASzYEIFnmhf6s6fH+UVV2ZSkFyI/nk32y8Bqxa25jit9iD/wWe+K3xBN3ifO0uX5NM23F7Zo1a6irq7vm+LvvvsuWLVuAa8Xtc889x+LFi4eJ2/Xr13PPPfeof76hoYHFixcPE7fr168nOzv7Tl/ShPDZZ59x3333YWNjgyAINDQ0EB8fT2xsLHl5eYSEhCCVSlm1atWo4naHWnL5+/urt+DHGiAx9HlVQRKaHEgbSzrYaBgYGCArKwt9fX0EQaC3t1c9iKeq6l5NWVkZDz74IO+//z7R0dEaWcd489577/H73/+eXbt2sXbt2nHvE74NtOL2NujvV5B6sphD8TLSTpagUAx6oZqYGrJK6s/aDRLcPedPyZu1O01Pdx9nDuVw9IdMMlIK1D6yBrP1CV/jz8q7ggmO9GLWNL1JUCiU5J4p5lRcFqdiz1E/xJLO2Gwu4dESlm4IJGilL7MNp9bsy41QiV358QJyTxeRe7qY1ob2YY+ZbWiAV6gb/pcFr0+YB0ammtutnMpMW3E7Gm63LeHBBx/k3Llz1NXVYWlpibm5OVlZWde8jouLCyYmJujp6aGvr890yWzv7+/n5MmTxMXFkZSUhJmZmdpqzMPD45ovKoVCQV5eHgYGBje05BIEgY6ODhoaGm4YIKFiYGCA7OxszMzMcHV11dgXpMppwdbWFkdHR408Jwx6BstkMhwcHNQWYkqlcljLhoGBAdbW1piammJubk52djZPPfUUX375JWFhYRpby3iSk5PDO++8g52dHeXl5fzyl79kyZIlU0XQTIlFagpNi9uhtDR3cvRgDgfjZJQWX7FOWuhuy5r1ElZL/bGw1LYtjER7Sycn4mUc3Z9JztlS9XET87lErJewfFPgtExEUyEIAiXyCk7FZXEyJpOKwittL3OMZhO80pfF6wMIixJjYmE0gSvVPIIgUHP+Irmni8k9XUTO6SKqimqHPUZHRwcXPwd8wtzxDnHDZ5EbDp4Lpu374UZoxe0QcZubm8sDDzygHihbvXo1xcXF11TRfvKTn3DPPfeoB8rEYjHnz5/HzMyMHTt2XPM6Li4upKena7SvdLIhCALl5eVqq7GqqiqWLVtGdHQ0y5Yto7GxkbS0NEJDQ3FwcLil5x4pQEJV1VUoFMhkMo17zfb09CCTyTQ+6Nbd3Y1MJrtpOINqEO/bb7/l66+/pre3l7feeovt27drLNhivGltbaWyshKRSMSHH35IcnIyv/3tbxGLxejp6aFUKifzh7BW3N4BSgprSYyVcfRgDu1tg1uwuno6LFqsalvwZNas6WeNpQkuVjWTfOAcSfszKC+6sktpNd+MFZsCWbElCDdf+6ly8zgmKovrOBV3jhMHMinOKlcf19XTRbzEk8XrA1iyPmBKe+neiNaGdvJSi8k5WUTemSKKMsuGhUoAGJnNxTPIFe9Qt8E/IW6YzwCrvhkpbvft28cLL7xAQ0MD5ubmBAQEqAfC3n33Xf7xj3+gr6/Pxx9/zLp16wBYv349f/vb37Czs6O0tFRtBRYYGMjXX3+Nh4cHSUlJeHh4XPN6M0HcXk13dzdHjx4lJiaGw4cP09HRwQMPPMCzzz7LggVjn5oWBIG2tjYaGxtpaGigu7ub+fPn4+TkdFsBEkNRRf/6+PhoNBBB9by34uAQExPDH//4R1555RUyMzM5efIkx44dGxYdrAkef/xxYmJisLW11Xj/+FDR2t3drR7y27FjB7m5ubz77rt4e3tTXl6Os7OzRl9bg0xfhTAC4yVuVfT1DZB2qpiDsTLSTpegVAx+ZZiYGrJqrT9rN2rbFm7EhYIakg+c49iP57g4ZNve0c2WFZuDWLE5cNo6Lqior2riTIKMU3FZZJ8qUrdvAHhInFmyIYAlGwJx8py+rh09Xb2UZJWRn3aewvTz5Kedp7G6+ZrHzXO2xifUHa+QhXiFuuEmdpp2QSIzUtxqmpSUFF599dXrthu4urpiYWGBjo4OzzzzDE8//fQ4r3DiSEpK4he/+AU7d+6koKCA+Ph4Ojo6WLlyJdHR0YSEhIyp71IVduDl5aX2mR1rgMRIzysSiTAy0ty2VnNzM0VFRaMOZxAEga+//ppvv/2Wffv2jTqCd6ykpKRgbGzM9u3bNSpuFQrFDauyr732Gt3d3RgbG5OamkpMTAzGxsaT8ctn0i3oTjLe4nYoLc0dJCXmcChORmlJvfq4y0Ib1qwTszpahJX19HQMuF0EQaDgXDlHf8gkJTaLtqYO9TlPsSMrNgcRsUGC9fypGX87Wi61dpJ2MJtTcedIT8qlt6tPfc7O1ZbwaAmL10nwXeQ2LUMzhtJU20LB2fPqP0WZF4ZZrsFgpdvJyw73AGfcJM54BLiwUOw8pft3teL2JoxmMO1nP/sZ7u7uakP9q6mpqcHOzo76+nqioqL49NNPiYyMZOfOnXz55ZfY2AzeUV/PIzQhIYGXXnoJhULBk08+yeuvv67BK7yzFBYWYmlpqb5GGNyeTkxMJDY2lszMTPz9/ZFKpURFRalvAm5EdXU1NTU1SCSSYcNmVwdIqPpWbWxsRmUJVltbS2VlJRKJRKOV0YsXL1JeXj7q5xUEgY8++ojTp0+ze/dujYrsG1FWVsbGjRs1Jm5VgvbixYu8+OKLuLq6EhYWxqpVq4ZVru3t7TE3NycuLk5buZ0kTKS4HUpJYS0H4+QkJWZfaVvQ1RkWEmEwe3oOUt0uigEFWSeLOfpDJqcOXnFc0NHRwX/RQlZsDmTZOgmm06w39Wp6u/vIPJbHqbgsUhNltDdfCVIwtTRiUZSYxesDCF7hyxyj6VW9HAnFgILy/GoK0s9TmF5KYXop5XlVKJXXyjQ7t3m4SZxxFzvjJnbCTeKM5RS5MdKK29tkYGAAe3t7MjIyRtVLunPnToyNjdXVTNV/Xw+FQoGnpyeHDh3CwcGB0NBQ/u///g9fX19NXsaEoVAoyMjIICYmhkOHDqGvr8+aNWuIjo6+xnZLEATOnz9PZ2cn/v7+N63MXh0goUoOs7CwuOZ5y8rKaG1tVfd/aoqKigoaGhqQSCSjqlArFAp+85vf0NzczN///vdxTb7TtLiFQTeRe++9l1dffZXCwkIOHDjAtm3bePLJJzE1NeX777/n97//PUeOHNFo2MYdQCtuJ5D+fgVnT5dwKE5G6sliBi5vORubzGHFGj+iNkjw9rWbjBX/SUFvTx9pSfkkH8gkLSmf/r7B+Fs9fV2CI71ZsTmQ8DX+GE5zcacYUJB/tpTT8VmcjpdRc+HKzoDBnFkErfBlyfoAFkWJMLeZ/n2pKnq6einLraI4q4ySrDLOy8opy61Sv0+GYmFrhpvEmYUiR1z9HHH2dcDRawEGsydXEqFW3N4mCQkJvP/++yQnJ494vrOzE6VSiYmJCZ2dnURFRbFjxw6io6NHJW6vDom42tFhOiEIAhcvXiQ2Npb4+HgKCwsJCwtDKpWyaNEi/vznP/Pwww/f0GnhelwdIDF37ly1A8OFCxcQBAFvb2+NDTSphHhXVxf+/v6jet6+vj5+/vOfM3/+fD788MNxH67ShLjt6+tDV1dXbXEWGxuLUqkkNDSUTZs2ERERQVNTExERETzyyCO0tLRga2s7FUTJpF+gJpls4nYoba1dHD2Uw6E4+bCQCAcny8G2BamIeQumRnVpIuhs7+bUoRySf8zk3MlilJdt2WbPmcWiVb4s3xRI6EqfSSdWNI0gCFQW1w0K3bgsCjIuqM/p6OjgFeRCmFRMeLQEF5/pPZg3Ev19A1QU1HBeVs55WTkl8nJKsyuu8d6Fwd2UBQttcfK2x8nLDkfPBTh62+HoaTdhrQ1acXubPProo4SHh/Pss8+qj9XU1PDkk08SFxdHaWkpd999NzBY5X3ggQd48803gcEq7ldffYWpqSkhISH86U9/wsLCYtjzf//99yQkJPC3v/0NgK+//prU1FQ+++yzcbrCiaOvr48TJ07w3XffsXv3biQSCevXryc6Ovq2LL8EQaCrq4v6+nrKy8vR1dVlwYIF2NjYjDlAYihKpZL8/Hz09fVHLcQ7OzvZvn07y5cv59e//vWEfJDerrjt7e1lz549eHt7U1ZWxokTJ/jwww/p6+vj5ZdfJjo6mrvuuostW7bQ1dXFm2++yYoVKzR7EXeOGfXNNpnF7VAulFzkYJycowdzaB7SXyoJdiFqnZiIlT4Yzp0+3qeaprXxEimxWSTHZJGXfkXcGRrPZslaESs2BxKwxBP9GeBY0VTbypkEGWcSZWQdL6C/90rVcp6TFWHSwT5d0WKPGRucIAgCF8sbKZGVUZpdSVleFWW5ldSW1o/Y1gBgOd8cB88FOHjMx8F9PvaX/8x3sbmj3sxacXuHuVHPbnh4ONbW1ujo6PDWW29RW1vLP/7xj2GP++6770hMTBwmbtPS0vj000/HZf0TTVdXF5GRkbzzzjt4e3urrcbq6+uJiIhAKpWyZMmSW96+V3nN2tvbY2trS3NzMw0NDWMKkBiKQqFALpdjYWGBs7PzqERqU1MT27Zt47HHHuPxxx+fsAqBJiq3iYmJ/OxnP0NfX59PPvmE6Oho+vv72bBhA5s2beKFF14YZqU3hdCK20mMYkBJ5tlSDsXLOZVcSN/l7dQ5hrNYtsKHqHViJMEu6OrOqP+Nt0R9dcug0D1wjpKcKvVxU0sjlq2TsHxjAH6hC9HTm7R2fRqjp7OXzOQ8ziTKSTsoH5aQZmRqSOgaEWFrRYSs9p92frpjoa+nj+qSi5TnV1NZVENFYQ2VBbVUn6+jr6d/xJ/R1dXBxtGKBa62zHOyxtbJGlsHK6ztLbC2s8DKzpK5JnPG/H2oFbeThOsJixu1Jfzyl7/kwIEDGBgY4Obmxj//+c8RraumeohEfX39NV6zHR0dJCUlERsby6lTp3B3d0cqlbJ27Vrmzbtx/nZXVxdyuXxEr1lVgISqVxduHCAxlKGC2c7OblTXVl1dzf33389bb73FXXfdNaqfuRNs27aNY8eO0djYyLx583jnnXd44oknRvWzV1t9PfbYY5SVlfHNN9/g6OjI7NmzSUlJ4amnnsLIyIj169fzn//5n3fycu4EM0oVTTVxO5SOSz2kJOVxMFZGXvYVkWZta8qaaBFr1olxcpk5toxjoaq0nuSYcyQfyKKy5ErQhqWtqToswjtwdDfvUx2lUklBxoXBqm6CbFhwhK6uDr6L3AlbK2KRVDytbcbGglKppL6yiaqiWqpL6qgqqaO6uI7q8xepr2i8brVXxey5BljON8dynhlm1qaY25hiZm2CiYURxuZGmFgYMdfEEEOTORgaz8FgziwMZs9itqEBxuZGWnE7UdTW1qqDBz766CNSU1PZtWvXsMcMDAzg6enJkSNHsLe3JzQ0lG+//RY/Pz8OHjzIqlWr0NfX59e//jUAH3zwwTWvM919dpVKJTk5OcTExJCQkEBPTw+rV68mOjqaoKCgYQNibW1t5OXl4e/vP6q44OsFSFhaWjJr1pWeNFU4g7u7+6h/zwUFBTz22GN88sknLF++/NYvfBIwVNgeOXIEZ2dnbG1t+eGHH9i1axfvvvsuAQEBKJVK2tvbqaqqwt/ff4JXPSZm1DfWVBa3Q6mubOJwfDaHE7K5WNuqPu7lY0fUejErovwwNZuaoSjjgSAIXMivITnmHCkxWdRVXvFMtbW3IHJjAMs3BU77sIihVJ+/SOpBOWmHsq/x053vbE2YVEyYVIxosee0jUTWBP19A9RXNFJz/iIXK5toqGqiobKJxpoWGmuaaaxpGWbhdissFDnxReq7WnE7UTz88MNkZWUNRua5uPA///M/LFiwYFjPLkBcXBwvv/wyCoWCxx9/XN2zO5R9+/bx/fff87//+7/XnJvu4nYogiDQ3NxMQkICcXFxZGVlERgYSHR0NG1tbdTW1vLKK6+MyhpspOdWBUg0Nzejp6eHlZUVhoaGnD9/Hj8/v1FP/J89e5YXXniBr7/+GolEcstrmWy8/PLLFBQUEBQURF5eHvv37+eNN96goqKCsLAw/vjHP5KSkoKrq+tEL3WszIxv7stMF3GrQqkUyJVXcjheTvKRPLou22Lp6+sSttSDNevELFrioU1DuwGCIFAkryQlJouU2Cwah9ws2LvaELkhgIgNEly8Zk71svNSN5lH80g9KOfsoexhvsJzTeYQtNKXRWtEBK/yw2qKWGhNFgRBoOtSDy0XW2mua6OtsZ3Wxku0NV6io6WTSy0ddLR20dXRQ/elbro7eujr6ae/dwAXPwc+iH1dK26nA5s2beK+++7joYceuubcTA6RGBgYIDU1ld/97nfIZDK8vb1Zs2YNUqn0tt0Rent7qaiooKqqCgMDAywtLUcVIHH48GF27tzJnj17prLYU7Nnzx4OHTrEF198wbZt25g1axb/7//9PwC++OILioqKWLNmzYgezlOImfFtfZnpJm6H0tvTz6mUQg7Fyck8W6reGjUxNWT5Gl+i1onx9ps5lcixoFQqycsoI/nHcxyPlw0TdY7u81i+MYDIjQE4us2bwFWOLwqFksLMC6QmyjmTIKO8oGbYeXexE4uiRIRGifAMdJkRvcsTibbndpIzmhCJd999l/T0dPbu3TviB/L1QiRmCnv27GH37t189dVXNDc3q4fSSktLCQ8PJzo6msjIyFElhw1laDjDrFmzRgyQsLa2Vj+vIAjs3r2bv/71r+zfv59586bmB78qdUzF7t27KS8v5/z58/T29vLPf/4TgIyMDIKDg695/BRlRimd6Sxuh9LUcImkgzkcSZAPS0Ozd7RUp6HN19qK3RDFgAJ56nlSYrI4lZhNe8uVkARX7wUs3xRI5MZAFjjd2ZTFyUZdRSPph3M4eziHrOP59HZfGawyszYhdI0/YWvFBK3wwchU2xqjabTidorzr3/9iy+++IIjR46MSpzt3LmTqqoqjh8/ft3Es97eXrZv305GRgZWVlb8+9//xsXF5Q5dwZ2nv78fPT29a6q0vb29JCcnExMTQ0pKCgsWLEAqlRIdHY2jo+MNKzeVlZXU19cjFouH9d6qGBogUV1dzYEDBzA3NycvL499+/Zhajr1DMIFQVD/Trq7u2lubsbe3p6SkhIiIyMJDw9n7969ALzzzjs0Nzfzhz/8QaNpbxOIVtxOc84X13EkPpukq2zFRlwL0gAAIABJREFURAFOrI4WEbnKF2OTORO4wsnPQL8C2alikmOzOJ2YTccQT1QPkQPL1kuIWB8w44Rub3cf8pOFpB3KJu1QNhcrmtTndPV08Q11I2SNP6Gr/Vno76DdNdAAWnE7hUlISODVV18lOTl5WLztUK4OkVizZg1lZWWcPHnyuoln//3f/41cLueLL75g165d7Nu3j3//+9/jdVkTgiAIFBUVqau6LS0tLF++HKlUSnh4uFrAjiWcoaOjg1/96ldkZGSgq6uLm5sbO3bsICAgQOPXcaeimru6unj99dd56623MDQ0ZO3atSiVSn7605+ydetW0tPT+eCDD3jyySeRyWTk5+eze/fu674vpyAz6ttmJopbFSpbscPxck4OsRWbZaDH4mWerFknJiTcDX39Kb8bcUfp7xsg83ghyQfOceZwrjr+F8BD7EjkegkRGwKY52A5gascfwRBoKKolrREOakHs8k7e14dpAFgOc+MkNV+hK4Raau6t4FW3E5h3N3d6e3tVdtZhYeH88UXX9wwRGLZsmWUlZXdMPFMKpWyc+dOFi9ezMDAAPPnz6ehoWFG3U22t7dz+PBhYmNjSU1Nxdvbm9WrV5OYmMi2bdvYuHHjqH4fAwMDvPLKKxgYGPDZZ5+hq6tLYWEhZmZmaqcMTXGnopoFQaClpYUPP/yQsrIy9PX12bRpE66urnz++ef4+/tzzz33UFJSwpkzZ+jp6eHNN9+cLhVbFTPnzc/MFrdD6ezs5cTRfA4nZCPPLEP1NWdmMZeVUf6siRbh4T1zBqjGSm9PHxkphRyPzSL1SN4woesV4ETkhgCWrZNga29xg2eZnnS2d3EuOZ+zh3NJP5JDU92VQT09/cGqbmiUiJBVfrj6aau6o0UrbmcYo0k88/f3JyEhAQcHBwDc3NxITU2dEW4LI6FUKjlz5gxPPPEEc+bMYfbs2axduxapVIpEIrlu9ba7u5snnngCiUTC22+/fcfjdO9EVHNHRwcHDx5k69atJCQk8Nvf/pampiZOnz6NpaUlx44dY9euXfj4+PDQQw9d4xs8jZhR3yhacXst9RfbSErM4XC8nIqyRvVxBycrVkeLtP25o6S3p4/0YwWkxGSRmpRHb/cVuyevACci1gewbJ14xlV04bL1Wl41Zw9nk344h9y0a6u6QSt9CVnlR9AKX0wtjSdwtZMbTYlbrZnbFGGkm5Cr7wRH85iZhK6uLvv37+dXv/oVjz76KI2NjcTHx/PJJ5+Qm5tLcHAwUqmUVatWqXtp29raePDBB9m6dSvPPffcuPz+qqurcXR0VP/dwcGB1NTU23pOQ0NDMjMzee+99xAEgd/85jd88803/PrXv+bLL79kxYoVdHZ28tVXXxEUFERERMTtXoYWLZMS23lm3L99Kfc9vITiwjoOx8s5diiXqoom/vXXY/zrr8fwD3BijbY/94bMnmPA0mgxS6PF9HT3cTYpj5RYGWeP5lGYVUFhVgV/e+/HGVnR1dHRYaGfAwv9HLjvpXV0tHWReSyP9CM5ZCTl0VTXyuFdpzm86zQ6Ojp4BjoTssqf4FV+eAW5oKdtldE42srtFGE01b0btSVUVlayfft26urq0NXV5emnn+all14a9hrHjh1jy5YtapurrVu3smPHjnG6wjvD0LCCoQwMDHDy5Eni4uJISkrCxMSE8PBw4uLieP3118c1YvZORTUfPHiQhx9+mCVLlrBv3z6Ki4t59913sbGx4Y9//CMAOTk5UzWcYbTMqLs7beV2dAwMKMg8e4Ej8XJOpRTS23ulPzd8qSdr1okICXfX+ueOgp6uXs4ezed4nIy0o/nDKrregc5ErJewNHpmVnRhsOhUll9NRlIeGUdzyTldTP/lfnAAY7O5BK7wIWiFL0ErfJnnOG130UaFti1hhnGjxDMVf/nLX8jOzlYPlO3du5fdu3cDg6lqtbW1BAUFcenSJYKDg9m/f/+wvs5jx47x4YcfEhMTM+7XN5EIgkBFRQWfffYZ9vb2vPzyy+P6+neiLQEG3zP5+fn8x3/8Bz4+PvzhD3+gpqaGp556iqVLl/If//Eft732KYBW3Gq5IZ2dvZw8VsDheDmyIf25Kv/c1VIRviJtz+Ro6Onq5eyxAo7HZpGWlEdvzxUbLU+x46DQXSeZca4LQ+np7EV+qoj0pFzSD+dQc6F+2HkH93lqoSte6sXcGbaToBW3M5CREs927NhBSEgImzdvpqenh4cffphz585haWnJrl27WLhw4YjPtWXLFp5//nmioqLUx2aquJ1oRnPjcjucP3+exx57jLvvvpvo6GgeeeQRfvOb37B582aNPP8kZ0YpEq24vT3qL7Zx7FAuRxKyuXD+iuiYb2fOaqmINetE2M/wytpo6enqJS0pn5MJ8mt6dN39HYjYMDPtxa6m5kI96Um5nDuWh+xEIV2XetTnVINpQSt9CVrhh7vEadqHSGjFrZYxU1ZWRmRkJDk5OcN8W48dO8Y999yDg4MDdnZ2fPjhhxoTWFpuzGiimm+H/Px8Hn30Ufr7+3n77bfVQSIzAK241TImSksuciQhm6TEHJoaL6mPe/nasTpaxPLVflhYGk3gCqcOPd19ZKQUcCJeTupV9mJufvYsjRazbJ14RiWjjcRA/wCFmWVkHssj81gehRkX1El8ACYWRgREehMQ4U3gch8WuNhMux0FrbidojQ1NWFhYXHHJ/CvR0dHB8uXL+fNN99k69atw861t7ejq6uLsbExcXFxvPTSSxQXF0/IOrVonvb2dtra2oYNr80Aptcn/03QilvNo1AokWeWczhBzoljBXR3DVYgdfV0CApdyOpoEUsivTA0NJjglU4N1PZicbJrhK6z53yWrROzbJ0EZ8/500643SodbV1kHS8gIymXzGN5w0IkAOY5WREY6UPgch8kEd6YW5tM0Eo1h1bcTlHefPNNnnvuOQwMDDh16hSrVq3C2Hh8bEH6+/vZuHEjUqmUV1999aaPd3FxIT09fZiVmIuLCyYmJujp6aGvr8/VX6SCIPDSSy8RFxfH3Llz1dP4WrRMEDPq21Erbu8sPT39nDlRRFJiNmdPn0dx2e5pjuEsli73ZrVURGCIK3r603vrWFP09faTebyIkwlyzhzKGZaMZu9qw7J1EiI2SFjoYzfjha4gCNSU1pOVUsC54/nIjhdyaUhkMoCbyJHA5YPDab6L3Jgzd+p5lmvF7RRDEARef/11/vd//5eqqiry8vJ4/PHHOXToECYmJigUCvT07txkriAIPPLII1haWvLxxx+P+Ji6ujrmzZuHjo4OaWlp3HvvvZSXlw/7UBlJ8A4lLi6OTz/9lLi4OFJTU3nppZdu29ZKi5bbYEZ9I2rF7fjR1tpF8pE8khKzycuuUh83tzBiRZQfq9b64+WrFWWjpb9vAPnpEk4kyDl1MJv25ivCbb6TFUulIpZGi/EKcJqwnc/JhEKhpDS7kqyUfDKT88k5U0x/7xUXhlkG+ngHuyJe5kVAhDdewa4YzL42cn6yoRW3UwylUskDDzzA8ePHcXJywsrKCmtra7788kt1ROzVj9fkP+ATJ04QERGBSCRSP+97771HRUUFAM8++yyfffYZn3/+Ofr6+hgaGvJf//VfLFmyZNjz3EzcPvPMM6xYsYJt27YB4OXlxbFjxzSe6qVFyyiZUcpCK24nhpqqZpIScziSmE11ZbP6uL2jJSvX+rNa6q8dRLsFFAMK5KnnOREv51SCnNamDvU5q3mmLFkrYuk6Mf6hC7UesZfp7e4jN62Ec8fyOZecz/nsymHe97MNZ+EX5o4kYrBn113iPCmH07Tidgpy33338dBDD7Fu3TqWL1+Oubk5/f39KBQKPv74Y0Qi0TU/IwjCpLrzd3V1xcLCAh0dHZ555hmefvrpYec3btzI66+/zrJlywBYvXo1H3zwASEht/1e1aJlLEyefzzjgFbcTiyCIFBcUMuRxBySD+fSPESUefnasUoqYsUaXyy0CVWjRqFQkp9ZxskEOacSsqmvaVGfM7MyZnGUP8uixYgXuzPLQJtLpeJSayfZp4rIOl6I/EQBZfk1w84bmRoiWuKJZJkX4qVeuPrZT4qKuFbcTjFqampYt24dBw8epLe3ly1btvDJJ58QERHB5s2buffee9m+fTtdXV3ExMSgUCjYuHEjJiaDDeIlJSXIZDLWrVuHoaHhhAnempoa7OzsqK+vJyoqik8//ZTIyEj1+Q0bNvDGG28ME7d/+MMfCA4OprCwkPvuu0/92NLSUn77298O85WdjkESWiaUGSVuReIA4bOvvmep2BV9bUVrQlEolGRllJGUmD18EE1Xh8BQV1ZG+bN0hTdGRlOvL3KiEASB4uwqTibIOBEvp2ZInLKRyRwWrfJlabSY4EivKdlveidpbWhHdqKQrOMFyI4XXuOva2w+F/9wD8RLPS+LXYcJqexqxe0UY//+/fz5z3/m6NGj7N69m++//14dsPDYY4+xZs0aHnzwQe6//36io6PJyMjg9OnTfPXVV/j6+vLiiy8yb9483nrrLfVzCoKAUqm8o726N2Lnzp0YGxvzi1/8Qn1stG0JCoUCe3t7UlNTcXZ2Vh+fLl673333HTt37iQ/P5+0tDRt5XrimFHi1t7FU7Bf8SwWJoZEL/Fh4zI/PBxtJnpZM56enn5OHy8kKTGH9DNXBtEMDPRZHOHJKqm/NhHtFhEEgbKC2sEe3UQ5ZYV16nOz58wieLk3S6UiFq32w9jUcAJXOjmpr2pCdqIQ2fFC5CcLqa9qHnbeyNQQ/8UeiJd6IV7qyUJ/x3ERu5oSt9oa/jhRWlqKpaUlgiBQVFSEt7c3AHl5ecyZMwcrKysOHTrEnj17kEgkPP/880RGRnLgwAEGBgb44YcfmDt3LiUlJfzlL3/ByMgIHR2dYcJW1cKg6X5dFZ2dnSiVSkxMTOjs7OTgwYPXVFU3b97MZ599xv33309qaipmZmYj9tseOXIENze3YcJ2OuHv78/evXt55plnJnopWmYQc2br42pnxYWaJv4vMZP/S8zE29mWDcv8kIZ7Y26i/ZKfCObMmcXKKH9WRvnT3tZFSlI+SQdzyMmqIPlIHslH8jAxNSRylQ8ro/zxD3BCV3dG3ZfdMjo6Orj62OHqY8fDr0RTfaGBU4nZnEyQUyir4FRiNqcSs9GfpUfAEg8WrxURHuWHpY3pzZ98BmDrYEXU/UuIun9wrqauopHsU0XITxaRfaqIuvJGUhPlpCbKgctiN9wD/3B3/BZ74CFxntRtINrK7TiRm5vLe++9R3FxMZcuXeLjjz9GKpXy7bffkp6ezgsvvMA333xDRUUFAQEB7Nmzh4qKCqKiovjoo4/Y9P/bu/fgKuosgePfwztAhoS4aADH8MjwCoghooBaQTBxRGFZcGVTlrxGd9aCcspSBoG1XHG2YHiUheUIDuIoO+owq6wO40CiPAbkFdAANyZACEEyQhJIwkMe4XH2j+7Em3DzAHLvTW7Op6orfbt/3X3ur7vuPen769/vsceYNWsWOTk5TJo0ifnz55ORkcH999/Pk08+SVSU87BCQUEB8+bNY+/evYwZM4ZnnnmGNm3qZ/i+3Nxcxo4dCzijaqWkpDB79myWLl0KOA+lqSrTpk1j7dq1tG3blnfffdfnXcspU6YQHx/PtGnTKi0PtYEkEhMTWbhwod25DZ4mlSEkJCRoeno6WXkFrNmcybrt2Zw55/Qj2qJ5M+4b2J1Rw/pas4UGovD4KTakeVi/zlNpRLRbOv2ExJH9GJEcR/fYWxvUcxeNQdGxUralOomuZ2duxUAIIkKf+DsYktSfocn96XyH7wejDRQcPcner/ZXJLzHj5yotL51WEt6xXdzEt4hsfRJ6E5Y+5vPNaxZQiPm8Xjo3bs3LVq04IUXXiAsLIy5c+cyfvx4Ro0axeTJkwEoLS0lPDycDz74gPXr1/POO+/QrFkzrly5QklJCUVFRSxbtoyWLVuyYMECzpw5w9NPP83AgQOJj49nwYIFLF682OeDasFUVlZG586dyczM5NZbK49IE2oDSVhyG3RNKiuo+kDZxbLL/P2bQ6zZkskOzxGuup/31myh4cnNKWBDqoeNaZkUHD9VsfynMbcwPCmOB5PiiO4SGcQIG6fSk2fZ8YWHrakevtlygEtlP3aX1a13NMMeHsDQpP7E9I62fyJqUHD0JPu2HSBzWw6e7Qc5evB4pfXNmjejR//bibs3lv5DY+l3T086RF3/oBKW3DZy5U0IiouLKS4upmfPnmRkZDBr1iySk5MZNWoUYWFhdOnShZSUFIYPH05KSgrt2rVj8+bNfPzxx7Rr145WrVpx5MgRVqxYwcqVK3n//fdJS0sD4I033qCoqIhXX301yO+2sk8//ZQ333yT1NTUWsvGxMQwdOhQvvjiCzp16oTH4wGguLiYJ554gry8PGJiYli1ahWRkdd+8L/33nu89tprAMyZM4eJEyfW2/sYOXIkx48fv2b5b37zm4rhbS25DbpG+20lIo8DrwB9gMGqWms3CDX1llBUcpa127JYsyWTw9//2L6u1x2dGDWsL8n39ibyJ23rJ3hzw65eVbI8+WxI9bDpy285VXquYl3vfl0Y/lA/HhjRl6gQGI0q0M6dvcDuTdlsTd3Hzg1ZnDtzoWJd9B1RDBkZx5Ck/vQZFNMgu8lqSEpPnOHbnTl43GQ3Z+93XHXbkpf76c+i6XN3D/oO7k7fwT3o2rP2UecsuQ1Ra9eu5ZNPPiE7O5vp06czbtw4Jk+ezNSpUyt6JYiKiuKtt97i9OnTLF++nNjYWFauXMno0aMZMWIEzz33HAAvvfQS58+f5/XXX29QXYpNmDCB5OTkijvU3nwNJLFy5UrCw8N56qmnKpLbGTNm0LFjR2bOnMm8efMoKSlh/vz5lfZVXFxMQkICu3btQkQYNGgQu3fv9pkE+4slt0HXMC76GyAifYCrwDLghZtNbsupKlmHC1izpXKzhebNmzFsQDceva8fw+7sRktrthB0ly9f4Zv0w6xP9fDVpmwunL8EOD0u3Bkfw/CkOO5L7E378PppetaUlF28zJ5tB9m6bh/b0jyc8uq2rUNUe+4Z0ZchD/Xnrvtiad3GhlauzfmzF8janYtn60E82w+SvfswZRcuVSoTHtmOPglOotvn7h70uiuGNlV6C7Hktgm4ePEirVu3Zvny5cyYMYMXX3yR0aNHM27cOLKzswF4/vnniYiI4OWXX6Zr167s3LmTzp07A85DTYsWLSI5ObnBJLfnzp3j9ttvJzc3lw4dOgBUarNb3UASeXl5PProoxXJrXcvDMeOHSMxMZH9+/dXOtaHH37Ixo0bWbZsGXBtTw6BYMlt0AX/or9JIrKRekxuvV0su8zmjFz++lUm2/flccVtmxgRHkbyvb0ZmziA7l1s8IGG4Pz5MrZvOcDGtEzSt+Vw+bJzl6xly+YMHtqT4Q/Fcf+DfRrE53xjU96X7rZUD1tT93H8u5MV69q0bcWgB3ozNLk/D4waSAvr0aJOLpVdJmfvd2SlH+Lb9EN8u+MQxQWnKpUpb8rQd3AP+t7dg3uSBhDWvo0lt01JcXExJ06c4LbbbiMlJYUffviBHj16sGnTJpYsWcKAAQNISUlh7dq1hIWFUVhYSFxcHIWFhbXvvBGomtxGRERQWlpasT4yMpKSkpJK2yxcuJALFy4wZ84cAObOnUtYWFilrsv8ZfXq1UyfPp2ioiIiIiIYOHAg69at8/txzTUa/Te9P5NbbydKf2Dd9mzWbPFwKN/5cv/1UyMY9+CdN7Q/4z9nTp9ny8ZsNqR62PN1HqoQ2zuaN9/9RbBDa/RUlSMHjlckujkeZ2jliKj2/M+OV6y5wg1SVQrzi/l2Rw6ZOw+RlX6Iw5n5FQ/7Aaw6sJgOUeEBSW5NAyUi9wAxQE8gFdgNLAH+DGwG/gvoqqqTRaSZql6tbl+NgYjEAGtUNc59XaqqEV7rS1Q1sso2LwKtVfU19/V/AudUdVHAAjemBiLyBXCbj1WzVfVTt8xGakhuReQZoHyowDjA44dQb9YtwIlaSwVHQ43N4ro+Ftf1aahx9VLVm25Q3nA7KTM1UtUdwA7vZSKyH1gOnAX+F/jv8uKBjS4gCkQkWlWPiUg04OsWdT6Q6PW6K7AxALEZUyeqOrIe9vE28DaAiOyqj7se9a2hxgUNNzaL6/pYXNenIcdVH/ux++shRFXfAH6GcxdnvqoedJeHYnL7GVDe9cFE4FMfZdYBSSISKSKRQJK7zBhjjDEhypLbEKOOdOBKsGOpLyLyIbAN6CUi+SIyFZgHPCQiB4GH3NeISIKILAdQ1WJgLpDuTq+6y4xp8ERkrIjkA0OAv4qI/WNmjDF1YM0SQlQo3a1V1eq6Nxjho+wu4Bder1cAK/wUmjF+o6qrgdXXudnb/oilHjTUuKDhxmZxXR+L6/qEdFz2QJkxxhhjjAkZ1izBGGOMMcaEDEtujTGmERGRx0UkU0SuikhClXUviUiOiOwXkeRqtu8mIjtE5KCI/ElE6n34JXe/Ge6UJyIZ1ZTLE5F9brl6eUq6DrG9IiL/8IrvkWrKPezWY46IzPRzTAtEJFtE9orIahGJqKZcQOqrtvcuIq3dc5zjXksx/orF65i3i8gGEclyr//nfJRJFJFTXuf2ZX/H5XXsGs+NOJa4dbZXROIDEFMvr7rIEJHTIvKrKmUCUmciskJECkXE47Wso4ikuZ9Fae6D3762neiWOSgiE32VuYaq2mSTTTbZ1EgmoA/QC6dbuwSv5X2BPUBroBtwCGjuY/tVwAR3finwH36OdxHwcjXr8oBbAlx/r+D0G1xTmeZu/XUHWrn12tePMSUBLdz5+Ti93QSlvury3oFngaXu/ATgTwE4b9FAvDsfDhzwEVciTn/oAbue6npugEeAv+EMLHMvsCPA8TUHjgN3BKPOgAeAeMDjtey3wEx3fqav6x7oCOS6fyPd+cjajmd3bo0xphFR1SxV3e9j1RjgI1W9qKqHgRxgsHcBERHgQZx+sAHeA/7ZX7G6x/tX4EN/HcNPBgM5qpqrqmXARzj16xeqmqqql92X23H65A6Wurz3MTjXDjjX0gj3XPuNqh5T1a/d+TNAFtDFn8esZ2OA99WxHYhw+2gPlBHAIVU9EsBjVlDVvwNVeyvyvo6q+yxKBtJUtVhVS4A04OHajmfJrTHGhIYuwFGv1/lc++UfBZR6JVK+ytSn+4ECdfvc9kGBVBHZ7Y60FijT3J+GV1TzU2hd6tJfpuDc4fMlEPVVl/deUca9lk7hXFsB4TaDuIsqAxm5hojIHhH5m4j0C1RM1H5ugnlNgXOHvbp/MoNVZ7eq6jFw/nkBOvkoc0P1Zl2BGWNMAyN1GJbX12Y+llXtDqcuZeqkjjH+GzXftR2mqt+LSCcgTUSy3Ts8N6Wm2IC3cPq/VvfvIpyEstIufGx7U10L1aW+RGQ2cBn4YzW78Ut9VQ3VxzK/XUfXS0TaAx8Dv1LV01VWf43zs/tZty31/wGxgYiL2s9NMOusFTAaeMnH6mDWWV3cUL1ZcmuMMQ2M3tiwvPnA7V6vuwLfVylzAufn0BbuHTdfZeolRhFpAfwLMKiGfXzv/i0UkdU4P4nfdLJW1/oTkd8Da3ysqktd1mtM7oMyjwIj1G1s6GMffqmvKury3svL5LvnuQPX/uRc70SkJU5i+0dV/aTqeu9kV1U/F5HficgtqnrC37HV4dzU+zV1HX4OfK2qBVVXBLPOgAIRiVbVY24TjUIfZfJx2gWX64rzvEGNrFmCMcaEhs+ACe6T7N1w7r7s9C7gJk0bgPHuouqGrq4PI4FsVc33tVJE2olIePk8zkNVHl9l61OVdo5jqzlmOhArTs8SrXB+0v3MjzE9DPwaGK2q56opE6j6qst79x7+fDywvrqEvL64bXrfAbJUdXE1ZW4rb/srIoNxcpyT/ozLPVZdzs1nwFNurwn3AqfKf5IPgGp/QQlWnbm8r6PqPovWAUkiEuk2IUpyl9XM30/I2WSTTTbZVH8TTkKWD1wECoB1Xutm4zzpvh/4udfyz4HO7nx3nKQ3B/gz0NpPcf4B+GWVZZ2Bz73i2ONOmTg/zwei/lYC+4C97pdrdNXY3NeP4DyRf8jfsbnn4iiQ4U5Lq8YUyPry9d6BV3GSb4A27rWT415L3QNw3u7D+Tl6r1c9PQL8svw6A6a5dbMH58G8oQG6pnyemyqxCfCmW6f78OrpxM+xtcVJVjt4LQt4neEk18eAS+7n11ScdtpfAgfdvx3dsgnAcq9tp7jXWg4wuS7HsxHKjDHGGGNMyLBmCcYYY4wxJmRYcmuMMcYYY0KGJbfGGGOMMSZkWHJrjDHGGGNChiW3xhhjjDEmZFhya4wxxjQRIhIhIs+684ki4msQi5q2nyQinetQrqOIpInIQfevr2GOjfELS26NMcaYpiMCePYmtp+E0/9ubWYCX6pqLE4fpjNv4pjGXBfr59YYY4xpIkTkI2AMzkAfl4AfcIZljgN2A0+qqorIIGAx0N5dPwkYhjM4xz+A88AQ4EXgMSAM2Ar8u7v9fiBRfxxadaOq9grU+zRNmyW3xhhjTBMhIjHAGlWNE5FEnCFP+wHfA1/hJKs7gE3AGFUtEpEngGRVnSIiG4EXVHWXu7+Oqlrszq8EVqnqX0SkVFUjvI5boqrWNMEERItgB2CMMcaYoNmpqvkAIpIBxAClOHdy00QEoDnO0Km+DBeRGTjDvHbEGcr1L36O2ZgaWXJrjDHGNF0Xveav4OQFAmSq6pCaNhSRNsDvgARVPSoirwBt3NUFIhLt1SyhsP5DN8Y3e6DMGGOMaTrOAOG1lNkP/JOIDAEQkZYi0s/H9uWJ7AkRaQ+M99rHZ8BEd34iTvMHYwLC7twaY4wxTYSqnhSRr0TEg/NQWIGPMmUiMh5YIiIdcHKF13GaHPwBWCpNCmmDAAAAeUlEQVQi5Q+U/R7YB+QB6V67mQesEpGpwHfA4357U8ZUYQ+UGWOMMcaYkGHNEowxxhhjTMiw5NYYY4wxxoQMS26NMcYYY0zIsOTWGGOMMcaEDEtujTHGGGNMyLDk1hhjjDHGhAxLbo0xxhhjTMiw5NYYY4wxxoSM/wce77fiaX6WLQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "# grid over which we will calculate J\n", "theta0_vals = np.linspace(-10, 10, 100)\n", @@ -730,9 +980,28 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " X[:,0] X[:, 1] y\n", + "--------------------------\n", + " 2104 3 399900\n", + " 1600 3 329900\n", + " 2400 3 369000\n", + " 1416 2 232000\n", + " 3000 4 539900\n", + " 1985 4 299900\n", + " 1534 3 314900\n", + " 1427 3 198999\n", + " 1380 3 212000\n", + " 1494 3 242500\n" + ] + } + ], "source": [ "# Load data\n", "data = np.loadtxt(os.path.join('Data', 'ex1data2.txt'), delimiter=',')\n", @@ -773,7 +1042,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -803,7 +1072,7 @@ " in sigma. \n", " \n", " Note that X is a matrix where each column is a feature and each row is\n", - " an example. You needto perform the normalization separately for each feature. \n", + " an example. You need to perform the normalization separately for each feature. \n", " \n", " Hint\n", " ----\n", @@ -816,6 +1085,11 @@ "\n", " # =========================== YOUR CODE HERE =====================\n", "\n", + " for i in range(X.shape[1]):\n", + " X_feats = X[:,i]\n", + " mu[i] = np.mean(X_feats)\n", + " sigma[i] = np.std(X_feats)\n", + " X_norm[:,i] = (X_norm[:,i] - mu[i]) / sigma[i]\n", " \n", " # ================================================================\n", " return X_norm, mu, sigma" @@ -830,9 +1104,18 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Computed mean: [2000.68085106 3.17021277]\n", + "Computed standard deviation: [7.86202619e+02 7.52842809e-01]\n" + ] + } + ], "source": [ "# call featureNormalize on the loaded data\n", "X_norm, mu, sigma = featureNormalize(X)\n", @@ -850,9 +1133,44 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "execution_count": 89, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Submitting Solutions | Programming Exercise linear-regression\n", + "\n" + ] + }, + { + "name": "stdin", + "output_type": "stream", + "text": [ + "Use token from last successful submission (raade@uwindsor.ca)? (Y/n): y\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Part Name | Score | Feedback\n", + " --------- | ----- | --------\n", + " Warm up exercise | 10 / 10 | Nice work!\n", + " Computing Cost (for one variable) | 40 / 40 | Nice work!\n", + " Gradient Descent (for one variable) | 50 / 50 | Nice work!\n", + " Feature Normalization | 0 / 0 | Nice work!\n", + " Computing Cost (for multiple variables) | 0 / 0 | \n", + " Gradient Descent (for multiple variables) | 0 / 0 | \n", + " Normal Equations | 0 / 0 | \n", + " --------------------------------\n", + " | 100 / 100 | \n", + "\n" + ] + } + ], "source": [ "grader[4] = featureNormalize\n", "grader.grade()" @@ -867,7 +1185,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 113, "metadata": {}, "outputs": [], "source": [ @@ -912,7 +1230,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 75, "metadata": {}, "outputs": [], "source": [ @@ -949,6 +1267,7 @@ " \n", " # ======================= YOUR CODE HERE ===========================\n", "\n", + " J = 1/(2.0 * m) * np.transpose(X@theta - y) @ (X@theta - y)\n", " \n", " # ==================================================================\n", " return J\n" @@ -963,9 +1282,44 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "execution_count": 76, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Submitting Solutions | Programming Exercise linear-regression\n", + "\n" + ] + }, + { + "name": "stdin", + "output_type": "stream", + "text": [ + "Use token from last successful submission (raade@uwindsor.ca)? (Y/n): y\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Part Name | Score | Feedback\n", + " --------- | ----- | --------\n", + " Warm up exercise | 0 / 10 | \n", + " Computing Cost (for one variable) | 0 / 40 | \n", + " Gradient Descent (for one variable) | 0 / 50 | \n", + " Feature Normalization | 0 / 0 | \n", + " Computing Cost (for multiple variables) | 0 / 0 | Nice work!\n", + " Gradient Descent (for multiple variables) | 0 / 0 | \n", + " Normal Equations | 0 / 0 | \n", + " --------------------------------\n", + " | 0 / 100 | \n", + "\n" + ] + } + ], "source": [ "grader[5] = computeCostMulti\n", "grader.grade()" @@ -980,7 +1334,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 87, "metadata": {}, "outputs": [], "source": [ @@ -1032,7 +1386,8 @@ " for i in range(num_iters):\n", " # ======================= YOUR CODE HERE ==========================\n", "\n", - " \n", + " theta -= alpha * (np.transpose(X) @ X @ theta - np.transpose(X) @ y)\n", + "\n", " # =================================================================\n", " \n", " # save the cost J in every iteration\n", @@ -1050,14 +1405,99 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "execution_count": 88, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Submitting Solutions | Programming Exercise linear-regression\n", + "\n" + ] + }, + { + "name": "stdin", + "output_type": "stream", + "text": [ + "Use token from last successful submission (raade@uwindsor.ca)? (Y/n): y\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Part Name | Score | Feedback\n", + " --------- | ----- | --------\n", + " Warm up exercise | 0 / 10 | \n", + " Computing Cost (for one variable) | 0 / 40 | \n", + " Gradient Descent (for one variable) | 0 / 50 | \n", + " Feature Normalization | 0 / 0 | \n", + " Computing Cost (for multiple variables) | 0 / 0 | Nice work!\n", + " Gradient Descent (for multiple variables) | 0 / 0 | \n", + " Normal Equations | 0 / 0 | \n", + " --------------------------------\n", + " | 0 / 100 | \n", + "\n" + ] + } + ], "source": [ "grader[6] = gradientDescentMulti\n", "grader.grade()" ] }, + { + "cell_type": "code", + "execution_count": 86, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Correct Theta [340412.65957447 109447.79646964 -6578.35485416]\n", + "My Theta [340412.65957447 109447.79646964 -6578.35485416]\n" + ] + } + ], + "source": [ + "correct_theta = np.linalg.inv(np.transpose(X)@X)@np.transpose(X)@y\n", + "print(\"Correct Theta {}\".format(correct_theta))\n", + "\n", + "n_iter = 200\n", + "theta = np.zeros(X.shape[1])\n", + "theta, J_history = gradientDescentMulti(X, y, theta, 0.01, n_iter)\n", + "print(\"My Theta {}\".format(theta))" + ] + }, + { + "cell_type": "code", + "execution_count": 85, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEGCAYAAABmXi5tAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO3df3BU9f3v8efZs0skJArEE0KplVa9QAGL3ljQOlFbMUCS5prBFrBG5YICWlq+Y2gKjMFcU38h2KlgKfJteyvTNi2mAUcjOtR7K+HbFqYNYPH75U6L8jNZEoRsfpHsnvtHyElCgGzCkoRzXo8ZJefHhs97Nrz2k/d+zlnDtm0bERFxPV9/D0BERPqGAl9ExCMU+CIiHqHAFxHxCAW+iIhHKPBFRDxiwAd+KBQiMzOTw4cPR3X+0qVLefPNN53to0eP8uCDDzJt2jQWLlxIXV3d5RqqiMiANqADv6KigtmzZ3Pw4MFuz62srGTBggW8++67nfY/88wzzJkzh7KyMiZMmMC6desu02hFRAa2AR34xcXFFBQUkJyc7Oz7wx/+wP333092djbLli2jqakJgK1bt/KNb3yD6dOnO+c2Nzfz17/+lfT0dABycnIoKyvr2yJERAaIAR34RUVFpKamOtsHDhyguLiY3/zmN5SWlpKUlMTGjRsBmDdvHg888ECnx588eZKEhAT8fj8AlmVRWVnZdwWIiAwg/v4eQE/8+c9/5pNPPuFb3/oW0DqD//KXv3zB823bxjCMTvvO3RYR8YorKvDD4TDTp09nxYoVANTV1REOhy94/vDhw6mtrSUcDmOaJsFgsFN7SETESwZ0S+dckydP5r333qO6uhrbtlm5ciW//OUvL3h+IBAgNTWVt99+G2jt/6elpfXVcEVEBpQrKvDHjh3Lk08+ycMPP0xGRgaRSITHHnvsoo8pKCiguLiYGTNmsGvXLr7//e/30WhFRAYWQ7dHFhHxhitqhi8iIr2nwBcR8QgFvoiIR0S1LPPVV1/lnXfeAeCuu+5i6dKlnY7v37+f5cuXU1dXR2pqKs888wx+v5+jR4+Sl5dHdXU1X/ziF1m1ahVDhgyJenAnT9YRifT8LYakpASqq0M9ftyVzot1e7Fm8GbdXqwZela3z2cwbNiFM7bbwC8vL+fDDz+kpKQEwzCYN28e7733HlOnTnXOycvL49lnn2XSpEksW7aM4uJi5syZ49zHJiMjg7Vr17Ju3Try8vKiGjhAJGL3KvDbHutFXqzbizWDN+v2Ys0Qu7q7belYlkV+fj6DBg0iEAhwww03cPToUef4kSNHaGxsZNKkSUD7/Wp0HxsRkYGl2xn+TTfd5Hx98OBB3nnnHX796187+6qqqrAsy9luu1+N7mMjIjKwRH1rhQMHDvD444+zdOlSRo8e7eyPRCKd7k/Tdv+aWNzHJikpoUfnd2RZib1+7JXMi3V7sWbwZt1erBliV3dUgb97924WL17MsmXLyMjI6HQsJSWFYDDobJ84cYLk5OSY3MemujrUq96VZSUSDNb2+HFXOi/W7cWawZt1e7Fm6FndPp9x0Ylytz38Y8eO8cQTT7Bq1aouYQ8watQo4uLi2L17NwClpaWkpaXpPjYiIgNMtzP8jRs30tTUxPPPP+/smzVrFtu3b2fx4sVMnDiRVatWsWLFCkKhEOPHjyc3NxdovY9Nfn4+r732GiNHjmT16tWXrxIREbmoAX0vnd60dD6trOW10o9Y/tB/J2Fw4DKNbGDy4q+8XqwZvFm3F2uGPm7pXGmCnzVSWVNPzenG/h6KiMiA4rrAN83WlUBhj16gISJyIa4LfH9b4IcV+CIiHbku8E1fa0kt4Ug/j0REZGBxXeC3zfBbIgp8EZGOXBj4rSWppSMi0pnrAt/0nZ3hK/BFRDpxX+C3zfDV0hER6cR1ga9VOiIi5+e6wG9v6WiGLyLSkesCv+1N2xZdeCUi0olrAz+sGb6ISCeuC3yt0hEROT/XBb7zpq1W6YiIdOK6wG+7tYJW6YiIdOa6wPf5DHyGbq0gInIu1wU+tL5xqx6+iEhn7gx8v08tHRGRc7gy8E2fTy0dEZFzdPsh5m1CoRCzZs3ipz/9KZ///Oed/fv37yc/P9/Zrqmp4ZprruGtt96ipKSEl19+maSkJADuvvtulixZEsPhn1/Ab2gdvojIOaIK/IqKClasWMHBgwe7HBs3bhylpaUANDQ08MADD7By5UoA9u3bR35+PpmZmTEbcDT8plo6IiLniqqlU1xcTEFBAcnJyRc9b/369dx2222kpqYCsHfvXkpKSsjKyuKpp57i1KlTlz7iKJimT7dWEBE5R1SBX1RU5IT4hdTW1lJcXMyTTz7p7LMsi0WLFrFlyxZGjhxJYWHhpY02Sq0zfLV0REQ6irqH350tW7Zw7733Ov16gLVr1zpfz5s3j6lTp/boeyYlJfRqLAHTh+k3sazEXj3+SqaavcOLdXuxZohd3TEL/Pfff5/HH3/c2a6trWXz5s088sgjANi2jWmaPfqe1dUhIr1ozZimQV3DGYLB2h4/9kpmWYmq2SO8WLcXa4ae1e3zGRedKMdkWaZt23z00Ufccsstzr74+Hhef/11KioqAHjjjTd6PMPvLb1pKyLSVa8Df/78+ezduxdoXYoZCASIi4tzjpumySuvvMLKlSuZPn06H330EXl5eZc+4igE/Orhi4icq0ctne3btztfb9iwwfk6KSmJHTt2dDk/NTWVkpKSSxhe75g+Q6t0RETO4corbXVrBRGRrtwZ+KZurSAici73Br5m+CIinbg08HUvHRGRc7k08H2E9aatiEgnrg38Fs3wRUQ6cWfga5WOiEgXrgz81nX4muGLiHTkysAPaIYvItKFKwO/7U1b21boi4i0cWXgm6YBoJU6IiIduDLwA2ZrWVqpIyLSzpWB7z8b+Jrhi4i0c2Xgm84MX4EvItLGlYHvzPDV0hERcbgy8AP+1jdtdU98EZF2rgx806cZvojIuVwZ+H6/evgiIudyZeAHnFU6muGLiLSJOvBDoRCZmZkcPny4y7FXX32Ve+65h+zsbLKzs9m0aRMA+/fvJycnh/T0dJYvX05LS0vsRn4RbRdeaYYvItIuqsCvqKhg9uzZHDx48LzH9+3bx+rVqyktLaW0tJQHH3wQgLy8PJ5++mneffddbNumuLg4ZgO/GK3SERHpKqrALy4upqCggOTk5PMe37dvH+vXrycrK4vCwkKampo4cuQIjY2NTJo0CYCcnBzKyspiN/KLaAt8rdIREWkXVeAXFRWRmpp63mN1dXWMGzeOvLw8SkpKOH36NOvWraOqqgrLspzzLMuisrIyNqPuhr/tXjqa4YuIOPyX+g2GDBnChg0bnO25c+eybNky0tLSMAzD2W/bdqftaCQlJfRqTKcPf9Y6toSrsKzEXn2PK5XX6gVv1gzerNuLNUPs6r7kwD969Cjl5eXMnDkTaA12v99PSkoKwWDQOe/EiRMXbAldSHV1iEgv2jJtyzJrTtYTDNb2+PFXKstK9FS94M2awZt1e7Fm6FndPp9x0YnyJS/LvOqqq3jppZc4dOgQtm2zadMmpk6dyqhRo4iLi2P37t0AlJaWkpaWdql/XVT8ulumiEgXvQ78+fPns3fvXoYPH05hYSELFy5k2rRp2LbNo48+CsCqVat47rnnmDZtGvX19eTm5sZs4BfTvkpHb9qKiLQx7AH8sVC9ben4Bvl5pHAbudPGcPekUZdhZAOTF3/l9WLN4M26vVgzDLCWzkCkGb6ISFcuD3z18EVE2rgy8J1bK+jCKxERhysDX59pKyLSlSsD3+czMFAPX0SkI1cGvmEYmKZBi26PLCLicGXgQ+sHmWuGLyLSzrWB7/cZCnwRkQ5cG/im6VNLR0SkA9cGvt80tEpHRKQD9wa+z0dY6/BFRByuDXzTNPSZtiIiHbg38H0+3VpBRKQD1wa+3zTU0hER6cC1gW/qTVsRkU5cG/h+n089fBGRDtwb+KZBWOvwRUQcrg1809QMX0SkI/cGvs/QKh0RkQ5cG/h+UxdeiYh0FHXgh0IhMjMzOXz4cJdj77//PtnZ2Xzzm99k0aJFnDp1CoCSkhLuvPNOsrOzyc7OZs2aNbEbeTe0SkdEpDN/NCdVVFSwYsUKDh482OVYKBRi5cqVbN68mREjRvDjH/+Yn/zkJ6xYsYJ9+/aRn59PZmZmrMfdLa3SERHpLKoZfnFxMQUFBSQnJ3c51tzcTEFBASNGjABgzJgxHDt2DIC9e/dSUlJCVlYWTz31lDPz7wu68EpEpLOoZvhFRUUXPDZs2DCmTp0KQGNjIz/72c946KGHALAsi7lz53LrrbeyevVqCgsLefnll6MeXFJSQtTnnithSByRiI1lJfb6e1yJvFYveLNm8GbdXqwZYld3VIEfjdraWp544gnGjh3L/fffD8DatWud4/PmzXNeGKJVXR0i0otZumUlcuZMC83hCMFgbY8ff6WyrERP1QverBm8WbcXa4ae1e3zGRedKMdklU5VVRVz5sxhzJgxzm8DtbW1/OIXv3DOsW0b0zRj8ddFxTS1LFNEpKNLDvxwOMyCBQuYPn06y5cvxzAMAOLj43n99depqKgA4I033ujxDP9StL1pa9vq44uIwCW0dObPn8/ixYs5fvw4//jHPwiHw7z77rsATJgwgaKiIl555RVWrlxJY2Mjo0eP5sUXX4zZwLvjN1tfeCK2jXn2RUhExMt6FPjbt293vt6wYQMAEydO5OOPPz7v+ampqZSUlFzC8HrPNFt/eWkJ25iuvbxMRCR6ro1Cv691Vq8+vohIK9cGvjPD11p8ERHA1YHfNsNX4IuIgIsD3+9r6+GrpSMiAm4O/LYZvlo6IiKAiwO/fZWOZvgiIuDiwG9fpaMZvogIuDjw21fpaIYvIgKuDnzN8EVEOnJt4Le1dNTDFxFp5d7AP9vS0SodEZFWrg38tpaOZvgiIq1cG/htF16phy8i0sq1ge/M8LVKR0QEcHXga4YvItKRawNfq3RERDpzb+BrlY6ISCeuDfz2VToKfBERcHHgt6/SUUtHRASiDPxQKERmZiaHDx/ucmz//v3k5OSQnp7O8uXLaWlpAeDo0aM8+OCDTJs2jYULF1JXVxfbkXejfZWOZvgiIhBF4FdUVDB79mwOHjx43uN5eXk8/fTTvPvuu9i2TXFxMQDPPPMMc+bMoaysjAkTJrBu3bqYDrw7pj7TVkSkk24Dv7i4mIKCApKTk7scO3LkCI2NjUyaNAmAnJwcysrKaG5u5q9//Svp6emd9vclwzAwfYZ6+CIiZ/m7O6GoqOiCx6qqqrAsy9m2LIvKykpOnjxJQkICfr+/0/6+ZpoGYV14JSICRBH4FxOJRDAMw9m2bRvDMJw/Ozp3OxpJSQm9HptlJRLwmwQG+bGsxF5/nyuNl2pt48WawZt1e7FmiF3dlxT4KSkpBINBZ/vEiRMkJyczfPhwamtrCYfDmKZJMBg8b0uoO9XVISK9eNPVshIJBmsxDQjVnSEYrO3x97gStdXtJV6sGbxZtxdrhp7V7fMZF50oX9KyzFGjRhEXF8fu3bsBKC0tJS0tjUAgQGpqKm+//TYAf/jDH0hLS7uUv6pXTNOnK21FRM7qVeDPnz+fvXv3ArBq1Sqee+45pk2bRn19Pbm5uQAUFBRQXFzMjBkz2LVrF9///vdjN+oomT5Dq3RERM6KuqWzfft25+sNGzY4X48dO5bf//73Xc4fNWoUv/rVry5xeJfGb/p0awURkbNce6UttK7S0bJMEZFWrg58v089fBGRNu4OfNNQS0dE5CxXB77etBURaefuwDd96uGLiJzl6sBvXaWjGb6ICLg88HXzNBGRdq4OfL9paJWOiMhZLg98XXglItLG1YGvVToiIu3cHfhapSMi4nB14OvCKxGRdq4OfFO3VhARcbg68P26eZqIiMPVgW/qwisREYerA9/vM7BtevUxiSIibuPqwDfN1g9OVx9fRMTlge83W8vTSh0REZcHvunTDF9EpE1Un2m7detWXnvtNVpaWnj44Yd58MEHnWP79+8nPz/f2a6pqeGaa67hrbfeoqSkhJdffpmkpCQA7r77bpYsWRLjEi6sbYavlToiIlEEfmVlJWvWrOHNN99k0KBBzJo1i8mTJ3PjjTcCMG7cOEpLSwFoaGjggQceYOXKlQDs27eP/Px8MjMzL18FF9E2w9dKHRGRKFo65eXlTJkyhaFDhxIfH096ejplZWXnPXf9+vXcdtttpKamArB3715KSkrIysriqaee4tSpU7EdfTecHr5m+CIi3Qd+VVUVlmU528nJyVRWVnY5r7a2luLiYp588klnn2VZLFq0iC1btjBy5EgKCwtjNOzoaJWOiEi7bls6kUgEwzCcbdu2O2232bJlC/fee6/TrwdYu3at8/W8efOYOnVqjwaXlJTQo/M7sqxEhh+vBeDqa+KxrMRef68riVfq7MiLNYM36/ZizRC7ursN/JSUFHbt2uVsB4NBkpOTu5z3/vvv8/jjjzvbtbW1bN68mUceeQRofaEwTbNHg6uuDvXqoinLSiQYrKUu1NQ65hMhEge5ekES0F63l3ixZvBm3V6sGXpWt89nXHSi3G0K3nHHHezcuZOamhoaGhrYtm0baWlpnc6xbZuPPvqIW265xdkXHx/P66+/TkVFBQBvvPFGj2f4l6p9lY5aOiIi3c7wR4wYwZIlS8jNzaW5uZmZM2dy8803M3/+fBYvXszEiROpqakhEAgQFxfnPM40TV555RVWrlxJY2Mjo0eP5sUXX7ysxZzrqkGtv1E0nmnp079XRGQgMmzbHrBLWC61pVN5sp4frv8P/mfGOL42ceRlGOHA4sVfeb1YM3izbi/WDH3c0rmSJQ4OAFDX0NzPIxER6X+uDvzBcX58hkGtAl9ExN2BbxgGCYP9hBT4IiLuDnyAhPhBhOoV+CIi7g/8wQHN8EVE8EDgJyrwRUQADwT+kMEBvWkrIoIHAj8xPkBdQzMD+HIDEZE+4frATxgcIByxaWgK9/dQRET6lScCHyDUcKafRyIi0r9cH/iJ8a2Brz6+iHid6wN/SNsMX2vxRcTjXB/4iU5LR4EvIt7m+sBPGDwIUOCLiLg+8AfHmZg+Q4EvIp7n+sA3DKP14iv18EXE41wf+KDbK4iIgEcCXzdQExHxSuDHK/BFRKIK/K1btzJjxgzuu+8+Nm3a1OX4q6++yj333EN2djbZ2dnOOfv37ycnJ4f09HSWL19OS0v/fJh44uAAoXpdaSsi3ubv7oTKykrWrFnDm2++yaBBg5g1axaTJ0/mxhtvdM7Zt28fq1ev5pZbbun02Ly8PJ599lkmTZrEsmXLKC4uZs6cObGvohtDBgcINbRg2zaGYfT53y8iMhB0O8MvLy9nypQpDB06lPj4eNLT0ykrK+t0zr59+1i/fj1ZWVkUFhbS1NTEkSNHaGxsZNKkSQDk5OR0eVxfSRwcIGLbNDT1z28YIiIDQbeBX1VVhWVZznZycjKVlZXOdl1dHePGjSMvL4+SkhJOnz7NunXrujzOsqxOj+tLCbqfjohI9y2dSCTSqQ1ybltkyJAhbNiwwdmeO3cuy5YtIy0t7aKPi0ZSUkKPzu/IshKdr0el1APgjwt02u9Gbq/vfLxYM3izbi/WDLGru9vAT0lJYdeuXc52MBgkOTnZ2T569Cjl5eXMnDkTaA12v99PSkoKwWDQOe/EiROdHheN6uoQkUjPP7jEshIJBmud7Uhzayvn0NFTJJ2d7bvRuXV7gRdrBm/W7cWaoWd1+3zGRSfK3bZ07rjjDnbu3ElNTQ0NDQ1s27aNtLQ05/hVV13FSy+9xKFDh7Btm02bNjF16lRGjRpFXFwcu3fvBqC0tLTT4/pS2x0z69TSEREP63aGP2LECJYsWUJubi7Nzc3MnDmTm2++mfnz57N48WImTpxIYWEhCxcupLm5mVtvvZVHH30UgFWrVrFixQpCoRDjx48nNzf3shd0Pm13zNTtFUTEywx7AH/Ya6xaOrZt89hLH5D+1S8w8+4bYjnEAcWLv/J6sWbwZt1erBn6uKXjBoZhnL3aVhdfiYh3eSLwoe1+OlqHLyLe5ZnA1+0VRMTrPBP4CYMDuvBKRDzNO4EfP0h3zBQRT/NO4A8OUNfQQmTgLkoSEbmsPBX4uoGaiHiZZwK/7eKrkC6+EhGP8kzg646ZIuJ13gn8szP8UyEtzRQRb/JM4H/u2iGYPoN/Hj3V30MREekXngn8uIDJDZ+7mv2fnOzvoYiI9AvPBD7A2OuH8UllLfWN6uOLiPd4KvDHXT8M24b/PPRZfw9FRKTPeSrwv/S5awj4fWrriIgneSrwA34fN33+Gj5W4IuIB3kq8KG1rXM4WMdp3TlTRDzGc4E/9gvDAPjPT9XHFxFv8Vzgjx6ZyFWDTPXxRcRzPBf4ps/Hf7tuqPr4IuI5UQX+1q1bmTFjBvfddx+bNm3qcvz9998nOzubb37zmyxatIhTp1qvZi0pKeHOO+8kOzub7Oxs1qxZE9vR99LYLwzjeE09J2ub+nsoIiJ9xt/dCZWVlaxZs4Y333yTQYMGMWvWLCZPnsyNN94IQCgUYuXKlWzevJkRI0bw4x//mJ/85CesWLGCffv2kZ+fT2Zm5mUvpCfGXd/ax9/50XFmTLm+n0cjItI3up3hl5eXM2XKFIYOHUp8fDzp6emUlZU5x5ubmykoKGDEiBEAjBkzhmPHjgGwd+9eSkpKyMrK4qmnnnJm/v3tCyMSmHTjtZT833/yX7oIS0Q8otsZflVVFZZlOdvJycns2bPH2R42bBhTp04FoLGxkZ/97Gc89NBDAFiWxdy5c7n11ltZvXo1hYWFvPzyy1EPLikpIepzz2VZiRc9/oNHvsq/vfJ/WL/lI175t7sZfvVVvf67BpLu6nYjL9YM3qzbizVD7OruNvAjkQiGYTjbtm132m5TW1vLE088wdixY7n//vsBWLt2rXN83rx5zgtDtKqrQ0QiPf9IQstKJBis7fa8hdnjefZ/7+J/bfwPls6+Bb95Zb+HHW3dbuLFmsGbdXuxZuhZ3T6fcdGJcrcJl5KSQjAYdLaDwSDJycmdzqmqqmLOnDmMGTOGoqIioPUF4Be/+IVzjm3bmKYZ1aD7yuetBB6dPo7/d/gUBf/+Fz7cc4yWcKS/hyUicll0G/h33HEHO3fupKamhoaGBrZt20ZaWppzPBwOs2DBAqZPn87y5cud2X98fDyvv/46FRUVALzxxhs9nuH3hclfHsGi/zEB0+fj39/ezw9+upNN7/0XO/Ye40gwRHOLXgBExB0M27a77Zls3bqV9evX09zczMyZM5k/fz7z589n8eLFHD9+nO9+97uMGTPGOX/ChAkUFRWxa9cuioqKaGxsZPTo0bz44oskJkbfi7rcLZ2ObNtm7z9reG/XIQ4c/owzze1BnzA4wNCEOBLjA1w1yGRwnJ+4gEnA72v9z/Rhmgamz4fPZ+AzwPQZGD4Dn2FgABjgO/tiaBhgYMDZzpjh/O/s/rPO0zm7qKuvHszp0w3dnne+ltyV6uqrr+L06cb+Hkaf82LdXqnZZ8CELyURF2jtiMSypRNV4PeXvgz8jiIRm2M19Xxy/DQnTjVyKnSGz0JN1DU0U98UpqGphTMtYc60RGhpiRDuxRhFRC7k4WljuGvSKCC2gd/tm7Ze5PMZjLp2CKOuHRLV+RHbJhy2aQlHiNg2kcjZ/+zW3xzstj9p/5OzrxFt+87VcVe0LyfDh8VTc7L+4icN3Nf3Xhk2fAgna+r6exh9zot1e6Vmn88gZXj8ZfneCvwY8BkGPr9BwN+/q3wsK5HBpnvaNdGwrETiPVYzeLNuL9Yca1f2OkQREYmaAl9ExCMU+CIiHqHAFxHxCAW+iIhHKPBFRDxiQC/L9Pl6vwTrUh57JfNi3V6sGbxZtxdrhujr7u68AX2lrYiIxI5aOiIiHqHAFxHxCAW+iIhHKPBFRDxCgS8i4hEKfBERj1Dgi4h4hAJfRMQjFPgiIh7husDfunUrM2bM4L777mPTpk39PZzL5tVXXyUjI4OMjAxefPFFAMrLy8nKyuK+++5jzZo1/TzCy+eFF14gPz8fgP3795OTk0N6ejrLly+npaWln0cXe9u3bycnJ4fp06fz7LPPAt54rktLS52f8RdeeAFw7/MdCoXIzMzk8OHDwIWf30uu33aR48eP2/fcc4998uRJu66uzs7KyrIPHDjQ38OKuR07dtjf/va37aamJvvMmTN2bm6uvXXrVvuuu+6yP/30U7u5udmeO3eu/cEHH/T3UGOuvLzcnjx5sv2DH/zAtm3bzsjIsP/2t7/Ztm3bP/zhD+1Nmzb15/Bi7tNPP7XvvPNO+9ixY/aZM2fs2bNn2x988IHrn+v6+nr7tttus6urq+3m5mZ75syZ9o4dO1z5fP/973+3MzMz7fHjx9uHDh2yGxoaLvj8Xmr9rprhl5eXM2XKFIYOHUp8fDzp6emUlZX197BizrIs8vPzGTRoEIFAgBtuuIGDBw9y/fXXc9111+H3+8nKynJd7Z999hlr1qxhwYIFABw5coTGxkYmTZoEQE5Ojutqfu+995gxYwYpKSkEAgHWrFnD4MGDXf9ch8NhIpEIDQ0NtLS00NLSgt/vd+XzXVxcTEFBAcnJyQDs2bPnvM9vLH7eB/TdMnuqqqoKy7Kc7eTkZPbs2dOPI7o8brrpJufrgwcP8s477/Cd73ynS+2VlZX9MbzL5umnn2bJkiUcO3YM6Pp8W5blupo/+eQTAoEACxYs4NixY9x9993cdNNNrn+uExIS+N73vsf06dMZPHgwt912G4FAwJXPd1FRUaft8+VYZWVlTH7eXTXDj0QiGEb77UFt2+607TYHDhxg7ty5LF26lOuuu87Vtf/ud79j5MiR3H777c4+Lzzf4XCYnTt38qMf/Yjf/va37Nmzh0OHDrm+7o8//pjNmzfzxz/+kT/96U/4fD527Njh+rrhwj/Xsfh5d9UMPyUlhV27djnbwWDQ+TXJbXbv3s3ixYtZtmwZGRkZ/OUvfyEYDDrH3Vb722+/TTAYJDs7m1OnTlFfX49hGJ1qPlb7pRUAAAG/SURBVHHihKtqBrj22mu5/fbbGT58OAD33nsvZWVlmKbpnOO25xrgww8/5PbbbycpKQlobV9s3LjR9c83tObY+f4tn7u/N/W7aoZ/xx13sHPnTmpqamhoaGDbtm2kpaX197Bi7tixYzzxxBOsWrWKjIwMAL7yla/wr3/9i08++YRwOMxbb73lqtp//vOf89Zbb1FaWsrixYv5+te/znPPPUdcXBy7d+8GWld1uKlmgHvuuYcPP/yQ06dPEw6H+dOf/sS0adNc/VwDjB07lvLycurr67Ftm+3bt/PVr37V9c83XPjf8qhRoy65flfN8EeMGMGSJUvIzc2lubmZmTNncvPNN/f3sGJu48aNNDU18fzzzzv7Zs2axfPPP893v/tdmpqauOuuu5g2bVo/jrJvrFq1ihUrVhAKhRg/fjy5ubn9PaSY+spXvsK8efOYM2cOzc3NfO1rX2P27Nl86UtfcvVzfeedd/KPf/yDnJwcAoEAEydO5LHHHmPq1Kmufr4B4uLiLvhv+VJ/3vWJVyIiHuGqlo6IiFyYAl9ExCMU+CIiHqHAFxHxCAW+iIhHKPBFRDxCgS8i4hEKfBERj/j/1DTk5VnGzV8AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "t = np.arange(len(J_history))\n", + "\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns; sns.set()\n", + "\n", + "plt.plot(t, J_history)\n", + "plt.show()" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -1094,9 +1534,28 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "execution_count": 105, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "theta computed from gradient descent: [340412.65957447 109447.79646964 -6578.35485416]\n", + "Predicted price of a 1650 sq-ft, 3 br house (using gradient descent): $293081\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEUCAYAAAA1EnEjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO3dfVxUdb4H8M8MjyKkQgP4wm5WplhmaHQVdSlTBBVCWTTSFZVky4fcvFcMlRbESBdRy2fTXrU3uTdZlSVrRXPdcjdwN7ElcelhK/IBgxEMZxBwmPndP2AOM8wwOuSZGfXz/ifO08zXwzQffr/fOb+jEEIIEBERdUHp7AKIiMi1MSiIiMgmBgUREdnEoCAiIpsYFEREZBODgoiIbLptg0Kr1SI2Nhbnz5+/of2XLVuGAwcOSMvV1dWYOXMmYmJiMH/+fDQ2NspVKhGRS7stg6K8vBzPPvssqqqqrrtvTU0NXnjhBRw+fNhs/apVqzBjxgwUFxdjyJAh2LZtm0zVEhG5ttsyKAoKCpCZmYnAwEBp3R//+EdMnToV8fHxWLFiBVpaWgAABw8exLhx4zBx4kRpX51Oh88++wzR0dEAgISEBBQXFzv2H0FE5CJuy6DIyclBeHi4tPzNN9+goKAA7733HoqKihAQEIC33noLADBv3jxMmzbN7PjLly/D19cX7u7uAACVSoWamhrH/QOIiFyIu7MLcIS///3v+OGHHzB9+nQAbS2Ghx56qMv9hRBQKBRm6zovExHdKe6IoNDr9Zg4cSIyMjIAAI2NjdDr9V3u7+/vD41GA71eDzc3N6jVarNuLCKiO8lt2fXU2YgRI/DRRx+hrq4OQghkZWXh97//fZf7e3h4IDw8HH/6058AtI1vREZGOqpcIiKXckcERWhoKBYtWoTZs2dj8uTJMBgM+PWvf23zmMzMTBQUFGDSpEk4efIkXnrpJQdVS0TkWhScZpyIiGy5I1oURETUfQwKIiKyiUFBREQ2yXp57JYtW3Do0CEAwBNPPIFly5aZba+srMTKlSvR2NiI8PBwrFq1Cu7u7qiurkZaWhrq6upw3333IS8vDz179rzh9718uREGg/1DLwEBvqir09p9nCO4am2syz6uWhfgurWxLvt0py6lUoE+fbr+jpUtKEpKSvC3v/0NhYWFUCgUmDdvHj766CNERUVJ+6SlpeHVV19FWFgYVqxYgYKCAsyYMUOaZ2ny5MnYunUrtm3bhrS0tBt+b4NBdCsojMe6KletjXXZx1XrAly3NtZln5tdl2xdTyqVCunp6fD09ISHhwceeOABVFdXS9svXLiA5uZmhIWFAeiYT4nzLBERuRbZWhQPPvig9HNVVRUOHTqE//u//5PW1dbWQqVSScvG+ZQ4zxIRkWuRfQqPb775Bs8//zyWLVuG/v37S+sNBoPZ/EnG+ZVuxjxLAQG+3a5XpfLr9rFyc9XaWJd9XLUuwHVrY132udl1yRoUZWVlWLx4MVasWIHJkyebbQsODoZarZaWL126hMDAwJsyz1JdnbZbfXQqlR/Uao3dxzmCq9bGuuzjqnUBrlsb67JPd+pSKhU2/8CWbYzi4sWLWLhwIfLy8ixCAgBCQkLg5eWFsrIyAEBRUREiIyM5zxIRkYuRrUXx1ltvoaWlBWvXrpXWJSUl4dixY1i8eDEeeeQR5OXlISMjA1qtFg8//DCSk5MBtM2zlJ6eju3bt6Nv377YsGGDXGVKDAaB87UaeMKy64uI6E52W8711J2upw9Lq7D/k+/w4i8fwbAHVdfd39Fup2auI7Au+7lqbazLPrdU19Ot5rKm7dGodQ3NTq6EiMi1MCjaKdu7m1z0/hkiIqdhULRTKtuDgklBRGSGQdHO2KK4DYdsiIh+FgZFO+OFTgYGBRGRGQZFO6nriTlBRGSGQdHOeO+EYFIQEZlhULRTsuuJiMgqBkW7jq4nBgURkSkGRbuOq56cXAgRkYthULSTrnriGAURkRkGRTt2PRERWcegaCdN4WFwciFERC6GQdGuY64ntiiIiEwxKNqx64mIyDoGRTvjYDZzgojIHIOiXccYBZOCiMgUg6Idu56IiKxjULSTup7YoiAiMuMu9xtotVokJSVhx44d6Nevn7S+srIS6enp0nJ9fT169eqFDz74AIWFhVi/fj0CAgIAAE8++SSWLFkia5286omIyDpZg6K8vBwZGRmoqqqy2DZ48GAUFRUBAJqamjBt2jRkZWUBACoqKpCeno7Y2Fg5yzNj7HpiThARmZO166mgoACZmZkIDAy0ud/OnTvx+OOPIzw8HABw+vRpFBYWIi4uDkuXLkVDQ4OcZQLgg4uIiLoia1Dk5ORIX/5d0Wg0KCgowKJFi6R1KpUKCxYswPvvv4++ffsiOztbzjIB8KonIqKuyD5GcT3vv/8+xo8fL41HAMDWrVuln+fNm4eoqCi7XjMgwNfuOnpf1AAAPDzdoVL52X28I7Au+7Au+7lqbazLPje7LqcHxdGjR/H8889LyxqNBvv378ecOXMAAEIIuLm52fWadXVau1sGWk0zAKCpSQe1WmPXsY6gUvmxLjuwLvu5am2syz7dqUupVNj8A9upl8cKIXDmzBkMGzZMWufj44Pdu3ejvLwcALBnzx67WxTd0fE8CnY9ERGZcnhQpKam4vTp0wDaLon18PCAl5eXtN3NzQ2vv/46srKyMHHiRJw5cwZpaWmy19UxmC37WxER3VIc0vV07Ngx6eddu3ZJPwcEBODTTz+12D88PByFhYWOKE3CO7OJiKzjndnteNUTEZF1DIp2Smn2WAYFEZEpBkU7qeuJLQoiIjMMinYKY9eTk+sgInI1DIp20uWxbFEQEZlhULRTtJ8JXvVERGSOQdGu46onJxdCRORiGBTt+DwKIiLrGBTtOp5HwaAgIjLFoGjHKTyIiKxjULTjndlERNYxKNpxriciIusYFO2MU3iwRUFEZI5B0Y7PoyAiso5B0U6awoM5QURkhkHRjmMURETWMSjaSdOMs0lBRGSGQdFOoWTXExGRNQyKdryPgojIOtmDQqvVIjY2FufPn7fYtmXLFowdOxbx8fGIj49Hfn4+AKCyshIJCQmIjo7GypUr0draKneZHVc9gUFBRGRK1qAoLy/Hs88+i6qqKqvbKyoqsGHDBhQVFaGoqAgzZ84EAKSlpeG3v/0tDh8+DCEECgoK5CwTgMkUHpw9lojIjKxBUVBQgMzMTAQGBlrdXlFRgZ07dyIuLg7Z2dloaWnBhQsX0NzcjLCwMABAQkICiouL5SwTAK96IiLqiqxBkZOTg/DwcKvbGhsbMXjwYKSlpaGwsBBXrlzBtm3bUFtbC5VKJe2nUqlQU1MjZ5kAOEZBRNQVd2e9cc+ePbFr1y5pOSUlBStWrEBkZKR08xvQdqe06fKNCAjwtbsevd4gvZ9K5Wf38Y7AuuzDuuznqrWxLvvc7LqcFhTV1dUoKSlBYmIigLYvaHd3dwQHB0OtVkv7Xbp0qcuuq67U1WntbhkYp+4wCKC29ord4SQ3lcoParXG2WVYYF32cdW6ANetjXXZpzt1KZUKm39gO+3yWG9vb6xbtw7nzp2DEAL5+fmIiopCSEgIvLy8UFZWBgAoKipCZGSk7PWYtWJkfzcioluHw4MiNTUVp0+fhr+/P7KzszF//nzExMRACIG5c+cCAPLy8rBmzRrExMTg6tWrSE5Odkht0oA2xymIiCQO6Xo6duyY9LPpuER0dDSio6Mt9g8NDcW+ffscUZoZpUIBAwRnkCUiMsE7s010tCicXAgRkQthUJhwaz8bvJeCiKgDg8IEH15ERGSJQWGCDy8iIrLEoDDBq56IiCwxKExwviciIksMChOc74mIyBKDwgRbFERElhgUJqTnZjMniIgkDAoTbFEQEVliUJjgGAURkSUGhYmOFoWTCyEiciEMChPGoBBMCiIiCYPChNT1xDEKIiIJg8JEx1xPTi6EiMiFMChMKDl7LBGRBQaFCc71RERkiUFhgmMURESWGBQm2KIgIrLEoDCh4GA2EZEF2YNCq9UiNjYW58+ft9h29OhRxMfH4+mnn8aCBQvQ0NAAACgsLMSYMWMQHx+P+Ph4bNy4Ue4yAQBunMKDiMiCu5wvXl5ejoyMDFRVVVls02q1yMrKwv79+xEUFIQ33ngDmzdvRkZGBioqKpCeno7Y2Fg5y7PAMQoiIkuytigKCgqQmZmJwMBAi206nQ6ZmZkICgoCAAwaNAgXL14EAJw+fRqFhYWIi4vD0qVLpZaG3DrGKBzydkREtwRZWxQ5OTldbuvTpw+ioqIAAM3NzXjzzTcxa9YsAIBKpUJKSgqGDx+ODRs2IDs7G+vXr7/h9w0I8O1Wvcag8LvLGyqVX7deQ06uWBPAuuzlqnUBrlsb67LPza5L1qC4ERqNBgsXLkRoaCimTp0KANi6dau0fd68eVKg3Ki6Om23rlxq73nCTz9dhVqtsft4OalUfi5XE8C67OWqdQGuWxvrsk936lIqFTb/wHbqVU+1tbWYMWMGBg0aJLU+NBoN3nnnHWkfIQTc3NwcUk/HNOMOeTsioluC04JCr9fjhRdewMSJE7Fy5Urp0lQfHx/s3r0b5eXlAIA9e/bY3aLoLmn2WA5mExFJuux6+umnnyx3dneHr2/3+v+NUlNTsXjxYvz444/417/+Bb1ej8OHDwMAhgwZgpycHLz++uvIyspCc3Mz+vfvj9zc3J/1njeKT7gjIrLUZVCMHDkSCoXC4q/rgIAA5OTk4Mknn7zhNzl27Jj0865duwAAjzzyCL788kur+4eHh6OwsPCGX/9mceMT7oiILHQZFF19iVdUVCAtLc2uoLhVdHQ9ObkQIiIXYvcYxZAhQ+Du7vSLpWRhvOqJXU9ERB3s+sb/+uuvsXv3bvTt21euepyKkwISEVmyKyj0ej369++PX/3qV3LV41ScwoOIyJJdQTF48GAMHjxYrlqcruOqJycXQkTkQjjNuAl2PRERWWJQmFAqeMMdEVFn1w2Ko0ePWqz74x//KEsxzsauJyIiS12OURw7dgytra3Izc2FwWTyo9bWVmzevBlTpkxxSIGOpOQNd0REFroMisrKSpw4cQJ1dXV49913Ow5wd8ecOXMcUZvDca4nIiJLXQbFwoULsXDhQuTn52PmzJmOrMlplLzhjojIwnXHKCZMmIA///nPAIC8vDzMnj27y+k9bnUcoyAisnTdoFi+fDnOnTuH0tJSHD9+HPHx8Xj11VcdUZvDSVc9MSmIiCTXDYqffvoJc+bMwfHjxxEbG4uEhAQ0NTU5ojaH4zTjRESWrhsUOp0OOp0Of/3rXzFq1Cg0NTXh6tWrjqjN4RgURESWrhsU48aNQ0REBPr06YMhQ4Zg2rRpiI2NdURtDsdHoRIRWbruXE+LFy/G9OnTERwcDKBtQDs0NFT2wpyBLQoiIkvXDQqDwYCDBw/i+PHjaG1txejRozFgwIDb8pkUxstjeR8FEVGH63Y9rV+/HidOnMDs2bMxd+5cfP755w57hrWjdUwK6ORCiIhcyHWD4q9//St27NiB8ePHY8KECdi+fTuOHz9+Qy+u1WoRGxuL8+fPW2yrrKxEQkICoqOjsXLlSrS2tgIAqqurMXPmTMTExGD+/PlobGy085/UfXweBRGRpesGhRACHh4e0rKnp6fZclfKy8vx7LPPoqqqyur2tLQ0/Pa3v8Xhw4chhEBBQQEAYNWqVZgxYwaKi4sxZMgQbNu27Qb/KT8fxyiIiCxdNyhCQ0Px2muv4ezZszh37hzWrFmDgQMHXveFCwoKkJmZicDAQIttFy5cQHNzM8LCwgAACQkJKC4uhk6nw2effYbo6Giz9Y4izfXEG+6IiCTXDYrMzExcuXIFSUlJmDZtGurr6/HKK69c94VzcnIQHh5udVttbS1UKpW0rFKpUFNTg8uXL8PX11caKDeud5SOrieHvSURkcu77qVLvr6+WLt2LQCgpaUFXl5eP/tNDQYDFO1fykBb95ZCoZD+a6rz8o0ICPDtVl2Kb+sBAF5e7lCp/Lr1GnJyxZoA1mUvV60LcN3aWJd9bnZdXQbFtWvX8Morr2D8+PGIiooC0HZPhb+/P1avXv2zLo8NDg6GWq2Wli9duoTAwED4+/tDo9FAr9fDzc0NarXaatfV9dTVabv1TAm39vbV1avXoFZr7D5eTiqVn8vVBLAue7lqXYDr1sa67NOdupRKhc0/sLvsetq0aRO0Wi2GDx8urcvOzkZDQwM2b95sVxGdhYSEwMvLC2VlZQCAoqIiREZGwsPDA+Hh4fjTn/4EoO1JepGRkT/rvezBwWwiIktdBsXHH3+M9evXIyAgQFoXFBSE3Nxcq49HvRGpqak4ffo0gLY7vNesWYOYmBhcvXoVycnJANrGRAoKCjBp0iScPHkSL730Urfeqzs4RkFEZKnL/iMPDw94e3tbrPf19YWnp+cNv8GxY8ekn3ft2iX9HBoain379lnsHxISYvZEPUfquOGOSUFEZNRli0KpVEKr1Vqs12q10s1xtxvjwDmn8CAi6tBlUMTGxiIjI8NsSvGrV68iIyMDEyZMcEhxjsYn3BERWeoyKGbPng0/Pz+MHj0a06dPR2JiIkaPHo277roLCxcudGSNDtMxzTiTgojIqMsxCqVSidWrV+OFF17AmTNnoFQqMXTo0G5drnqrcONVT0REFq57M0RISAhCQkIcUYvT8fJYIiJL153C406ilAaznVwIEZELYVCYMM4WwjEKIqIODAoT0uyxbFIQEUkYFCZ4wx0RkSUGhQlO4UFEZIlBYYKXxxIRWWJQmDAOZnOMgoioA4PCRMcYhZMLISJyIQwKEx1jFGxREBEZMShM8M5sIiJLDAoTvDyWiMgSg8IEp/AgIrLEoDDBriciIksMChN8HgURkaXrTjP+cxw8eBDbt29Ha2srZs+ejZkzZ0rbKisrkZ6eLi3X19ejV69e+OCDD1BYWIj169cjICAAAPDkk09iyZIlcpYKgHM9ERFZI1tQ1NTUYOPGjThw4AA8PT2RlJSEESNGYMCAAQCAwYMHo6ioCADQ1NSEadOmISsrCwBQUVGB9PR0xMbGylWeVZzCg4jIkmxdTyUlJRg5ciR69+4NHx8fREdHo7i42Oq+O3fuxOOPP47w8HAAwOnTp1FYWIi4uDgsXboUDQ0NcpVpRtl+Ntj1RETUQbagqK2thUqlkpYDAwNRU1NjsZ9Go0FBQQEWLVokrVOpVFiwYAHef/999O3bF9nZ2XKVaabjqicGBRGRkWxdTwaDAQrj5Elo+/I1XTZ6//33MX78eGk8AgC2bt0q/Txv3jxERUXZ9d4BAb7dqBho0La01QoFVCq/br2GnFyxJoB12ctV6wJctzbWZZ+bXZdsQREcHIyTJ09Ky2q1GoGBgRb7HT16FM8//7y0rNFosH//fsyZMwdAW8C4ubnZ9d51ddpudR959/QCAOj1BqjVGruPl5NK5edyNQGsy16uWhfgurWxLvt0py6lUmHzD2zZup5GjRqF0tJS1NfXo6mpCUeOHEFkZKTZPkIInDlzBsOGDZPW+fj4YPfu3SgvLwcA7Nmzx+4WRXdxriciIkuytSiCgoKwZMkSJCcnQ6fTITExEUOHDkVqaioWL16MRx55BPX19fDw8ICXl5d0nJubG15//XVkZWWhubkZ/fv3R25urlxlmvFwb8vNVj2DgojISNb7KOLi4hAXF2e2bteuXdLPAQEB+PTTTy2OCw8PR2FhoZylWeXhroQCQKveAINBSPdVEBHdyXhntgmFQgEPj7ZTcq1V7+RqiIhcA4OiE0/3toHzazo+vYiICGBQWPAytih0bFEQEQEMCgueHm0tipZWtiiIiAAGhYWOrie2KIiIAAaFBc/2ricdWxRERAAYFBY83TlGQURkikHRiTRGwaueiIgAMCgsGIOC91EQEbVhUHTCriciInMMik6kFgW7noiIADAoLHhyCg8iIjMMik44hQcRkTkGRSdsURARmWNQdMIWBRGROQZFJ56cFJCIyAyDohMvTgpIRGSGQdGJ8XGoOrYoiIgAMCgsdNyZzRYFEREgc1AcPHgQkyZNwoQJE5Cfn2+xfcuWLRg7dizi4+MRHx8v7VNZWYmEhARER0dj5cqVaG1tlbNMM16cZpyIyIy7XC9cU1ODjRs34sCBA/D09ERSUhJGjBiBAQMGSPtUVFRgw4YNGDZsmNmxaWlpePXVVxEWFoYVK1agoKAAM2bMkKtUM8bBbE4KSETURrYWRUlJCUaOHInevXvDx8cH0dHRKC4uNtunoqICO3fuRFxcHLKzs9HS0oILFy6gubkZYWFhAICEhASL4+TESQGJiMzJFhS1tbVQqVTScmBgIGpqaqTlxsZGDB48GGlpaSgsLMSVK1ewbds2i+NUKpXZcXLjpIBEROZk63oyGAxQKBTSshDCbLlnz57YtWuXtJySkoIVK1YgMjLS5nE3IiDAt9t19w3uBQBo1QuoVH7dfh05uFo9RqzLPq5aF+C6tbEu+9zsumQLiuDgYJw8eVJaVqvVCAwMlJarq6tRUlKCxMREAG2B4O7ujuDgYKjVamm/S5cumR13I+rqtDAYhN01q1R+0DRcBQA0X9NDrdbY/RpyUan8XKoeI9ZlH1etC3Dd2liXfbpTl1KpsPkHtmxdT6NGjUJpaSnq6+vR1NSEI0eOIDIyUtru7e2NdevW4dy5cxBCID8/H1FRUQgJCYGXlxfKysoAAEVFRWbHyc14H0Wr3tCtsCEiut3I1qIICgrCkiVLkJycDJ1Oh8TERAwdOhSpqalYvHgxHnnkEWRnZ2P+/PnQ6XQYPnw45s6dCwDIy8tDRkYGtFotHn74YSQnJ8tVpgWFQgFPDyWu6Qy41qqHt6dsp4iI6JYg67dgXFwc4uLizNaZjktER0cjOjra4rjQ0FDs27dPztJs8nR3awsKnQHenk4rg4jIJfDObCs4MSARUQcGhRXSVOOcxoOIiEFhDR9eRETUgUFhhXR3NqfxICJiUFjjxbuziYgkDAorjC0KTgxIRMSgsMp40x3HKIiIGBRWGVsUOl71RETEoLDG+PCiFo5REBExKKyRHl50jUFBRMSgsKKXrxcA4LKmxcmVEBE5H4PCClUvbwDApYZmJ1dCROR8DAor7u7dAwBwqaHJyZUQETkfg8KKu01aFELwmRREdGdjUFjRw8sdPb3doWs14ErjNWeXQ0TkVAyKLhi7n9QcpyCiOxyDogtS99NPHKcgojsbg6ILql7GAW22KIjozsag6MLdvY0D2mxRENGdjUHRBWPXk/ontiiI6M4ma1AcPHgQkyZNwoQJE5Cfn2+x/ejRo4iPj8fTTz+NBQsWoKGhAQBQWFiIMWPGID4+HvHx8di4caOcZVp1d3vXUx27nojoDucu1wvX1NRg48aNOHDgADw9PZGUlIQRI0ZgwIABAACtVousrCzs378fQUFBeOONN7B582ZkZGSgoqIC6enpiI2Nlau86zK2KOquNKOppRU9vGQ7VURELk22FkVJSQlGjhyJ3r17w8fHB9HR0SguLpa263Q6ZGZmIigoCAAwaNAgXLx4EQBw+vRpFBYWIi4uDkuXLpVaGo7k6eGGAf16QW8Q+OzLWoe/PxGRq5Dtz+Ta2lqoVCppOTAwEF988YW03KdPH0RFRQEAmpub8eabb2LWrFkAAJVKhZSUFAwfPhwbNmxAdnY21q9ff8PvHRDg2+26VSo/6efJo+/HG3s/R+m/avDL8YO6/Zo3i2ltroR12cdV6wJctzbWZZ+bXZdsQWEwGKBQKKRlIYTZspFGo8HChQsRGhqKqVOnAgC2bt0qbZ83b54UKDeqrk4Lg8H+qTdUKj+o1RppOTTkLvTwcsNXP1zG5/+6iH6q7gfQz9W5NlfBuuzjqnUBrlsb67JPd+pSKhU2/8CWrespODgYarVaWlar1QgMDDTbp7a2FjNmzMCgQYOQk5MDoC043nnnHWkfIQTc3NzkKtMmL083jHgoGADw1oeV0FzldB5EdOeRLShGjRqF0tJS1NfXo6mpCUeOHEFkZKS0Xa/X44UXXsDEiROxcuVKqbXh4+OD3bt3o7y8HACwZ88eu1sUN1PcqP5Q9fbGDz9qkP3OSRT//SwuqLvXYiEiuhUphIzTox48eBA7d+6ETqdDYmIiUlNTkZqaisWLF+PHH3/Eiy++iEGDOvr+hwwZgpycHJw8eRI5OTlobm5G//79kZubCz+/G+9zu1ldT0Y/aVuwYW85zqu10jqFAvDz8cRdPp7w7eEOdzcl3JSKtv+6tf1XqVTAtLPNvOdNYXW9+S4dSz16eKC5SWdlJ+fq4e2Bpmads8uwwLrs56q1sa4bo4QCEUOCMeLRkJve9SRrUDjLzQ4KANAbDCj/dx1O/KsG31dfQd0V3l9BRK7lsYEqZD0/6qYHBW8OuEFuSiWGD1Rh+MC2K7la9QZorupwpfEarjbr0GoQ0OsFWvUGtBoM0OsF9CZhZZrHZhEmrP4IdNrf19cbWm0zXC3W/Xy9oNG63iNjWZf9XLU21nVjlArg0QF3y/LaDIpucndToo+fF/r4eTnk/W6nKywcgXXZz1VrY13Ox7meiIjIJgYFERHZxKAgIiKbGBRERGQTg4KIiGxiUBARkU235eWxSmX3b13+OcfKzVVrY132cdW6ANetjXXZx966rrf/bXlnNhER3TzseiIiIpsYFEREZBODgoiIbGJQEBGRTQwKIiKyiUFBREQ2MSiIiMgmBgUREdnEoCAiIptuyyk8uuPgwYPYvn07WltbMXv2bMycOdNptWzZsgWHDh0CADzxxBNYtmwZli9fjrKyMvTo0QMAsGjRIkRFRTm0rlmzZqG+vh7u7m0fm+zsbJw9e9bp5+0Pf/gD9uzZIy2fP38e8fHxaGpqcso502q1SEpKwo4dO9CvXz+UlJRgzZo1aGlpwcSJE7FkyRIAQGVlJVauXInGxkaEh4dj1apV0rl1VG179+7Fu+++C4VCgSFDhmDVqlXw9PTEli1bsH//ftx1110AgOnTp8v6u+1cV1ef967OpSPq+vbbb7FhwwZpW01NDR599FHs3LnToefL2veD7J8xQeLHHxADCaMAAAxKSURBVH8UY8eOFZcvXxaNjY0iLi5OfPPNN06p5dNPPxXPPPOMaGlpEdeuXRPJycniyJEjIjY2VtTU1DilJiGEMBgMYsyYMUKn00nrXOm8GX399dciKipK1NXVOeWc/fOf/xSxsbHi4YcfFufOnRNNTU3iiSeeEGfPnhU6nU6kpKSIjz/+WAghxOTJk8Xnn38uhBBi+fLlIj8/36G1fffddyIqKkpoNBphMBjEsmXLxNtvvy2EEOL5558Xp06dkrWeruoSQlj93dk6l46qy6i2tlaMGzdOfP/990IIx50va98PBw8elP0zxq4nACUlJRg5ciR69+4NHx8fREdHo7i42Cm1qFQqpKenw9PTEx4eHnjggQdQXV2N6upqrFixAnFxcdi0aRMMBoND6/ruu+8AACkpKXj66aexZ88elzpvRllZWViyZAl69OjhlHNWUFCAzMxMBAYGAgC++OIL3Hvvvbjnnnvg7u6OuLg4FBcX48KFC2hubkZYWBgAICEhQfZz17k2T09PZGZmwtfXFwqFAgMHDkR1dTUAoKKiAjt37kRcXByys7PR0tLisLqampqs/u66OpeOqstUbm4ukpKS0L9/fwCOO1/Wvh+qqqpk/4wxKADU1tZCpVJJy4GBgaipqXFKLQ8++KD0i62qqsKhQ4fwi1/8AiNHjsRrr72GgoICnDx5Evv27XNoXVeuXEFERAS2bt2Kd955B++99x6qq6td5rwBbYHf3NyMiRMn4tKlS045Zzk5OQgPD5eWu/psdV6vUqlkP3edawsJCcHo0aMBAPX19cjPz8e4cePQ2NiIwYMHIy0tDYWFhbhy5Qq2bdvmsLq6+t05+v/TznUZVVVV4R//+AeSk5MBwKHny9r3g0KhkP0zxqAAYDAYoFB0TLMrhDBbdoZvvvkGKSkpWLZsGe6//35s3boVgYGB6NGjB2bNmoVPPvnEofUMGzYMubm58PPzg7+/PxITE7Fp0yaXOm/vvfce5s6dCwC45557nH7OgK4/W670maupqcHs2bPxy1/+EiNGjEDPnj2xa9cuPPDAA3B3d0dKSopDz11XvztXOWd79+7FjBkz4OnpCQBOOV+m3w/33HOP7J8xBgWA4OBgqNVqaVmtVlttbjpKWVkZ5syZg//+7//G1KlT8dVXX+Hw4cPSdiGE7IOenZ08eRKlpaVmNYSEhLjMebt27Ro+++wzPPXUUwDgEucM6Pqz1Xn9pUuXnHLuvv32WyQlJWHq1KlYuHAhAKC6utqs9eXoc9fV785V/j/985//jEmTJknLjj5fnb8fHPEZY1AAGDVqFEpLS1FfX4+mpiYcOXIEkZGRTqnl4sWLWLhwIfLy8jB58mQAbR+81157DQ0NDdDpdNi7d6/Dr3jSaDTIzc1FS0sLtFotCgsLsW7dOpc5b1999RX69+8PHx8fAK5xzgDg0Ucfxffff48ffvgBer0eH3zwASIjIxESEgIvLy+UlZUBAIqKihx+7rRaLZ577jn85je/QUpKirTe29sb69atw7lz5yCEQH5+vkPPXVe/u67OpSPV19ejubkZ99xzj7TOkefL2veDIz5jvDwWQFBQEJYsWYLk5GTodDokJiZi6NChTqnlrbfeQktLC9auXSutS0pKwq9//Ws8++yzaG1txYQJExAbG+vQusaOHYvy8nJMmTIFBoMBM2bMwGOPPeYy5+3cuXMIDg6WlkNDQ51+zgDAy8sLa9euxYsvvoiWlhY88cQTiImJAQDk5eUhIyMDWq0WDz/8sNTn7Sj79u3DpUuX8Pbbb+Ptt98GADz11FP4zW9+g+zsbMyfPx86nQ7Dhw+XuvQcwdbvrqtz6Sjnz583+5wBgL+/v8POV1ffD3J/xviEOyIisoldT0REZBODgoiIbGJQEBGRTQwKIiKyiUFBREQ2MSjIJZ0/fx6DBg3CH/7wB7P1b731FtLT02/a+zz11FM4ffr0TXs9W4wzkU6ePBlHjhwx27Zy5UqUlJQAADIyMlBRUXHT3lej0ZhdFhkfH48rV67ctNen2x/voyCXpVQq8bvf/Q6PPfYY7r//fmeX87NVVlairq4OH330kcW2nJwc6eeSkhI888wzN+19GxoazMKwqKjopr023RkYFOSyvL29MXfuXCxduhTvvfeeNLeOUXp6Oh588EE899xzFstPPfUUYmNjceLECTQ0NGDevHk4deoUzpw5A3d3d2zfvh1BQUEAgP/93//Fl19+iWvXrmHu3LlITEwEABw7dgzbt2+HTqeDt7c3Xn75ZQwbNgybN2/GP//5T9TW1mLQoEHIy8szq+vo0aPYsmULDAYDevbsieXLl8PX1xcrVqxATU0N4uPjsXfvXnh7e0vHzJo1CzNnzkRlZSVqa2uxdOlS5Obm4v7770dOTg6+/vpr6HQ6REREYNmyZXB3d8eQIUMwbtw4fPnll8jLy8NXX32FvXv3QqfToaGhAampqZgxYwaWL1+O5uZmxMfH48CBA3jooYdQWloKf39/bN26FR9++CHc3Nxw33334ZVXXoFKpcKsWbMQFhaGU6dO4eLFi4iIiMDq1athMBiwevVqnDp1Ch4eHujXrx/WrFmDnj17yvlRIGfr1uTkRDI7d+6cCAsLE3q9XsycOVOsXbtWCCHE7t27xcsvvyyEEOLll18Wu3fvlo4xXR47dqx47bXXhBBCfPjhhyI0NFRUVlYKIYRYsGCB2L59u7RfZmamEKLt+RoRERHi66+/Ft9//72IjY0V9fX1Qoi251yMHj1aNDY2ik2bNono6GizZ3MY/fvf/xajRo0SZ8+eFUIIUVJSIkaPHi00Go04ceKEmDx5stV/769+9Stx6NAhqaYvvvhCCCFEenq6+J//+R8hhBCtra1i6dKl4s033xRCCDFw4EBRWFgohBBCq9WK6dOnS/V+/vnnIiwszOxcGg0cOFDU1dWJffv2iWeeeUY0NjYKIYTYtGmTSElJkepZvHix0Ov1QqPRiDFjxojS0lLx2WefiZiYGGEwGIQQQuTm5oqysrKufo10m2CLglyaUqnEunXrMGXKFIwZM8auYydMmACgbTbSu+++G6GhoQCA//iP/0BDQ4O0X1JSEoC2qVxGjx6N0tJSuLm5oba2FnPmzJH2UygUOHv2LAAgLCzM6sRvJ06cwMiRI6W5gCIiIuDv74+Kiopuzdz58ccf4/Tp09Kkc83NzWbbjdNg9+zZEzt27MAnn3yCqqoqfPnll7h69arN1z5+/DgSEhKk+bGSk5OxY8cOXLt2DUDbtC1KpRK+vr6499570dDQgIiICLi5uWHatGkYM2YMoqOjnTZtCzkOg4JcXt++fbFq1Sq8/PLLmDJlirReoVBAmMxAo9PpzI4z7ary8PDo8vWVyo5rOgwGA9zd3aHX6xEREYHXX39d2nbx4kUEBgbio48+kr5cO+s8tTPQNslda2urzRq6YjAY8MYbb+CBBx4A0PZcENPXN9bx448/4plnnsH06dPx2GOPISYmBn/5y1+u+9qmr2UwGNDa2iotm3aNGc/1XXfdhaKiIpw6dQonTpzASy+9hOeee86pjw4m+fGqJ7olxMTEIDIyEr///e+ldX369JGuDqqpqcE//vGPbr12YWEhgLbpoktLSxEREYGIiAh8+umn+PbbbwEAn3zyCZ5++mmLv+g7i4iIwN/+9jecO3cOAFBaWoqLFy/i0UcfveF63NzcpC/sMWPG4J133oEQAteuXcP8+fPNng9uVFFRAX9/fyxYsABjxoyRQkKv10vBJzpN6/aLX/wC+/fvl1oe7777Lh5//HGLsSBTf/nLXzBnzhwMGzYML774IqZMmXJTr9Ai18QWBd0yMjIypCmTgbYB4KVLlyI6Ohr9+vXDyJEju/W6LS0tmDp1KnQ6HTIyMnDfffcBALKzs/Ff//Vf0vMFtm/fft1B2wEDBiAzMxOLFi2CXq+Ht7c3duzYAT8/vxuuJyoqCmlpacjKysLKlSuRk5ODuLg46HQ6jBo1CvPmzbM4ZvTo0di3bx9iYmKgUCjwn//5n/D398cPP/yAe++9F0OHDsXkyZORn58vHZOYmIiLFy9i2rRpMBgMuPfeey0G5juLjIzE8ePHERsbCx8fH/Tq1QurV6++4X8b3Zo4eywREdnEriciIrKJQUFERDYxKIiIyCYGBRER2cSgICIimxgURERkE4OCiIhsYlAQEZFN/w9Ob0u+COmvcgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "\"\"\"\n", "Instructions\n", @@ -1119,8 +1578,8 @@ "At prediction, make sure you do the same feature normalization.\n", "\"\"\"\n", "# Choose some alpha value - change this\n", - "alpha = 0.1\n", - "num_iters = 400\n", + "alpha = 0.01\n", + "num_iters = 200\n", "\n", "# init theta and run gradient descent\n", "theta = np.zeros(3)\n", @@ -1139,7 +1598,11 @@ "# Recall that the first column of X is all-ones. \n", "# Thus, it does not need to be normalized.\n", "\n", - "price = 0 # You should change this\n", + "x_sq = (1650 - mu[0]) / sigma [0]\n", + "x_bd = (3 - mu[1]) / sigma [1]\n", + "x_pred = [1, x_sq, x_bd]\n", + "\n", + "price = np.transpose(theta) @ x_pred # You should change this\n", "\n", "# ===================================================================\n", "\n", @@ -1171,7 +1634,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 106, "metadata": {}, "outputs": [], "source": [ @@ -1194,7 +1657,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 109, "metadata": {}, "outputs": [], "source": [ @@ -1227,7 +1690,8 @@ " theta = np.zeros(X.shape[1])\n", " \n", " # ===================== YOUR CODE HERE ============================\n", - "\n", + " \n", + " theta = np.linalg.inv(np.transpose(X)@X)@np.transpose(X)@y\n", " \n", " # =================================================================\n", " return theta" @@ -1242,9 +1706,44 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "execution_count": 110, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Submitting Solutions | Programming Exercise linear-regression\n", + "\n" + ] + }, + { + "name": "stdin", + "output_type": "stream", + "text": [ + "Use token from last successful submission (raade@uwindsor.ca)? (Y/n): y\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Part Name | Score | Feedback\n", + " --------- | ----- | --------\n", + " Warm up exercise | 0 / 10 | \n", + " Computing Cost (for one variable) | 0 / 40 | \n", + " Gradient Descent (for one variable) | 0 / 50 | \n", + " Feature Normalization | 0 / 0 | \n", + " Computing Cost (for multiple variables) | 0 / 0 | Nice work!\n", + " Gradient Descent (for multiple variables) | 0 / 0 | \n", + " Normal Equations | 0 / 0 | Nice work!\n", + " --------------------------------\n", + " | 0 / 100 | \n", + "\n" + ] + } + ], "source": [ "grader[7] = normalEqn\n", "grader.grade()" @@ -1262,9 +1761,18 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "execution_count": 112, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Theta computed from the normal equations: [89597.9095428 139.21067402 -8738.01911233]\n", + "Predicted price of a 1650 sq-ft, 3 br house (using normal equations): $293081\n" + ] + } + ], "source": [ "# Calculate the parameters from the normal equation\n", "theta = normalEqn(X, y);\n", @@ -1275,7 +1783,7 @@ "# Estimate the price of a 1650 sq-ft, 3 br house\n", "# ====================== YOUR CODE HERE ======================\n", "\n", - "price = 0 # You should change this\n", + "price = np.transpose(theta) @ [1, 1650, 3]\n", "\n", "# ============================================================\n", "\n", @@ -1299,9 +1807,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.4" + "version": "3.7.3" } }, "nbformat": 4, - "nbformat_minor": 2 + "nbformat_minor": 4 } diff --git a/Exercise2/exercise2.ipynb b/Exercise2/exercise2.ipynb index 39983d90..deec1c03 100755 --- a/Exercise2/exercise2.ipynb +++ b/Exercise2/exercise2.ipynb @@ -19,7 +19,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ @@ -89,7 +89,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -125,7 +125,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -151,7 +151,13 @@ " fig = pyplot.figure()\n", "\n", " # ====================== YOUR CODE HERE ======================\n", + " # Find Indices of Positive and Negative Examples\n", + " pos = y == 1\n", + " neg = y == 0\n", "\n", + " # Plot Examples\n", + " pyplot.plot(X[pos, 0], X[pos, 1], 'k*', lw=2, ms=10)\n", + " pyplot.plot(X[neg, 0], X[neg, 1], 'ko', mfc='y', ms=8, mec='k', mew=1)\n", " \n", " # ============================================================" ] @@ -165,9 +171,22 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEGCAYAAACKB4k+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO2de3hU5bXwf2sGyBCDQSC1UqJQoV65SWyl7YGEYKVfOQXb2gO13o6XeuspDfVyKocYxK9VqLY+52gLUpG0X/Bo2wge28MdrNrWYL1bSy2ICMpFiaTIJWF9f8yekISZZGYysy8z6/c877Nn7z177zV7ZvZ63/Wui6gqhmEYhgEQ8loAwzAMwz+YUjAMwzBaMaVgGIZhtGJKwTAMw2jFlIJhGIbRSg+vBegOAwYM0MGDB3sthmEYRqDYuHHjblUtibcv0Eph8ODBNDQ0eC2GYRhGoBCRtxLtM/ORYRiG0YopBcMwDKOVrCkFEfm5iOwUkVfabOsnIitFZJOzPMHZLiJyn4j8TUReEpFzsiWXYRiGkZhsjhQWA5M6bLsVWK2qw4DVzjrAF4FhTrsGeCCLchmGYRgJyJpSUNUNwPsdNk8BHnZePwxMbbN9iUb5A9BXRE7KlmzdoampiTlzqiktLSEcDlFaWsKcOdU0NTV5LZphGEa3cdv76ERV3QGgqjtE5GPO9k8Ab7d53zZn246OJxCRa4iOJjj55JOzK20HmpqaKC8/j+LiN6muPsCQIbB5827q6u5m2bJfsW7dHygqKnJVJsMwjEzil4lmibMtbvpWVV2gqmWqWlZSEtfNNmvcc888iovfZNasAwwdCuEwDB0Ks2YdoLj4Te65Z56r8hiGYWQat5XCezGzkLPc6WzfBpS2ed8gYLvLsnXJwoX3M336AaSDChOBadMO8OCD2Z0KaWxs5MILL6SxsTGr1zH8hX3vhpu4rRSWAZc5ry8DHm+z/VLHC+k8oDFmZvIT27fvYciQ+PuGDInuzybLli2jvr6e5cuXZ/U6hr+w791wk2y6pNYBzwKnicg2EbkS+CFwvohsAs531gGeBP4O/A1YCFyfLbm6w8CB/dm8Of6+zZuj+7PJz3/+83ZLwx287qnb9264STa9j6ar6kmq2lNVB6nqIlXdo6qVqjrMWb7vvFdV9QZVPVVVh6uqL3NXXH319dTVRehYrE4Vli6NcNVV12X0ehMnTkREWtszzzwDwNNPP91u+8SJEzN63XynoxJwu6cetO/da6VpZBa/TDQHgqqqm2hsPJW5cyNs2gTNzbBpE8ydG6Gx8VSqqm7K6PVuu+02CgsLW9cPHTrUbglQWFjIrFmzMnrdfKejEnC7p56J793NB7WZt3IMVQ1sGzNmjLrNvn37tKZmtpaWlmg4HNLS0hKtqZmt+/bty8r11qxZo4WFhUrUG6tdKyws1LVr12bluvlM3759293nXr16tVvGWmVlZdZk6O73vmTJEgW0trY2azLGKC8vV0ArKiqyfi0jMwANmuC56vmDvTvNC6XgBcuXL9dIJNLuwRCJRHT58uVei5YTVFZWtru3PXr0iPswdlshd+d7z+aDuuP98kJpGt2jM6Vg5qME+Clyee/evfTo0YNQKETv3r0JhUL06NGDvXv3ui5LLtLRXNPc3Nzp+wsLC/mf//kfysvLsypXKt+7m/MQZtbMcRJpiyC0bI0U9u3bp2PGnKUTJkR04UJ01Sp04UJ0woSIjhlzVtZMRYkoLy/XUCiko0eP1hUrVujo0aM1FArZcD2DdGauwaMRWirfezLyZ3J0Y2bNYIONFFLDb5HLxcXFzJs3j4aGBs4//3yee+457r77bo4//nhX5chlKioqeOSRR4hEIsfs82qElsr3XlFRwRNPPNGuB9+WTI9uEt2vSCTCI488kvVRlJFFEmmLILRsjRQGDRqgCxeia9ce2xYsQEtLS7JyXcNbamtrtaioSEOhkPbu3bu153vKKacEZoTm5vxTx/sVCoW0qKjIlclto3tgI4XU8Dpy2fCGRYsWsX//fkaOHMnjjz/e2iMfMmRIYEZobs4/dbxfI0eOZP/+/RZkF3BMKcTB68hlwxs6mmvef/995s+fT3FxMQDhcJiZM2dSX1/vsaSJcfNBbWbN3ESiI4lgUlZWpg0NmQ9+njOnmvXr72bWrPbJ71SjgWrjx9/M7Nk1Gb+uYSRLY2Mjl19+OYsXL25VWgBTp05l3LhxzJgxg1AoREtLCz/+8Y956qmnfK3MDHcRkY2qWhZ3nymFY2lbN2HatFjdhGgqi8bGU61uguE5tbW1XHrppdTW1vLNb37Ta3GMgNGZUjDzURyKiopYt+4PjB9/M3fcUcKkSSHuuKOE8eNvNoVg+AJLkmdkCxspGEYAmDhxIqtXr25d79WrF4cOHWpdxqisrGTVqlVeiBiXRGYuw1tspGAYASeoUcSWLC94mFIwjADgdnBapjAzV/AwpWAYASEIUcSJcjCtW7fOl7UgjGMxpWAYAcLvyRETmbnazl360cxlHMWUgmEEiGwGp2WiME9QzVzGUUwpGEaAyGYUcaYmhe+88072798fd9/+/fupqKgwE5KPMZdUw8hj2rqMTp06lXXr1lFRUcGaNWvSPufatWuZNGlSO8+ojtiIwVt855IqIt8RkVdE5FURmeFs6yciK0Vkk7M8wQvZDH9gxeCzz8SJE+nbty/19fX07ds3Y4V5KioqOOOMMxLuN4Xgb1xXCiJyNnA18GlgJDBZRIYBtwKrVXUYsNpZN/IU82/PPrfddhuh0NFHQCZjHwYPHsyVV155jKdUKBTyjaeUER8vRgpnAH9Q1f2q2gysBy4EpgAPO+95GJjqgWxGB7zqsZt/e3Zo6zI6YcKEdkqhI93p0dfX11NeXn6Mp1RhYaFvPKVSIZ9Grl4ohVeAcSLSX0QKgf8DlAInquoOAGf5sXgHi8g1ItIgIg27du1yTeh8xa0eu5s1hvOZZOtR9+zZs9s9+lyqt5BPI1fXlYKqvg7cBawEfge8CHReKb398QtUtUxVy0pKSrIkpRHDrR57UNM4BI2uXEYBRISCgoJu9+hzqd5CXo1cE5Vkc6sB/xe4HngDOMnZdhLwRlfHZqscZz5TWVnZrpRjr1692i1jrbKyMuPXtmLw7hGvbKeI6Jw5c3T06NEqIjpgwADdu3ev16K6zt69e3XAgAGe/Q/cAL+V4xSRjznLk4GvAHXAMuAy5y2XAY97IVuQyYTd08seexDSOOQKbSOjQ6EQIsJxxx3HkCFDeO655/iXf/kXdu/enRfmko4sW7aM3bt306tXr9Zt+TRy9Sp47Vci8hqwHLhBVT8AfgicLyKbgPOddSMFMmH39Doi1e9pHHKFtvb+3/3ud4waNarV3h8Oh3n33XeBPDGXdCD2mc8880xP/geeT2onGkIEoZn5qD3l5eUKaEVFRbfPFc+8EIlEdPny5RmQNDHl5eUaCoV09OjRumLFCh09erSGQqGMfCbjKFOmTNEf/ehH2tLSoqqqEyZMyGlzSWckazJ163+wZMkSBbS2tjZr18Bv5iMjM2TTY8erHrsXk5Oe98w8oL6+nqqqqlaX1FmzZuXtRH8yJlOIFjZy43/g+aR2Im0RhJbvI4XOJmZjLd0J2nzqsbvRMwsCy5Yt03A4nJcT/V39l4YOHZq1/4EXzh10MlLw/MHenZbvSkE1ex47Hc0Lzc3NOn/+fJ0yZUoGpfcHmTS7ZYK9e/fq1KlTXff8iSnHnj17um429APxTKahUEivvPLKrP4Pstm5S4QphRzHK/t/UPHS7TYZvBq5xJRjOBzWUCikvXv31lAopEVFRXkxiqqtrdWioiJPPrvb7tidKQWbU8gBzGMnNfweKOeWTbm8vDzunFRLSwtHjhzho48+4siRIzQ1NeWFF5KXEdh+csc2pZAD5FI6ATfw2u22I16l+Bg7dmy79XiprgsLC7n22msDGYWcKl5HYPumc5doCBGEZuajKPlk/88kfjG7eWFTVj1qLgqFQnk5uew33HTuwOYUDONYvLQhd8QNm3KiuZQePXq47otvHIubnTtTCoYRB7+53WZ75JLMiASiOZDyZXI5X+lMKdicgpG3eG1D7ki2bcpdzaWICPPmzWuX8sLIQxJpiyA0GykYuYRbI5d4I5IePXro448/rqo2J5UPYCMFw/A/bo1c4o1IIpEIH374IQDhcJiZM2dSX1+f0esawUCiSiOYlJWVaUNDg9diGEagqKioYMOGDYwcOZK77rqLW265hRdffJHx48ezZs0ar8UzXEBENqpqWbx9NlIwjDzDb3Mphr+wkYJhGEaeYSMFw8gy+Zh+28hNTCkYRgbIRNU7w/ADphQMIwN4XhjFMDKEKQXDSAOvktgZRrYxpWAYaeD39NuGkS6eKAUR+a6IvCoir4hInYhERGSIiPxRRDaJyCMi0ssL2QwjGfyWftswMoXrSkFEPgH8G1CmqmcDYWAacBdwr6oOAz4ArnRbNsNIBT8VRjGMTOGV+agH0FtEegCFwA5gAvCYs/9hYKpHsgWKpqYm5sypprS0hHA4RGlpCXPmVNPU1OS1aHmBbwqjYG6xRmZwXSmo6jvAfGArUWXQCGwE9qpqs/O2bcAn4h0vIteISIOINOzatcsNkX1LU1MT5eXnsX793VRX72bFCqW6ejfr199Nefl5phhcwE9V78wt1sgEXpiPTgCmAEOAgcBxwBfjvDVuqLWqLlDVMlUtKykpyZ6gAeCee+ZRXPwms2YdYOhQCIdh6FCYNesAxcVvcs8987wWMeeJpYxYvXo1999/P6tWrfIsZYS5xRqZwAvz0URgs6ruUtXDwK+BzwJ9HXMSwCBguweypYTXppuFC+9n+vQDiLTfLgLTph3gwQcfcEWOfKa+vp6qqiqeeOIJ6uvrefLJJ13LMGpusUY28EIpbAXOE5FCERGgEngNWAt8zXnPZcDjHsiWNH4w3WzfvochQ+LvGzIkut9wBy966eYW60+CPrfjxZzCH4lOKD8PvOzIsAC4BagSkb8B/YFFbsuWCn4w3Qwc2J/Nm+Pv27w5ut/IDn7opZtbrD8J+tyOJ95Hqlqtqqer6tmqeomqHlTVv6vqp1V1qKpepKoHvZAtWfxgurn66uupq4vQMdGtKixdGuGqq67Lugz5il966bngFhv0nnVHgj63YxHNaeIH001V1U00Np7K3LkRNm2C5mbYtAnmzo3Q2HgqVVU3ZV2GfMVPvXQ/ucWmQ9B71n4YNWYSUwppkk3TTbIT2EVFRaxb9wfGj7+ZO+4oYdKkEHfcUcL48Tezbt0fKCoqSluG7uLH3l+mZfJLL91PbrHpEPSetV9GjZnClEKaZMt0k+oEdlFREbNn17B1606am1vYunUns2fXeKoQwJ+9v2zI5Ideul8qqSWrdHOtZ+2nUWNGUNXAtjFjxqhX7Nu3T8eMOUsnTIjoggXoypXoggXohAkRHTPmLN23b19a562pma0TJkR0zRp07dqjbc2a6LlramZn+JNkh/LycgW0oqLCa1FayYZM5eXlGgqFdPTo0bpixQodPXq0hkIhX31ut1iyZIkCWltb2+n71qxZo4WFhUo0FiluKyws1LVr17ojeIZYvny5RiKRdp8jEono8uXLvRbtGIAGTfBctZFCGjQ1NXHPPfN49913Wbv2ADNmCF/8ItTUDOi26cYPE9jp4Mfenxsy+aWX7geSNQPlXM/awQ+jxoyQSFsEoXkxUmg7Qli4EF21Cl24sPsjhBihkOiqVe1HCbG2ciUaDocy9Ekyix97f36UKZeorKxsdy979erVbhlrlZWVcY8PUs86GYI0asRGCpkj2/EJQY098GPvz48y5RLJTLCGw2FmzJgR9/ic6Vk75MqosUulICKfEpHVIvKKsz5CRIIxjZ4Fsm3eCXLsgV+8cfwuU67QldLt1asXLS0tCR/yQfea6kgs5UkoFH2shsNh11KeZJJkRgoLgX8HDgOo6ktE6x/kJdmOTwh67IEfe39+lClX6EzpfupTnwISzzHkSs8610hGKRSq6p86bGuO+848INvmHT/HHiSDH3t/ycjkx7iKoBBTum05cOAAf/nLX4DEE/u50rPONZJRCrtF5FScVNYi8jWidRDykmTMO93NnurX2INk8GPvLxmZOsYwmJJInpjSHTp0KAUFBa3bm5ujfcegBnHlLYlmoGMN+CSwCtgPvAP8Hjilq+PcaF57H8WLT9ixY0dWvZOM7NAxhiFZn3tDdcqUKfqjH/1IW1paOvX4Mk+vzLF3716dOnWq7t27N63j6cT7qCuFEAK+7rw+DujT2fvdbl4Fr+3bt09ramZraWmJhsMhLS0t0Zqa2a3bcyH4LNdJ1p3yhBNO8FrUwJFrrqZ+pLudls6UQqfmI1U9AtzovP6Hqu7LxOgk6HRm3glq8Fm+kYw7JcC+ffsCmXrBS2xiP/tkM19UMnMKK0XkeyJSKiL9Yi3jkuQIfsieanRNV+6UMWJ2cTB7eLL40dkg6LiZMSAZpfCvwA3ABmCj0xq6feUcJdPeSV6X/MxlErlTxsMC3ZLHj84GQcfNTKyiHd1oAkRZWZk2NPhLP82ZU8369Xcza1Z7E5JqNNZg/PibmT27JqlzxTKmFhe/yfTpBxgyJKpY6uqiMQtBcFH1O7/4xS+47rrr2L9/PwUFBRw8eJAjR460e08kEuHRRx9l8uTJHklpGLB27VomT57M/v37j9mXaqdFRDaqalm8fclENPcUkX8TkcecdqOI9EzqynlIJoPP/FDyM9fpaOooLS1t3Wf28PaYm663uBWdn4z56AFgDHC/08Y424w4ZDL4zCats09HU8fgwYNbt7e1hy9YsCCnHojpPOD9WCMjXYKq4FyZxE/klhRrwIvJbPOieVlPwQ2CmjG1K7rrY51N2vrcq6o2Nzfr/Pnz9ZxzzsmpuIV0XBr9WCMjXYIah5KpTKx0M0tqixPRDICIfBJoSVcJichpIvJCm/ahiMxwvJpWisgmZ3lCutfIFYKaMbUr/NzjTJR6ITZJmiseNMm4NPqxRkamCGoJUFcm8RNpi1gDKoGtwDpgPbAFqOjquGQaEAbeBU4B7gZudbbfCtzV1fG5PlLI1UC4IPQ4u1srwG+k83mSqUfRu3fvQEQpB+X77GwUnckRNulGNOvRh3cBMAIYCRQkc0yS5/0C8LTz+g3gJOf1ScAbXR2f60ohWyU/3SYof8i25FqBnnQ/T1fHff/73/fmA6VIUL7PzsxamTR5dUspEI1R6Ntm/QTg+q6OS6YBPwdudF7v7bDvgwTHXEM0TqLh5JNP7vbN8TudpdQICkH5Q3Yk1/L4pPt54qWtCIVCvh/tdSQI32dno+hMjrC7qxReiLPtz10dl8R5ewG7gRM1BaXQtuX6SCGXCMIfMh65lscnnc9TW1ur4XA47nfn59FePPz2fSY7is70CLszpZDMRHNI5KhTpIiEnQd6d/ki8LyqvuesvyciJznXOAnYmYFrGD4hqBXQci2PTzqfZ9GiRRw5cgTp6BtN8NJi++37TDYHV6J92bjnySiF/wX+W0QqRWQCUAf8LgPXnu6cK8Yy4DLn9WXA4xm4huEj/PaHTIZcy+OTzucpLi5m/vz5rFy5MvD1rv32fXaVg6ugoKBdjYq2ZO2eJxpC6FEzTgi4FngM+BXwLSDc1XFdnLMQ2AMUt9nWH1gNbHKW/bo6j5mPgkWmfKzdJFHcwpQpUzyWLD26+3n8Zn5JFb9+n53d12zcc7rrfaRHH9z9gBGpHJPNZkohWPj1D+klfg7ki0dtba0WFRVpKBTS3r17aygU0qKiosAFgfmNzu5rNu55t5QC0fiE4x2FsJVoltR7ujrOjWZKITVinkyDBg3QUEh00KABgfNkyjWCFlkbxNFeEOjsvmbjnnemFJKZUyhW1Q+BrwAPqeoYIHghjHlOLOPq+vV3U129mxUrlOrq3axffzfl5edZKm6PCFpkbS6mxfZDHqTO7qvr9zyRtog14GWiwWQrgHOdbS91dZwbzUYKyZOr0dFBI4iBfLlONkZrfjcL0s2RwhyiHkh/U9XnnNxHmzKrmoxsYxlX/YGbxVKM5MjGaM3P+b26okuloKqPquoIVb3eWf+7qn41+6LlD25UV8uVMqF+GOp3h65cEIPi2hlk3Ej0FzSzYFuSGSkYWcQtW3+uZFwNcg8sRlAD+XKFbIzWcimjrCkFj3GrutrVV19PXV2E6JTQUVRh6dIIV111XUauk22C3ANrSxAD+XKFbIzWcsosmGiyIQgtFyaaBw0aoAsXxi+ks2ABWlpakpHrBDXjaq5OzJprp/dkOigsSPm9SHeiWUROd9JbFHXYPimzqil/ccvWn8kyoW6SUz2wNuSia2fQyPRoLWfMgom0BfBvRGsc1BMtrDOlzb7nEx3nZrORQn4QpB6YERyyMVoLSsQ3aY4UrgbGqOpUoBz4DxH5jrPv2HSJRlrkiq0/GdL1ssqZHpjhK7IxWvNbwr10EO34NIrtEHlNVc9ss15ENCnea8AEVR3ljoiJKSsr04aGBq/F6BYx76Pi4jeZNu0AQ4ZEvYGWLo3Q2Hiqr007qdD2c06ffvRz1tUl9zl/8YtfcN1117F//34KCgo4ePAghYWFPPDAA3zzm9908ZMYRmKmTp3KuHHjmDFjBqFQiJaWFn784x/z1FNPUV9f77V4rYjIRlUti7sz0RACWAOM6rCtB7AEaEl0nJstF8xHqrlRXa0ruhtRbROzhpE56MR81NlIYRDQrKrvxtn3OVV9OiMqqxvkwkghXygtLaG6ejdDhx67b9MmuOOOErZuTVxXKSg9MMMIAp2NFBIqhSBgSiE4hMMhVqxQwuFj9zU3w6RJIZqbW9wXzDDykM6UggWvGa6QKxHVmSDoqToMb3Drd2NKwXCFfPKy6opcSNVhuI9bv5uklYKIHC8i/WItm0IZuUdV1U00Np7K3LkRXn4ZFi+Giy6Cykr4058Oc+jQobyp6ZArqToMd3Hrd9OlUhCRb4nIe8BLRKuubQTMkI872U1zhVhE9XnnzeC228L89a/wgx/AypVw770tPPvsj3O22E8uJUsz3MOr300yI4XvAWep6mBVHeK0T2ZUigBilcyipKIYi4qKKCjoxbnn9uTOO8lKAkA/2utzNVWHkV28+t0koxTeBPZn8qIi0ldEHhORv4jI6yIy1jFLrRSRTc7yhExeM9O4ld3Uz6SjGLNd7MeP9nqroWCkg1e/m2SUwr8Dz4jIz0Tkvljr5nV/AvxOVU8HRgKvA7cCq1V1GLDaWfctVsksPcWY7QSAfrXXW6oOIx28+N0koxR+RjS6+Q8cnVPYmO4FReR4YBywCEBVD6nqXmAK8LDztoeBqeleww1ypZJZd0hHMWbaNTVI9nqroWCkg9u/m2SUQrOqVqnqQ6r6cKx145qfBHYBD4nIn0XkQRE5DjhRVXcAOMuPxTtYRK4RkQYRadi1a1c3xOge5nefnmLMtGtqkOz1uZAszXAft383ySiFtc6D+KQMuaT2AM4BHlDV0cA/SMFUpKoLVLVMVctKSkq6IUb3ML/79BRjW9fUTZui0cybNsHcudHEeFVVN6UkQ5Ds9VZDwUgHt383Xaa5EJF4f3tN1wNJRD4O/EFVBzvr/0RUKQwFylV1h4icBKxT1dM6O5eXaS7yJbtpZ8yZU8369Xcza1Z7E5Jq9CE/fvzNzJ5dc8xxTU1N3HPPPB588AG2b9/DwIH9ueqq66iquinte/bEE09w0UUXceDAgdZtkUiERx99lMmTJ6d1TsPIVbqV5qKNG+qQTLikOgn23haR2AO/kmg67mXAZc62y4DH072GGwS1klkmSbfXX1RUxOzZNWzdupPm5ha2bt3J7Nk13bpnZq/PP/zofpwTJEqf2rYBZwNfBy6NtWSO6+R8o4gGwL1EtLLbCUB/ol5Hm5xlv67Okyups4OMX9J+W2rt/GPJkiUK+K6qWRAgndTZMUSkmmjltTOBJ4EvAr9X1a9lVj2ljmVJNWJYau3cpLGxkcsvv5zFixdTXFzcbl9FRQXr1q2joqKCNWvWeCRhMEmryI4e7dW/TNTM9KKzfiKwvKvj3Gg2UkiPWO9+0KABGgqJDho0IOeK+hi5QdvRQGVlZbv63L169Wq3jLXKykqvxfY9pFmjOcZHqnoEaHZiDHYSdSs1Aoil5zCCRNtgxCC5HweZZJRCg4j0BRYSDVp7HvhTVqUysoal5zD8TGfBiBMmTGD//sQZd/zkfhxkUqq8JiKDgeNV9aVsCZQKNqeQOt0ti2kY2WTt2rVMnjy504d/QUEBR44c4fDhw63bzP04NbrlkioiV8Zeq+oW4FVn8tkIIJaew/AzyQQjzpw5k4KCAnM/zhLJmI8qReRJJ6L5bKI5kPpkWS4jS1h6DsPvdJUE7plnnrF0IVkkmeC1bxBNUPcyUZfUGar6vWwLZmQHS89hBIHOghEtXUh2SSZOYRhHlcIZRKOPq1Q1ozUW0sHmFFLH0nMYQaCiooINGzYwcuRI7rrrLm655RZefPFFxo8fbzEJGaBbcwrAcuA/VPVbwHiiEcfPZVA+w0UsPYcRBGw04B3JjBSOV9UPO2wbpqqbsipZEthIwTAMI3XSGimIyM0AqvqhiFzUYfcVGZTPMIw4WMI3wws6Mx9Na/P63zvsm5QFWQzDaIMf600buU9nSkESvI63bhgZp6mpiTlzqiktLSEcDlFaWsKcOdV5k4rDr/WmjdymM6WgCV7HWzfyjGw/sP2So8lNxRSketNG7pJwollEWoiWyhSgNxBzQRUgoqo9XZGwE2yi2RvaurVOn37UrbWuLnNurelWdcskbnzOtiST4sHy+xiZIK2JZlUNq+rxqtpHVXs4r2PrnisEwzvcSKq3cOH9TJ/eXiEAiMC0aQd48MEHun2NrnA7eWCQ6k0buUsycQqG0Q43Hth+yNHkhWLqKsWDKQQj25hSMFLGjQe2H3I0eaWYrN604SWmFIyUceOB7XWOpqamJvr27e2JYlq0aJElfDM8w5SCkTKdPbDr6iIMG3ZGt711qqpuorHxVObOjbBpEzQ3R+s9zJ0bneStqropg5+oPbEJ5hNOOEhtLa4rJkvxYHhJSkV2Mi9dOXMAABtASURBVHZRkS3APqAFaFbVMhHpBzwCDAa2AF9X1Q86O0+q3kdNTU3cc888Fi68n+3b9zBwYH+uvvp6qqpuspw/KZAoqV5dXYQ//1kZMQIuueRgt711Yt/Xgw8+0Pp9XXXVdVn/vmKeTzNnHmDmTDjxRLj4Ylo/T21tD/bvP81yRRmBpTPvIy+VQpmq7m6z7W7gfVX9oYjcCpygqrd0dp5UlILb7oW5TrwH9rBhZ9Dc/Eduv/2gZ26kmaBtdbqPPoJHH4Xf/hZ27oT+/eHw4ULefvs9+70YgSUoSuENoFxVd4jIScA6VT2ts/OkohT84Pee63RV6nPOnAG8/fYu9wVLkXA4xIoVSjh87L7mZpg0KURzc4v7guURjY2NXH755SxevJji4mKvxck5ups6OxsosEJENorINc62E1V1B4Cz/Fi8A0XkGhFpEJGGXbuSf8D4we891+nKW+edd3YHIkWFHzyf8h3L++QdXimFz6nqOcAXgRtEZFyyB6rqAlUtU9WykpKSpC/oB7/3XKerh2mfPmQ84CsbeO35ZFjeJy/xRCmo6nZnuRP4DfBp4D3HbISz3JnJa1rvL/tcffX1PPRQfG+dX/4SKioIxIjMS88nv5LtNN6W98k/uK4UROQ4EekTew18AXgFWAZc5rztMuDxTF7Xen/Zp6rqJp5/HmpqaPcwramB996DK68MxojMqtMdS7bNObfddlu79B6HDh1qt4Romo9Zs2Zl5fpGG1TV1QZ8EnjRaa8Ctznb+wOriZb7XA306+pcY8aM0WTZt2+fjhlzlk6YENEFC9CVK9EFC9AJEyI6ZsxZum/fvqTPlej8NTWzddCgARoKiQ4aNEBramZ3+7xBY+DA/jplCvrxj6OhUHR5xRXok09G73dpaYnXIhppUF5eroBWVFRk7Rpr1qzRwsJCJTrn2K4VFhbq2rVrs3btfANo0ETP6EQ7gtBSUQqqRx/cpaUlGg6HtLS0JCMP7rYKZ+FCdNUqdOHCzCmcIFFTM1snTIjomjXo2rXR9uSTUcXQpw8qQt4qzER43aHYu3evTp06Vffu3du6rbKyst1DuVevXu2WsVZZWZlRWZYvX66RSKTdNSKRiC5fvjyj18l3TClkmXgPwrVr0TVrooqhpma21yK6RscR2bJl6Cc/iX7+8+S9woyHHzoUS5YsUUBra2tbt3XWa89m7722tlaLioo0FApp7969NRQKaVFRUTvZjO7TmVKwNBcZwNxdj9LRHv+Vr8DHPw5z5uBK+umg4XZ67njE8/TxKo13ruV9CmKdbVMKGcDcXdtTVFTE7Nk1vPba3ykq6s1f/woTJ8K0abBkSTRKOB8VZjy86FAk6+lz5513up7G26u8T9l6eAcx3sKUQgYwd9djiaUVOeOMj/jBD2DFCpg7F/7+d6iqiiqGfFSYHfGiQ5GKp4/babzr6+upqqoiFIo+msLhMDNnzqS+vj4r14uRrYd3EOMtTClkAHN3PZaYWeTOO9ubjaqrownmHn00fxVmW7zoUKRiGuquOSco5pNMPbxzId7ClEIGsGCnY+nMLHLxxdEEc/mqMNviVYci2Qpv3TXn+NV8kq2Hd07EWySagQ5C84v3kWr23F2DSigkumpVe2+sWFu5Muqaat5H2Y+f6Qw3PH3ciG9Ih2x6VwUh3gJzST1KJnzCvfYrDwKDBg3QhQvjK4UFC9D+/Qvtfjl41aEoLy/XUCiko0eP1hUrVujo0aM1FAp16wGerfiGeLEU3SWbD2+/x1uYUnDIhE+4H/zKg4DFbvifKVOm6I9+9CNtaWlRVdXm5madP3++TpkyJe1zZqsHHi+WIhMkenifd9553VJAfo+3MKXgkOqDKt6IYMKEcTpuXIE97LrAS7OI4S3Z6IFnywwV7+FdUFDQbQWUjVFYJulMKeTVRHMqPuExl8r16++muno3K1Yo1dW7OXBgA9u2HeTAga7Pkc9YUrnOaWpqYs6c6m7XsvYjyU5id4ZbXjzxvKsOHjwIdM8TKdB1thNpiyC0VEcKXU1+hsOh1vd2NqoYPz6ay6ercxj+x4v5oXwwQSZjPuns3ruVZmPKlCk6dOjQducNhUKu5HnyEmykECUVn/BkXCq7OofhbxKNBtevv5vy8vOy1mv3Q2qLbNNVfENX9/7cc891Jc1GfX09CxYsaHedI0eOAAFzI80geaUUUvEJ7yrSdGeHEkDxzmH4G68ezvmQK6sr80ky9z4TZqhk8CrPk1/JK6WQSpBZV6OKoiIsUC3gePVw9kOurGzPaXSVriLZe+9Wmg23FFAQyCulkMrkZ2ejirq6CGVl42wCNeB49XD2OleWV2aztiR7793Mmup2nie/kldKAY5m8Ny6dSfNzS1s3bqT2bNrjnmYdzaq+PDDU3n88f/p8hyGv3H74Rzrne/fv59rrmmfNRbcM0H6YU4j2XvvphdPrqXtTpe8UwrJYi6VuY+beYfa9s7vums/K1dGs8a++WY0a+zLL7tngvTDnMbVV1/P//t/iUfisXvvZtbUQLuRZhDRjt9KgCgrK9OGhgavxTACSuxBXVz8JtOmHWDIkGgvdenS6MM5k8p/zpxq1q+/m1mz2j+MVeG22+D11wv57ne/R1XVTVnvcITDIVasUMLhY/c1N8OkSSGam1uyKsO7777LGWcM5qyzDnLZZbTe+4cfhldfLeD117fw8Y9/PKsy5DMislFVy+Lts5GCkbe4ORrsrHd+xRXQp89xrpkgvZ7TAFiw4AFGjIBPfQpmz4YLLoguP/UpGDEiut/wBs9GCiISBhqAd1R1sogMAZYC/YDngUtU9VBn57CRghEU/NA7j9HZqGXu3Ajjx9/M7Nk1WZWhtLSE6urdDB167L5Nm+COO0rYunXnsTuNjODXkcJ3gNfbrN8F3Kuqw4APgCs9kcoIBEFLE+GH3nkMP9T/8INbrhGfHl5cVEQGAV8C7gSqRESACcA3nLc8DNwOpDyGPHz4MNu2beNAx+REhmdEIhEGDRpEz549M3K+tnMB1dWxuYDd1NXdzbJlv/KlI0B0Ujt+79ztoMeY2eyee+Zxxx0PsH37HgYO7M9VV13nypwGxJRk/JFCEDIDNDU1cc8981i48P7W+3f11de7dv+yiSfmIxF5DPgB0Af4HnA58AdVHersLwV+q6pnxzn2GuAagJNPPnnMW2+91W7/5s2b6dOnD/3790c6GnAN11FV9uzZw759+xiSqGuYIn4wf6SKm5PaQSCI32GMtt/l9OlHv8u6uuB8l74yH4nIZGCnqm5suznOW+NqK1VdoKplqlpWUlJyzP4DBw6YQvARIkL//v0zOnLzg0tlqpiLc3v8YMJKl3TiPIJk7nR9pCAiPwAuAZqBCHA88BvgAuDjqtosImOB21X1gs7OFW+i+fXXX+eMM85ISabGxkYuv/xyFi9eTHFxcUrHGsmRzveSCD9N2hrpEzPBPPigNyasdEl1ktyPIwtfjRRU9d9VdZCqDgamAWtU9WJgLfA1522XAY+7JZNfi4sb8fHTpK2RPslmF/AbqU6S+yGCPBX8FKdwC9FJ578B/YFFbl04FsaeyXD23/zmN4gIf/nLX+Luv/zyy3nssceSPt/27dv52teiOvOFF17gySefbN23bt261iIkqTB48GB2796d8nFe42YksmF0JNVOSdDMnZ4qBVVdp6qTndd/V9VPq+pQVb1IVQ9m67puVHWqq6vj85//PEuXLs2IzAMHDmxVIplSCkElyPZoI/ik2ikJmvutn0YKrnHbbbe1y50eK6aRqaIaTU1NPP300yxatKhVKagqN954I2eeeSZf+tKX2NmmIMPgwYP5/ve/z9ixYykrK+P555/nggsu4NRTT+WnP/0pAFu2bOHss8/m0KFDzJ49m0ceeYRRo0Zx11138dOf/pR7772XUaNG8dRTT7Fr1y6++tWvcu6553Luuefy9NNPA7Bnzx6+8IUvMHr0aL71rW8R1BQnNmlreEmqnZLAmTsTlWQLQotXjvO1117rtAxdjGwUF49RW1ur//qv/6qqqmPHjtWNGzfqr371K504caI2NzfrO++8o8XFxfroo4+qquopp5yi999/v6qqzpgxQ4cPH64ffvih7ty5U0tKSlRVdfPmzXrWWWepqupDDz2kN9xwQ+v1qqurdd68ea3r06dP16eeekpVVd966y09/fTTVVX129/+ttbU1Kiq6hNPPKGA7tq1K+3PmQrJfi+GEQRipURLS0s0HA5paWlJwjKunZX2nTAhojU1s12Xn07KcXoSvOYHYkU1LrroonbukpkoqlFXV8eMGTMAmDZtGnV1dRw+fJjp06cTDocZOHAgEyZMaHfMl7/8ZQCGDx9OU1MTffr0oU+fPkQikZTzua9atYrXXnutdf3DDz9k3759bNiwgV//+tcAfOlLX+KEE05I+zMaRj4TmyRPJpaiquomli37FXPnxo9R8Zu5M2+VArQvqlFQUMDBgwe7XVRjz549rFmzhldeeQURoaWlBRHhwgsv7DR2oqCgAKBVlhihUIjm5uaUZDhy5AjPPvssvXv3PmZfUOM3cjmC1Mht/BBBngp5OacQIxtFNR577DEuvfRS3nrrLbZs2cLbb7/NkCFD6NevH0uXLqWlpYUdO3awdu3atK/Rp08f9u3bl3D9C1/4Av/5n//Zuv7CCy8AMG7cOH75y18C8Nvf/pYPPvggbRncxA+VwgyjOwTJ/TavlUI2imrU1dVx4YUXttv21a9+lXfffZdhw4YxfPhwrrvuOsaPH5/2NSoqKnjttdcYNWoUjzzyCP/8z//Mb37zm9aJ5vvuu4+GhgZGjBjBmWee2TpZXV1dzYYNGzjnnHNYsWIFJ598ctoyuEnQ/LwNI8jkXJGdTEbOGpmjO9+LpVk2jMziq4hmw0iVoPl5G0aQMaVg+J7A+XkbRoAxpWD4HktrYRjuYUrB8D2W1sIw3MOUguF7LK2FYbhHXiuFIBW+yHeC5OdtGEEmb5VCNgOiRISZM2e2rs+fP5/bb7+902Pq6+vbpaZIh1RTYS9btowf/vCHca+/ePFitm/fntL1Y0n7DMMILnmrFLIZEFVQUMCvf/3rlB7QmVAKqfLlL3+ZW2+9Ne7101EKhmEEn7xVCtksfNGjRw+uueYa7r333mP2vfXWW1RWVjJixAgqKyvZunUrzzzzDMuWLeOmm25i1KhRvPnmm+2OWb58OZ/5zGcYPXo0EydO5L333gMSp8LesmULp59+OldddRVnn302F198MatWreJzn/scw4YN409/+hMQffDfeOONx1z/rrvuoqGhgYsvvphRo0bx0UcfsXHjRsaPH8+YMWO44IIL2LFjBwAbN25k5MiRjB07lv/6r/9K+54ZhuETEqVPDULrTursUEh01ar2qWxjbeVKNBwOJXWeeBx33HHa2Niop5xyiu7du1fnzZun1dXVqqo6efJkXbx4saqqLlq0SKdMmaKqqpdddllrKu2OvP/++3rkyBFVVV24cKFWVVWpauJU2Js3b9ZwOKwvvfSStrS06DnnnKNXXHGFHjlyROvr61uv2TYFd8frjx8/Xp977jlVVT106JCOHTtWd+7cqaqqS5cu1SuuuEJVVYcPH67r1q1TVdXvfe97rem9O2Kpsw3DP9BJ6uy8HSlkOyDq+OOP59JLL+W+++5rt/3ZZ5/lG9/4BgCXXHIJv//977s817Zt27jgggsYPnw48+bN49VXXwVgw4YNfPOb3wSOTYU9ZMgQhg8fTigU4qyzzqKyshIRYfjw4WzZsiWlz/LGG2/wyiuvcP755zNq1Cjmzp3Ltm3baGxsZO/eva15nC655JKUzmt4izlaGPHIW6XgRkDUjBkzWLRoEf/4xz8SvieZVNbf/va3ufHGG3n55Zf52c9+1q7+Q6LjO6bfbpuaO9VU3KrKWWedxQsvvMALL7zAyy+/zIoVK1DVwKbizncs86yRiLxVCm4ERPXr14+vf/3rLFq0qHXbZz/72dYSnb/85S/5/Oc/Dxyb/rotjY2NfOITnwDg4Ycfbt2eyVTYnaXjPu2009i1axfPPvssAIcPH+bVV1+lb9++FBcXt452YrIY/scyzxqJcF0piEhERP4kIi+KyKsiUuNsHyIifxSRTSLyiIj0yqYcbgVEzZw5s50X0n333cdDDz3EiBEjqK2t5Sc/+QkQrdA2b948Ro8efcxE8+23385FF13EP/3TPzFgwIDW7ZlMhd3x+pdffjnXXnsto0aNoqWlhccee4xbbrmFkSNHMmrUKJ555hkAHnroIW644QbGjh0bt6iP4U+y6WhhBBvXU2dL1N5wnKo2iUhP4PfAd4Aq4NequlREfgq8qKqd/jItdXZwsO/FX4TDIVasUMLhY/c1N8OkSSGam1vcF8xwBV+lznYmv2MGy55OU2AC8Jiz/WFgqtuyGUa+YJlnjUR4MqcgImEReQHYCawE3gT2qmpsBnQb8IkEx14jIg0i0rBr1y53BDaMHMMyzxqJ8EQpqGqLqo4CBgGfBuLZFeLatVR1gaqWqWpZSUlJovNnTFaj+9j34T8s86yRCE+9j1R1L7AOOA/oKyI9nF2DgLRyLEQiEfbs2WMPIp+gquzZs4dIJOK1KEYbLPOskQgvJppLgMOquldEegMrgLuAy4BftZlofklV7+/sXPEmmg8fPsy2bdva+fIb3hKJRBg0aBA9e/b0WhTDMOh8orlHvI1Z5iTgYREJEx2p/LeqPiEirwFLRWQu8GdgUWcnSUTPnj0Zkqigr2EYhtEprisFVX0JGB1n+9+Jzi8YhmEYHpG3Ec2GYRjGsZhSMAzDMFpxfaI5k4jILuCtNA8fACRfBcd7giRvkGQFkzebBElWCJa83ZH1FFWN69MfaKXQHUSkIdHsux8JkrxBkhVM3mwSJFkhWPJmS1YzHxmGYRitmFIwDMMwWslnpbDAawFSJEjyBklWMHmzSZBkhWDJmxVZ83ZOwTAMwziWfB4pGIZhGB0wpWAYhmG0khdKwS8lQFPBqTnxZxF5wln3s6xbRORlEXlBRBqcbf1EZKUj70oROcFrOQFEpK+IPCYifxGR10VkrI9lPc25p7H2oYjM8Ku8ACLyXec/9oqI1Dn/PV/+dkXkO46cr4rIDGebb+6tiPxcRHaKyCtttsWVT6LcJyJ/E5GXROScdK+bF0oBOAhMUNWRwChgkoicRzQ7672qOgz4ALjSQxk78h3g9TbrfpYVoEJVR7Xxm74VWO3Iu9pZ9wM/AX6nqqcDI4neY1/KqqpvOPd0FDAG2A/8Bp/KKyKfAP4NKFPVs4EwMA0f/nZF5GzgaqL51kYCk0VkGP66t4uBSR22JZLvi8Awp10DpF9kW1XzqgGFwPPAZ4hGA/Zwto8F/tdr+RxZBjlf+ATgCUD8KqsjzxZgQIdtbwAnOa9PAt7wgZzHA5txHCz8LGsc2b8APO1neYlWS3wb6Ec02eYTwAV+/O0CFwEPtln/D+Bmv91bYDDwSpv1uPIBPwOmx3tfqi1fRgrdKgHqAT8m+gM94qz3x7+yQrRK3goR2Sgi1zjbTlTVHQDO8mOeSXeUTwK7gIcc09yDInIc/pS1I9OAOue1L+VV1XeA+cBWYAfQCGzEn7/dV4BxItJfRAqB/wOU4tN724ZE8sUUcoy073PeKAXtRglQNxGRycBOVd3YdnOct3ouaxs+p6rnEB3C3iAi47wWKAE9gHOAB1R1NPAPfGJ66QzHBv9l4FGvZekMx749BRgCDASOI/qb6Ijnv11VfZ2oWWsl8DvgRaC504P8TcaeEXmjFGJoFkqAZpjPAV8WkS3AUqImpB/jT1kBUNXtznInUZv3p4H3ROQkAGe50zsJW9kGbFPVPzrrjxFVEn6UtS1fBJ5X1fecdb/KOxHYrKq7VPUw8Gvgs/j0t6uqi1T1HFUdB7wPbMK/9zZGIvm2ER3pxEj7PueFUhCREhHp67zuTfTH+zqwFvia87bLgMe9kfAoqvrvqjpIVQcTNRmsUdWL8aGsACJynIj0ib0mavt+BVhGVE7wibyq+i7wtoic5myqBF7Dh7J2YDpHTUfgX3m3AueJSKGICEfvr19/ux9zlicDXyF6j/16b2Mkkm8ZcKnjhXQe0BgzM6WM1xM+Lk3WjCBa4vMlog+s2c72TwJ/Av5GdGhe4LWsHeQuB57ws6yOXC867VXgNmd7f6KT5ZucZT+vZXXkGgU0OL+FeuAEv8rqyFsI7AGK22zzs7w1wF+c/1ktUODj3+5TRJXWi0Cl3+4tUSW1AzhMdCRwZSL5iJqP/ovoXOnLRD3A0rqupbkwDMMwWskL85FhGIaRHKYUDMMwjFZMKRiGYRitmFIwDMMwWjGlYBiGYbRiSsHISUSkpUOGUdcil+NltzSMoGAuqUZOIiJNqlrk0bXHAU3AEo1mC3XjmmFVbXHjWkZuYyMFI28QkWIReSMW0ezk+7/aef2AiDRIm3obzvYtIvJ/ReRZZ/85IvK/IvKmiFwb7zqquoFo2oTOZLnIyeX/oohscLaFRWS+RGtTvCQi33a2VzoJ/F52RiEFbWSbLSK/By4SkVNF5HdOYsKnROT0TNw3I7/o0fVbDCOQ9Hay4sb4gao+IiI3AotF5CfACaq60Nl/m6q+LyJhYLWIjFDVl5x9b6vqWBG5l2iO+88BEaIR3D9NU77ZwAWq+k4sBQvRPPhDgNGq2uwUVIk416xU1b+KyBLgOqL5sAAOqOrnAURkNXCtqm4Skc8A9xPNnWUYSWNKwchVPtJoVtx2qOpKEbmIaEqAkW12fd1J+92DaJ76M4mmwoBoXhmIpg8oUtV9wD4ROSAifTWaZDFVniaqnP6baOI4iObk+qk6aaYdJTWSaJK5vzrveRi4gaNK4REAESkimnzu0WjaISCaYsIwUsKUgpFXiEiIaNr0j4gWg9kmIkOA7wHnquoHIrKY6EggxkFneaTN69h6Wv8hVb3W6c1/CXhBREYRzV/TcZIvXkrktvzDWYaI1i04RhEaRirYnIKRb3yXaIbc6cDPRaQn0Yps/wAaReRE4tcAyCgicqqq/lFVZxOtTFYKrACujaWZFpF+RJPLDRaRoc6hlwDrO55PVT8ENjujoFjN3pEd32cYXWFKwchVendwSf2hiHwKuAqYqapPARuAWar6ItEsuq8CPydq2kkbEakDngVOE5FtIhKvJvE8Z+L4FUeOF4EHiaaffklEXgS+oaoHgCuImoVeJjo6STSPcTFwpXPsq0QL3hhGSphLqmEYhtGKjRQMwzCMVkwpGIZhGK2YUjAMwzBaMaVgGIZhtGJKwTAMw2jFlIJhGIbRiikFwzAMo5X/D2r06iWZghgyAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "plotData(X, y)\n", "# add axes labels\n", @@ -202,7 +221,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 19, "metadata": {}, "outputs": [], "source": [ @@ -233,9 +252,9 @@ " g = np.zeros(z.shape)\n", "\n", " # ====================== YOUR CODE HERE ======================\n", - "\n", " \n", - "\n", + " g = 1.0 / (1+np.exp(-1*z))\n", + " \n", " # =============================================================\n", " return g" ] @@ -249,12 +268,27 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 21, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "g( [1000.0, -1000.0, 0] ) = [1. 0. 0.5]\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "H:\\Programs\\Anaconda3\\lib\\site-packages\\ipykernel_launcher.py:29: RuntimeWarning: overflow encountered in exp\n" + ] + } + ], "source": [ "# Test the implementation of sigmoid function here\n", - "z = 0\n", + "z = [1e3, -1e3, 0]\n", "g = sigmoid(z)\n", "\n", "print('g(', z, ') = ', g)" @@ -275,9 +309,44 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 22, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Submitting Solutions | Programming Exercise logistic-regression\n", + "\n" + ] + }, + { + "name": "stdin", + "output_type": "stream", + "text": [ + "Login (email address): raade@uwindsor.ca\n", + "Token: 77PjFpy9CCUHmsAQ\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Part Name | Score | Feedback\n", + " --------- | ----- | --------\n", + " Sigmoid Function | 5 / 5 | Nice work!\n", + " Logistic Regression Cost | 0 / 30 | \n", + " Logistic Regression Gradient | 0 / 30 | \n", + " Predict | 0 / 5 | \n", + " Regularized Logistic Regression Cost | 0 / 15 | \n", + " Regularized Logistic Regression Gradient | 0 / 15 | \n", + " --------------------------------\n", + " | 5 / 100 | \n", + "\n" + ] + } + ], "source": [ "# appends the implemented function in part 1 to the grader object\n", "grader[1] = sigmoid\n", @@ -298,7 +367,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 23, "metadata": {}, "outputs": [], "source": [ @@ -328,7 +397,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 26, "metadata": {}, "outputs": [], "source": [ @@ -373,8 +442,20 @@ " grad = np.zeros(theta.shape)\n", "\n", " # ====================== YOUR CODE HERE ======================\n", - "\n", + " inner_sum = 0\n", + " for i in range(0, m):\n", + " x_row = X[i]\n", + " y_row = y[i]\n", + " hypothesis = sigmoid(np.transpose(theta)@x_row)\n", + " \n", + " inner_sum += (-1*y_row*np.log(hypothesis)) - (1-y_row)*np.log(1-hypothesis)\n", + " \n", + " for j in range(len(theta)):\n", + " xj = x_row[j]\n", + " grad[j] += (hypothesis - y_row) * xj\n", " \n", + " J = inner_sum * (1/m)\n", + " grad *= (1/m)\n", " \n", " # =============================================================\n", " return J, grad" @@ -389,9 +470,31 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 27, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Cost at initial theta (zeros): 0.693\n", + "Expected cost (approx): 0.693\n", + "\n", + "Gradient at initial theta (zeros):\n", + "\t[-0.1000, -12.0092, -11.2628]\n", + "Expected gradients (approx):\n", + "\t[-0.1000, -12.0092, -11.2628]\n", + "\n", + "Cost at test theta: 0.218\n", + "Expected cost (approx): 0.218\n", + "\n", + "Gradient at test theta:\n", + "\t[0.043, 2.566, 2.647]\n", + "Expected gradients (approx):\n", + "\t[0.043, 2.566, 2.647]\n" + ] + } + ], "source": [ "# Initialize fitting parameters\n", "initial_theta = np.zeros(n+1)\n", @@ -426,9 +529,43 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 28, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Submitting Solutions | Programming Exercise logistic-regression\n", + "\n" + ] + }, + { + "name": "stdin", + "output_type": "stream", + "text": [ + "Use token from last successful submission (raade@uwindsor.ca)? (Y/n): y\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Part Name | Score | Feedback\n", + " --------- | ----- | --------\n", + " Sigmoid Function | 5 / 5 | Nice work!\n", + " Logistic Regression Cost | 30 / 30 | Nice work!\n", + " Logistic Regression Gradient | 30 / 30 | Nice work!\n", + " Predict | 0 / 5 | \n", + " Regularized Logistic Regression Cost | 0 / 15 | \n", + " Regularized Logistic Regression Gradient | 0 / 15 | \n", + " --------------------------------\n", + " | 65 / 100 | \n", + "\n" + ] + } + ], "source": [ "grader[2] = costFunction\n", "grader[3] = costFunction\n", @@ -459,9 +596,23 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 29, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Cost at theta found by optimize.minimize: 0.203\n", + "Expected cost (approx): 0.203\n", + "\n", + "theta:\n", + "\t[-25.161, 0.206, 0.201]\n", + "Expected theta (approx):\n", + "\t[-25.161, 0.206, 0.201]\n" + ] + } + ], "source": [ "# set options for optimize.minimize\n", "options= {'maxiter': 400}\n", @@ -508,9 +659,22 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 30, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAD8CAYAAAB+UHOxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOydd3hUZdbAf+9MSIaQQgslJEAgNCkJEBVECQnNgoCFXVxXwF1EQVSKiN/K0m3gAnYFFJBVQGAJxUYLBESUoEEUQUB6Cy0hAQIkOd8fKSYhfdqdyft7nnkmc+/ce8/cybznPec9RYkIGo1Go6l4mJwtgEaj0Wicg1YAGo1GU0HRCkCj0WgqKFoBaDQaTQVFKwCNRqOpoGgFoNFoNBWUEhWAUupjpVSiUuqXPNuqK6XWKaX2Zz9Xy96ulFJvKaUOKKV+Vkq1s6fwGo1Goyk/pbEA5gN3F9j2IrBBRJoAG7JfA9wDNMl+DAHet42YGo1Go7E1JSoAEYkDLhTY3AdYkP33AqBvnu2fSBbbgapKqbq2Elaj0Wg0tsOjnMfVFpFTACJySilVK3t7PeBYnvcdz952quAJlFJDyLISqFKlSvvmzZuXUxTIzMzkzJnTnD17lhs30qlUyYOAgABq166DyaSXOTQajXuyc+fOcyISUN7jy6sAikIVsq3QWhMiMhuYDRARESHx8fHlumBqaipdunSgefOLTJqUTkgIHDqUzqJFF0lOrs6mTdvx8fEp17k1Go3GyCiljlhzfHmnx2dyXDvZz4nZ248DwXneFwScLL94JTNjxnT8/Q8yblwaoaFgNkNoKIwbl4a//0FmzJhuz8trNGUiOTmZBx54gOTkZGeLotGUWwGsAgZm/z0QWJln+4DsaKAOQHKOq8hezJnzHo88koYqYHsoBf37pzF3rmPWofUPW1MaVq1aRUxMDKtXr3a2KBpNqcJAFwHfAc2UUseVUv8EXgO6K6X2A92zXwN8CfwBHADmAMPsInUeTp48T0hI4ftCQrL2OwL9w9aUho8//jjfs0bjTJQRykEXtgZw48YNjh8/TlpaWrHHHj9+DH//TCpVunnfjRuQnGwiKCj45p025syZM6SlpWGxWKhdu7bdr1cRsFgsBAUFUamwL7cMJCcnM2jQIObPn4+/v7+NpCsd3bp1Y8OGDbmvPT09uX79eu5zDl27dmX9+vUOlU3j+iildopIRHmPt/UisM04fvw4vr6+NGzYEFXQv5MHf38/UlJOU7eu5HMDicCpU4qgoDoEBtazuXz79u0jJSUl97Wvry8+Pj4opbh8+XK+7c2aNbP59d0dEeH8+fMcP36ckKJMvCIoOODntc7+/ve/20niwnnppZf47rvvuHLlCkDuoJ938Pf29mbcuHEOlassOFOBauyLYWMk09LSqFGjRrGDP0Dt2nXIyLBw6pQiLS1r4E9Lyxr8MzIs1K5dxy7y1a1bN1+IaY4lldeiMplMBAYG2uX67o5Siho1apRoARZGQXecM90uUVFRrFmzBm9v70L3e3t788UXX9ClS5cSz+WsdSbt3nRfDKsAgBIHfwCz2UyzZs3x9a3DqVMe/P47nDrlga9vHZo1a47ZbLaLbH5+foSGhhaZZ2AymWjSpAm+vr52uX5FoDTff2E8++yzADz22GMopdi2bRsA3377LUqp3Ee3bt1sJmtxREVFsWTJEiwWS77tFouFJUuWlGrwB+cNxHrdwn0xtAIoLWazmcDAejRoEMLLL79MgwYhBAbWs9vgn4Ofnx+NGjW6aaBSStGoUSM9+DuIbt265RvYU1NT8+03gtslKSkJDw8PTCYTlStXxmQy4eHhQVJSUqnP4aiBuOD9dLYC1dgPl1EAGRkZnDx5gp9/TiA+Pp6ff07g5MkTZGRk5L7HHjOkFStWoJRi7969he4fOnRo7iJfjjWglMonV15OnjzJww8/DEBCQgJffvll7r5Nmzbl/tjKQsOGDTl37lyZj3MXXnrppXwulvT09GLfXxa3i6346KOPuHLlCmFhYaxcuZKwsDCuXLlS7GDurIG44P00ggLV2AeXUAAZGRns27c3e7E3naZNoW7ddFJSTrNv397cwdYeM6RFixZx5513snjx4kL3p6WlISJ4e3sTGhqKt7c3mZmZRQ7IgYGBLFu2DLCdAqjolORnz0tZ3S62wt/fn+nTpxMfH0/37t3ZsWMH06ZNw8/Pr8hjnDUQ23LdQmNwRMTpj/bt20tB9uzZk/v3iRPHZe/eeElO3iGXLv35iIy8VcgqNSGAeHp65nvOeXTt2vWm85eGlJQUCQwMlH379kmzZs1ERCQzM1OefvppadGihdx7770SGRkpc+bMkczMTGnQoIG8+OKL0r59e2nVqpXs3LlTevToIY0aNZL3339fREQOHTokLVu2lGvXrklwcLDUrFlTwsLC5LXXXpPatWtLYGCghIWFSVxcnCQmJsqDDz4oEREREhERIVu3bhURkXPnzkn37t0lPDxchgwZIvXr15ezZ8+W6zManbz/ByWxevVqsVgs+b57QEwmk1SuXFlMJpP4+PjIwoUL7Sixbdm4caN4e3vf9JkA8fb2ltjYWLtdu7D7abFYZPXq1Xa7pqZsAPFixdjrEhbAuXNnqV49f5gnwJgx/6By5T8X1mw9Q4qJieHuu++madOmVK9enR9//JEVK1awb98+du/ezZw5c0hISKBq1aq56wD169cnPj6ebt26MWjQIJYtW8b27dsZP358vnN7enoyefJk/vrXv5KQkMDYsWN56qmnGDlyJAkJCdx1110899xzjBw5kh07drB8+XIGDx4MwKRJk7jzzjv56aef6N27N0ePHi3X53M3CvrZcwgODi6128Vo2GoBuTzYYt1CY2xcQgFcv56Ol9fN2zt3juDzz2fe9OPIwVpTddGiRfTv3x+A/v37s2jRIuLi4njkkUeyF54DiY6OzndM7969AWjdujW33347vr6+BAQEYLFYyvzDWb9+PcOHDyc8PJzevXtz6dIlUlJSiIuLy41nv++++6hWrVq5Pp+7UdDPnuNeCQkJKbXbxYg4ayAuz7qFxrVwCQXg6enBtWuF77v99gimTXvd5jOk8+fPs3HjRgYPHkzDhg2ZPn06S5YsQUSKDU/0ytZUJpMp9++c1yUtThYkMzOT7777joSEBBISEjhx4kRuZFF5QyTdmYJ+9gsXLvDGG2/kJi+ZzWZGjx5NTEyMkyUtG84aiMuzbqFxLVxCAdSsGcCFC4qCVStE4MKFrIHQ1jOkZcuWMWDAAI4cOcLhw4c5duwYISEhVK9encWLF5ORkcGpU6eIjY0t9zV8fX1vyibO+7pHjx688847ua8TEhIA6Ny5M59++ikAX331FRcvXiy3DO5ETEwMo0aNyo3GctUBvyDOGojd9X5q/sQQCuDqjcJDJnMoKdt3+fL/2XyGtGjRIh544IF82x566CFOnz5NkyZNaN26NUOHDiUyMrLc14iKimLPnj2Eh4ezZMkS7r//flasWEF4eDhbtmzhrbfeIj4+njZt2nDLLbfwwQcfADBhwgTi4uJo164da9eupX79+uWWQWMcisr01QOxxl4YohicV90m8sqCNQyPDsXLIyt567fffqNFixa578nIyODMmdOcO3eW69fT8fT0oGbNrK5fDz30EJ07d2bEiBGYTCYyMjKYNWsWW7Zs0T8SF6fg/4E7s3DhQgYMGMDChQsdXrNI45pYWwzOEAqgTuOWYuk3jWa1fXmjXxitg/wr1A9fUzQV6f8gKiqKTZs2ERUVxcaNG50tjsYFsFYBGMIFFFStMh8PiiDp6nX6vvctb3yzDyMoJo3GnrhLyQXdDMl1MYQCAIhuXpu1IyN5oG093ok9QGLKNa5cL1vUjEbjSrhLyQVdLdR1MYwCAPCvXIk3+oUxb9CtZAocTLzM6eSrZGprQOOGuEvJBV0t1HUxlALIIap5LWr7eVHNuxKJKdc4cCZVWwMat8SZmb7lpaDr6ttvvwVg69atLuW60hhUAQCYlCKoujchNauQIcLBxFROJV8lM1NbAxr3wtVKLhR0Xd24cSPfM7iG60pjYAWQg6+lEk1r+1DN25OzKdfYn5jKlWv5rYHU1FQmT55AcHAAZrOJ4OAAJk+ecFNd+LKilGL06NG5r9944w0mTpxY7DExMTHs2bPHquuWtbzzqlWreO211wq9/vz58zl58mSZrn/48GFatWpVpmM05ccRmb62XKh1F9eVxgUUAIDZZMq1BjJFOHj2T2sgNTWVLl06sHnzNCZMOMfatcKECefYvHkaXbp0sEoJeHl58b///a9Mg7EtFEBZ6d27Ny+++GKh1y+PAtA4Fkdk+tpyobZbt25ER0fn9jkuyJUrV4iKitIuIBfAJRRADrnWQJU/rYHXpr2Ov/9Bxo1LIzQUzGYIDYVx49Lw9z/IjBnTy309Dw8PhgwZwsyZM2/ad+TIEbp27UqbNm3o2rUrR48eZdu2baxatYoxY8YQHh7OwYMH8x2zevVqbr/9dtq2bUu3bt04c+YMkFV3qEePHrRt25Ynn3wyNwT28OHDNG/enMGDB9OqVSseffRR1q9fT6dOnWjSpAk//PADkDXIDx8+/Kbrv/7668THx/Poo48SHh7O1atX2blzJ5GRkbRv356ePXty6tQpAHbu3ElYWBgdO3bk3XffLfc905QdR2T62nKhtqALqDC0C8hFsKaWNPAc8AvwKzAie1t1YB2wP/u5WknnKakfQGFcunpd9pxMlrqBNWTOHCQ29ubH7NlIcHBA6YtrF6BKlSqSnJwsDRo0kKSkJJk+fbpMmDBBRER69eol8+fPFxGRjz76SPr06SMiIgMHDpSlS5cWer4LFy5IZmamiIjMmTNHRo0aJSIizzzzjEyaNElERNasWSOAnD17Vg4dOiRms1l+/vlnycjIkHbt2snjjz8umZmZEhMTk3vNefPmydNPP13o9SMjI2XHjh0iInL9+nXp2LGjJCYmiojI4sWL5fHHHxcRkdatW8umTZtEROT555+Xli1blvu+2ZKy9APQ/ElkZKRde2Vs3LhRTCZToX0KTCaTXfsUaP4EZ/UDUEq1Ap4AbgPCgF5KqSbAi8AGEWkCbMh+bXNyrIEzpy8QElL4e0JC4OTJ81Zdx8/PjwEDBvDWW2/l2/7dd9/xt7/9DchqPr5169YSz3X8+HF69uxJ69atmT59Or/++itAseWdQ0JCaN26NSaTiZYtW9K1a1eUUrRu3ZrDhw+X6bPs27ePX375he7duxMeHs7UqVM5fvw4ycnJJCUl5dY1euyxx8p03hzS09M5cOBAmaueamxPx44d8722dY5BVFQUt956Kx4eHvm2e3h4cOutt2r/v4tgjQuoBbBdRK6ISDqwGXgA6AMsyH7PAqCvdSIWjdlkIjCwBocOFb7/0CEIDKxh9XVGjBjBRx99xOXLl4t8T2nKMz/zzDMMHz6c3bt38+GHH5KWllbi8QVLSuctN13WgVZEaNmyZW556d27d7N27doSS1yXlhxFojNCnc/27duBP/tUF8QWC7XDhw/HYrHki16yWCwMHz683Oc0EhUhw9kaBfAL0FkpVUMp5Q3cCwQDtUXkFED2c63CDlZKDVFKxSul4s+ePVtuIZ54YhiLFlkKLRW9eLGFwYOHlvvcOVSvXp2//OUvfPTRR7nb7rjjjtw+wZ9++il33nkncHNJ57wkJydTr149ABYsWJC73VblndPT08nMzMwXPphXnmbNmnH27Fm+++47ICts79dff6Vq1ar4+/vnWjE5spSVnMXyityg3lkUVVaiMAVgqxwDd28YUxEynMutAETkN+B1svz8XwO7gFJPSUVktohEiEhEQEBAecVg1KgxJCc3ZupUC/v3Q3o67N8Pk6dYOH8xhBEjni/3ufMyevTofAPbW2+9xbx582jTpg0LFy7kzTffBLI6h02fPp22bdvetAg8ceJE+vXrx1133UXNmjVzt9uqvHNycjKRkZH5rj9o0CCeeuopwsPDycjIYNmyZYwdO5awsDDCw8NzB4p58+bx9NNP07Fjx3ztFItj3759xMfH5z5yIq5SU1Pzbd+3b1+5Po+m9BRVVqKglaiUslmOgbs3jKkIGc42qwaqlHoFOE7WwnAXETmllKoLbBKRZsUdGxERIfHx8fm2laUKZGpqKjNmTGfu3Pc5efI8gYE1+Mujg3l40DCq+fsTVK0yVbw8Sj6Ri7Nv3z5SUlLw9fWlWbNib7lNuHTpEgcOHCAzM7PI95hMJpo0aZLbyaysVKRqoNYSGxtLr169Cg3PVEoxbdo0PvvsM3bt2kVkZKSuOFqAbt26sWHDhtzXnp6eXL9+Pfc5h65du7J+/XpniHgTTi0HrZSqJSKJSqn6wFqgI/Av4LyIvKaUehGoLiIvFHceaxVAUaSm3eD4xatcz8ikpo8XdfwsmEzu00oxZ8DPQSmV68/P+73aUyEUpwSsHfxBK4CysmbNGvr165dvfcnDw4Ply5fTu3dvMjIyePXVV3n33XfZu3dvbrvMikxycjKDBg3iH//4B/379y8yvwGMl+Tm7HLQy5VSe4DVwNMichF4DeiulNoPdM9+7RR8LJVoUtuXGlW8OJd6jf2JKVy+5rwIFVtHydStWzefjzdn0M87+JtMJgIDA21yvcLw8/OjUaNGNy0iK6Vo1KiRVYO/puwUVlbCYrFw6dIlICvHoEGDBpw+fdqtfdtlIcfXn5ycXOEynK1SACJyl4jcIiJhIrIhe9t5EekqIk2yny/YRtTyYTYp6lWrTKOaVRDg4NlUTiZdJcMJNYVsHSXj5+dHaGhokZEetpiBl4aMjIxcBZAji1KKjIziW31qbE9pFmYrgm+7LOS9H65YnM8aXCoT2Bp8LJVoUsuXGj5/WgOpDrYG7BElY4QZ+Llz58jMzMTb25vQ0FC8vb3JzMzU0UBOoLCF2UaNGhEbG+vyjWdsRUmNeO6///5cF5qji/M5OvS0wigAyLYGqlamUU0fAP6wszXgqCgZZ8/AzWYzQUFBtGjRAj8/P1q0aEFQUBBms9nu164IsdplobCyErNnz3aLxjO2ojSNeABCQ0MdHt7q6NDTCqUAcvCxeNCkli817WwNOMpH7+wZeGhoKHXq1MlVQkop6tSpQ2hoqN2vXRFita1FV+/MT0n3w2w2M3ToUPbt2+fw8FZHu+cqpAKALGsgsGplGgX8aQ2cKGANmM1mwsPDadmyJWFhYcyYMaPYkMeC5PXRf/DBB3z//ff59uf10X/wwQd88skn5fsseWbgFy5coH379gwaNIi+fftyxx13OCQO38fHx+7XKAyj+7ONYKEkJyfz1ltv8fHHH1cY33ZJFOfrj4mJ4b333rNrcb4cnN0XusIqgBx8vP60Bs7nWANpWdZA5cqVSUhI4Ndff2XdunV8+eWXTJo0qUznz/HRDx06lNtvvz13e0Ef/VNPPcWAAQPK9RkKzsAbN27ML7/8wm+//cbAgQN55ZVXynVeeyEiZVKkeXH2D6asGMFCyZFh06ZNLtV4xt4YoRGPs/tCV3gFAIVYA+eyrIG81KpVi9mzZ/POO+8gImRkZDBmzBhuvfVW2rRpw4cffpj73mnTptG6dWvCwsJ48cUXycjIYOLEiWzYsAGTycTbb79Nv3796NSpE88/n5WpPHHiRN544w0AEhIS6NChA23atOGBBx7ILQ3RpUsXxo4dy2233UbTpk3ZsmVLiZ/t0qVLucXl0tLSePzxx2ndujVt27YlNjYW+LOcdA69evVi06ZNQNbM/qWXXiIsLIwOHTrklrA+dOgQHTt25NZbb+Xf//537rGpqal07dqVdu3a0bp1a1auXAlklbZu0aIFw4YNo127dkyZMoWRI0fmHjdnzhxGjRpV4udx9g+mrDjDQilodeRce/HixW5duqGsGKGUhbPdcy6RHjtp9a/sOXnJpue8JdCPCfe3zLfNx8uDprV8OX0pjXOp1xDJSibzsVQCoFGjRmRmZpKYmMjKlSvx9/dnx44dXLt2jU6dOtGjRw/27t1LTEwM33//Pd7e3ly4cIGzZ88iInh6elK9enXi4uL4/PPP8fPzo3bt2jfJNmDAAN5++20iIyMZP348kyZNYtasWUBWLsEPP/yQa40UlpF48OBBwsPDSUlJ4cqVK7mup5w6/7t372bv3r306NGD33//vdj7dPnyZTp06MDLL7/MCy+8wJw5cxg3bhzPPfccQ4cOZcCAAfn6B1gsFlasWIGfnx/nzp2jQ4cO9O7dG8haFJ83bx7vvfcely9fpk2bNkybNo1KlSoxb968fEq0KHJ+MEVlvDrbn11YNin8aaHkYM9s0jvuuIM9e/ZQtWrVfDJcunSJzMxMfvrpJ3r06EF0dDTTpk0r1UTCHcmJmBoxYgQmk4no6GhmzZrl8PuR444qmMDnCPectgAKYMq2BhrnWgOXOXHxSu7aQM4C7tq1a/nkk08IDw/n9ttv5/z58+zfv5/169fz+OOP52r06tWrYzabqVKlCkFBQQQFBeHn58fMmTNZv379TZq/YGnmgQMHEhcXl7v/wQcfBKB9+/ZFloNu3LgxCQkJHDx4kFmzZjFkyBAgq2l3Tqnn5s2b06BBgxIVgKenJ7169brpmt9++y2PPPIIkL98tIjwr3/9izZt2tCtWzdOnDiRazU0aNCADh06AFClShWio6NZs2YNe/fu5caNG7Ru3bpYWXIwcqy2ESyUSpUq5Xudc+28bjdvb2/+/e9/28237Qo4ohFPaXGWO8olLICCM3VHUMXLA6XIjRRKSUvnRtIpzGYztWrVQkR4++236dmzZ77jvv7665ti8kNDQ6lcuXJuIa4ffviBDRs2sHjxYpYvX16mmiw55aDNZnOpMop79+7N448/DuSPPsqLh4dHvsEh7yykUqVKuZ+n4DULKyH96aefcvbsWXbu3EmlSpVo2LBh7vmqVKmS772DBw/mlVdeoXnz5rkylpa8PxgvLy+uXbtmCH+2MyyUoqyOonC2laS5mbzuqNdff52xY8eya9cuPv7449xeIfZAWwAlkGMNXDx/niFPDmXAP58kU6Bnz568//773LhxA4Dff/+dy5cv06NHDz7++OPcH/+FC/kToVNTU0lOTubee+9l1qxZJCQk5Nvv7+9PtWrVcs3QhQsX5loD5WHr1q00btwYyF92+vfff+fo0aM0a9aMhg0bkpCQQGZmJseOHcttNVkcnTp1ylcOO4fk5GRq1apFpUqViI2N5ciRI0We4/bbb+fYsWN89tlnudZEaTGC/7YoHG2hFGV1FIYRrCTNzTirsqpLWADO4urVq4SHh3Pjxg08PDzo83B/Hhz4JPvPpND/7wM5fPgw7dq1Q0QICAggJiaGu+++m4SEBCIiIvD09OTee+/NF4WTkpJCnz59SEtLQ0QK7Te8YMECnnrqKa5cuUKjRo2YN29emeTOWQPIWXeYO3cuAMOGDeOpp56idevWeHh4MH/+fLy8vOjUqVNu57FWrVrRrl27Eq/x5ptv8re//Y0333yThx56KHf7o48+yv33309ERATh4eE0b9682PP85S9/ISEhIV8XtNJgFP9tUTjSQinJ6oAsqyA9Pd0QVpLmZgq6nXLcUaNHj7bvha3pJ2mrR3l6AjuL1LQbsvfUJdl17KIcu3BZ0jMynC2SS3PffffJ+vXri9xv1P+DkujSpYuYTCZp27atrF27Vtq2bSsmk0mioqLsds3Vq1eLxWK5qUdvo0aNHCaDxrHgrJ7AFZUqXh40qeVDgK8XFy9fZ/+ZVFLSbjhbLJcjKSmJpk2bUrlyZbp27epscWyOM0z6gguJkDXznzBhgls2bNFYj80awliDvfoB2JvL19I5fvEq19IzqF7Fk7r+FsxFVObUlA9X+D8wClFRUcTFxd20kKibv7gvzu4HYFeMoJyKo6A18Lu2BmyK0b9/o+HuLRo1tsewFsChQ4fw9fWlRo0ahYYbGo0r19I5lmMNeHtSt6q2BqxBRDh//jwpKSmEhIQ4WxyNxpBYawEYNgooKCiI48ePc/bsWWeLUmpEhCtp6SSmpbPfpKjqXQlLJfuXRHZXLBYLQUFBzhZDo3FbDKsAKlWq5LIzv4RjSTy/dBcHElP5S0QQL913C/6VK5V8oEaj0TgQ7aOwA+HBVVnzzJ0M7dKYZTuP03NmHLH7Ep0tlqYUGKF8s0bjKLQCsBOWSmbG3t2cFcM64VfZg8fn7WDM0l0kX9WLxEbGCOWbNRpHoRWAnQkLrsrqZ+7k6ajG/O+nE/SYuZnYvdoaMCpGbzCj0dgSrQAcgJeHmTE9m7Ni2B1UrezJ4/N3MPrzXSRf0daAs3G1BjMajS2xSgEopUYqpX5VSv2ilFqklLIopUKUUt8rpfYrpZYopYovTViBaBNUlVXPdOKZ6FBiEk7QY9ZmNu4942yxKjRGKN+s0TiLcisApVQ94FkgQkRaAWagP/A6MFNEmgAXgX/aQlB3wcvDzOgezYgZ1olq3p78Y348oz5P0NaAk3B2RyaNxplY6wLyACorpTwAb+AUEA0sy96/AOhr5TXcktZB/qwafifPRoeyMuEk3WduZv0ebQ04AyM3mNFo7Em5FYCInADeAI6SNfAnAzuBJBHJ6RpyHKhX2PFKqSFKqXilVLwrJXuVldTUVCZPnkBwcABms4ng4AAmT55Aamoqnh4mRvVoxsqnO1G9iieDP4ln1JIEkq4UXc9dYx+M0CC8MHRYqsaeWOMCqgb0AUKAQKAKcE8hby201oSIzBaRCBGJCAgIKK8YhiY1NZUuXTqwefM0Jkw4x9q1woQJ59i8eRpdunQgNTUVgFb1sq2Brk1Ytesk3WfGsU5bAw7FqA1mdFiqxp5Y4wLqBhwSkbMicgP4H3AHUDXbJQQQBJy0UkaXZcaM6fj7H2TcuDRCQ8FshtBQGDcuDX//g8yYMT33vZ4eJkZ1b0rM052o6ePFE5/EM2LxT1y8rK0BR+Dv78/kyZOpX78+t912m2EKqemwVI09sUYBHAU6KKW8VVa1tq7AHiAWeDj7PQOBldaJWDaKc7k4mjlz3uORR9IoWMtOKejfP425c9+/6ZhW9fxZ+XQnRnRrwpqfT9F9Zhzf/LSCa+4AACAASURBVHraQRJXXGJiYqhfvz4rV65k9erVTmsQrsNSNY7EmjWA78la7P0R2J19rtnAWGCUUuoAUAP4yAZylorSulwcxcmT5ymqnFFISNb+wvD0MDGiW1NWDu9EgK8XTy7cybOLtDVgb4ww29Zhqa6LK67XWBUFJCITRKS5iLQSkcdE5JqI/CEit4lIqIj0E5FrthK2JMricnEEgYE1OHSo8H2HDmXtL46Wgf6sGt6Jkd2a8uXuU3SfuZmvf9HWgK0w4mxbh6W6Lq64XuNWmcDlcbnYkyeeGMaiRRYKtlwQgcWLLQwePLTEc1Qym3iuWxNWDb+T2n4WnvrvTp5Z9BMXtDVgNUadbbtjWKorzo7LihEsyLLiVgqgvC4XezFq1BiSkxszdaqF/fshPR3274epUy0kJzdm1KgxpT7XLYF+xDzdiVHdm/L1L6foMXMzX/9yyo7Suz9Gnm0bNSy1vLji7LgkjGhBlhW3UgDWulxsjY+PD5s2bScy8gWmTAng7rtNTJkSQGTkC2zatB0fH58yna+S2ZQVKjr8Tur4W3jqvz8y/LMfOZ/qMC+b07DXDNKos22jhqWWF1ecHZeEUS3IsuBWCsAWLpeSKGuUkY+PD+PHT+Lo0UTS0zM4ejSR8eMnlXnwz0uLun6sGNaJ53s05ZtfT9NjZhxf7rbOGjC6iW7PGaQRZ9uu3t/XHWbHJWFkC7LUiIjTH+3btxdbkJKSIu3bt5ToaIvMno2sW4fMno1ER1ukffuWkpKSYrPzz5mDrF+PzJlju/OXh72nLkmvt7ZIg7FrZNh/d8q5lLRyneeTTz4RQBYuXGhjCW1Dly5dBJCoqCi7nNtkMknbtm1l7dq10rZtWzGZTHa5liuTlJQkffv2laSkpBLfu3HjRvH29hayEkELfXh7e0tsbKz9Bbczq1evFovFku+zWSwWWb16td2vDcSLFWOv21gAqampzJgxndOnTxMbm8aIEYp77oFJk2qW2+VSEKNFGQE0q+PLimF3MKZnM9btOUP3mXF88XPZrQGjmeiOnEG6+mzbUZTFCnOL2XEpMaIFWWqs0R62elhrAThqZh4UVFPmzEFiY29+zJ6NBAcH2OQ65WXvqUty/9tZ1sDQ/8bL2WKsga5du+absXh6euZ7znl07drVgZ/gTyrSDNJVKI8V5szZsaNwpgWJtgAcNzM3WpRRQZrV8eV/Q+/ghbubsX5PIj1mxrF610mk4KIIxl/AqkgzSKNiCyvMpWfHpcSlLUhrtIetHtZaAI6amRvdAsjL76cvSe9sa+DJT+Il8dLN1kBxs2yjzK4rwgzSqJTGCjObzcV+F3p9xb6gLQDHzcwdEWVkK5rU9mX50DsYe3dzNu5NpMfMzawqYA0YNQQyLxVhBmlUSrLCPD09ycjIKPa7cOnZcQXALRSAo+L/bZnY5Qg8zCaGdmnMF8/eSf0aVXh20U889d+dJKak5b7H6AOsu8XDuxrFTRKaNm0KFB84EBMTw6hRozCZsoYaZxXZ0xSOWygAR83MbZ3Y5Sia1PZl+VMd+b97mhO77yw9ZsaxMuEEImL4Aba0M0ij5zG4MjmThLykpaWxd+9ewL1i+ysc1viPbPWwZRSQPeL/3Yn9Zy5Jn3e2SoOxa+SJBTvk3gf7y3/+8x/JyMgQEZH09HR54403pE+fPk6WtGwUzGMoS8y6pnhy/PihoaHi5eWlI7MMBFauATh98BcbKACRLCUwadJ4CQ4OELPZJMHBATJp0vjcwT9nf1BQTTGZlAQF1cy3vyKRnpEpH24+IE1e+lLaTPxGVvx4XDIzM50tllUUDFE0emKbK9GnT5/cSYIrBA5UBHImOMBPYsXYq6Sg38QJRERESHx8vN3On9MnwN//II88kkZISNbawKJFWb57I7tv7MmBxFReWLaLH48m0a1FbV55oBW1/CwlH2gAunXrxoYNG3Jfe3p6cv369dznHKpVq8aFCxecIaLbsmbNGvr160da2p9rSRaLhaVLl9KrVy8nSlZxWLhwIQMGDICsroyNynset1gDKAkjZvAagdBaPix96g7G3deCLfvP0n1mHCt+Oo4RJgUlUZo8BoCUlBTtn7YxRg8cqAjkWaOrac15KoQCMFqfACNhNikG39WIr567i9BaPoxcsosnPonnzKW0kg92IiWFKOaQnp6e+7fRKzO6CkYPHHBHikrKA6xyXVQIBWD0DF4j0CjAh8+f7JhtDZyj+4zNLN9pbGugqBDFwtCZw7ZDx/Y7nqIsXkAVekApqRAKwF55AkZqQG8LcqyBr0d0pmltX0Yv3cXgBca2BgpzRxTESIlt7oCO7Xc8pbV4y0qFUAD2yBMwWgN6WxJSswpLnuzI+F638O3BLGtgmUGtgYLuiODg4Nx92j9denQehfEpi8VbWiqEArBHBq+7LyybTYp/3BnCV891plkdX55fuot/zN/B6WRjWQMF3RENGzbM3a7906XHHVs2uiMFLV6rsSaG1FYPWzWEKY6S8gTKiisVhrOWjIxM+XjrH9Js3JfSasLXsmTHUcPmDeSNWRf5M7Ht3nvvrRCJYeVNgLNnwx0j4C6JgQWL6wGXxRmJYEAzICHP4xIwAqgOrAP2Zz9XK+lcjlAAtsZkUrJ+feEKYN06xGw2OVtEm5KUlCT39BsgD74TJw3GrpEBH30vJ5OuOFusUlNREsNK+zmN3g/C1rjL919wgoOzqoGKyD4RCReRcKA9cAVYAbwIbBCRJsCG7Nduh9Ea0NubVatW8dXST+jjd4SJ99/CD4cu0GNGHJ/vOGbItYGCGK3jmb0o7ec0ej8IW+Mu33/BBXhrsdUaQFfgoIgcAfoAC7K3LwD62ugahsKVSkPbgpwfzvx5HzOoUwhfj7iLWwL9eGH5zwyct4OTSVedLGF+KkJTcij/5ywpqsRsNrt05JSrfv8lLcbbfLHeGvMh5wF8DAzP/jupwL6LJR3vii4gdy9AVzoXgZL2/UdJ83FfScvxX8ui748YZm2gorSUtPZzFtZwp1KlSi7vLnHV778kV1XB/Ti7GBzgCZwDaksZFAAwBIgH4uvXr2+Le+dwbL2wbCTK8gM6cu6y/PXDbdJg7Br5+9ztcvyiMdYGKkrhMms+58KFC8XHx0dMJpNUrlxZTCaTmEwmt1gQdsXvv6TF+IL7jaAA+gBr87zeB9TN/rsusK+kc7iiBVARKMsPKCMjUz7Zdkha/DvLGvjMINZARWkpWd7PmTOgFPZwhwVho3//pV2ML26/WDF+22IN4BFgUZ7Xq4CB2X8PBFba4BoaJ1CWlpEmk+Kxjg35ZkRnWtfz5//+t5sBH//A8YtXHCx1fipK4bLyfk5/f3+GDh1aaEy5OywIG/37L21Rw9LuLzPWaA/AGzgP+OfZVoOs6J/92c/VSzqPtgCMS2EuAh8fn2L9wxkZmbLwu8NyS7Y18Ol251kDFaUpubWf0xXdJaXBFb7/ku79jBkzinPHZogzXUC2eGgFYFys+QEdPX9Z/jbnO2kwdo08Ome7HLtw2QES56eoxDBX63hWErb4nEZ3l5QHV/n+S7r3Re0H9otWABp7Ye0PKDMzU/67PcsauOXfX8nC7w4bYm3AHrh6tml5rD2NbSjp3he1H/hDtALQGJ1jFy7Lo3O2S4Oxa+SR2d/J0fOOtwbsjatnm7qCu8RdKeneF7UfuCRWjL0VohicK+FuJaZzCKrmzcJ/3sarD7bm5+PJ9JwVx8LtR8jMFGeLZjNcPdtU1/l3HiXd+6L2AxnWXLdC9AR2FSpK7+ITSVd5cfnPbNl/jo6NajDt4TYEV7dtnXNHUNq+xF27dmX9+vXOEFFTBMnJyQwaNIj58+fj7+9v+PMWhVJqp4hElPd4bQEYCHcvMZ1DvaqV+eQft/Hag63ZfSLLGvjku8MuZw1UtHo67oS9yl+7WlltrQAMhLv2Li6sfolSiv631eebkZ2JaFid8St/5ZE52zl63rl5A2WhpHo6ug2lcbGXu87V3IBaAZSAI33y7tq7uLhZUb2qlVnw+K28/lBr9py8RM9ZcSzY5jrWQFmS5TTOw17F4Vy16FwOWgEUg6PbPrpriemSZkVKKf56a5Y1cFtIdSas+pX+c7Zz5PxlR4pZboyebaqxn7vO1d2AWgEUg6N98u5SYrq8s6LAqpWZ//itTHu4Db+dvMTds7Yw79tDhrcGCvYl1m0ojYe93HUu7wa0JobUVg+j5gE4uu2ju5SYtkUp3pNJV2Tgx99Lg7FrpN/72+TQ2VTHfYAy4irZphr7ZTs7K4saZ3UEqwg42ifv4+PDpk3biYx8gSlTArj7bhNTpgQQGfmCS4WA2mJWVNe/MvMG3cr0h9vw2+lL3P1mHB9vNaY1ULBLk9lsZvTo0cTExDhZMk1B7OWuc1U3oFYAxeAMn7yPjw/jx0/i6NFE0tMzOHo0kfHjJ7nM4J+DLRZHlVL0iwhm3chI7mhck8lr9vDX2d9x6JxrrA1ojIe93HWu6gbUCqAY3MUnbw3WREHZalZUx9/CRwMj+E+/MPadTuGeN+P4aOshMgxoDWiMjb2ynV01i1pnAhdD3szc/v3/zMxdvNi9MnOLwtrM5KioKOLi4ggLC+P1119n7Nix7Nq1i8jISDZu3Fgumc5cSuNf/9vNhr2JRDSoxrSH29AowH2/A42mOHQmsB1xF598ebE2Csoes6LafhbmDoxgxl/C+P1MCve8uYW5W/7Q1oBGUw60BaApkuDgACZMOEdo6M379u+HKVMCOHo00fGCZZN4KY1/rdjN+t8SaVe/KtP7hdFYWwOaCoS2ADR2w+iZybX8LMwZEMGsv4Zz8Oxl7n1zC7PjDmprQKMpJVoBaIrEFTKTlVL0bVuPdSM7c1eTAF75ci8Pf7CNA4muXT5bo3EEWgFoisSVoqCyrIH2vNk/nEPnLnPvW1v4cLP9rYHCCt1pNPbAHv9rWgFoimTUqDEkJzdm4kQvZs2C/v0hOhr69IF9+3wYMsQ4CgCyrIE+4fVYO7IzXZoG8OpXe3no/W0cSEyx2zVdrfyvxnWxx/+a2ykAd+2o5Qx8fHxYs2Y9hw/7cfYsTJ0K69bBjBnQtGkqvXp1M+R9reVr4cPHsqyBw+cvc+9bW/lg80HSMzJtfi1XK/+rcV3s8b/mVlFAFaWjliOZPHkCmzdPY9y4/H0KRGDqVAuRkS8wfvwk5wlYAmdTrjEuZjff/HqGsOCqvPFwG5rU9i33+XQXMI2jKO3/moiowo4vDVZZAEqpqkqpZUqpvUqp35RSHZVS1ZVS65RS+7Ofq1lzjbJQUTpqWUNZLSRHNamxly89wNeLD/7enrcfacvR85e5762tvLfpQLmtAVcv/6txHUrzvwZYZdZa6wJ6E/haRJoDYcBvwIvABhFpAmzIfu0Q3LWjlq0oT38DR4WC2tOXrpTi/rBA1o6MJLp5LaZ9vY+H3t/G72fKvjbg8uV/NS5Daf7XgAPWXKPcCkAp5Qd0Bj4CEJHrIpIE9AEWZL9tAdDXGgHLgtHj1p1NeSwkR4WCOsKXHuDrxft/b8c7f2vLsYtX6fXWVt6NLbs1oLuAaRxFSf9rgFURDtZYAI2As8A8pdRPSqm5SqkqQG0ROQWQ/VzLGgHLgivErTuT8lhI9goFdVYrPaUUvdoEsnZkZ7rfUpvp3+zjwfe3se902X5Hrlr+V+N62PN/zRoF4AG0A94XkbbAZcrg7lFKDVFKxSul4s+ePWuFGH/iSnHrzqA8FlJOKOjUqRb274f09KwyEFOnZi2sjxo1plyyONuXXtPHi3cfbce7f2vHiYtXuf/tslkDrlr+V+N62PN/zRoFcBw4LiLfZ79eRpZCOKOUqguQ/VxosRgRmS0iESISERAQYIUYf2KvwcpdKI+FZK+CeEbxpd/Xpm6WNdAyyxp44L1t7D19qcTjXLX8r8b1sOf/mlVhoEqpLcBgEdmnlJoIVMnedV5EXlNKvQhUF5EXijuPLYvBpaamMmPGdObOfZ+TJ88TGFiDwYOHMmrUmAofAmrEkM41a9bQr18/0tLScrdZLBaWLl1Kr169HCrLl7tP8e+YX7iUdoNno5vwVJfGVDK7XaqMxo2wthictQogHJgLeAJ/AI+TZVV8DtQHjgL9RORCcefR1UAdgxH7G/z3v/9l6NChXLlyBS8vL65du4a3tzfvv/8+f//73x0qC8CFy9eZsOpXVu86SctAP97oF0aLunpWrzEmTq0GKiIJ2W6cNiLSV0Quish5EekqIk2yn4sd/DWOw4j9DYzmS69exZO3H2nLB39vx5lLafR+Zytvrt/PDTtkEWtKh663ZD/cKhNY43r07duXzp07M2LECEwmExkZGcyaNYstW7Y4van6hcvXmbjqV1btOsktdbOsgVsCtTXgaBYuXMiAAQNYuHChU6xCI+NUF5Ct0ApAY2S+/uU042J+IenKdYZHhzKsSyieHnptwJYkJyczaNAg5s+fj7+/f759UVFRbNq0iaioqHK3EnVXdEMYN0UXtTMOd7eqw7qRnbmvTV1mrd9Pn3e/5deT2h1hS/JmgjsrR6Qioi0AA6KL2hmXb349zUsrsqyBp6NCeTpKWwO2IO8s/9///je9evXiypUrRb5fl9zIQlsAboguamdcerasw/pRnbk/LJA3N+yn9ztb+eWEtgbKSnGz/OjoaD34OwitAAyILmpnbKp6ezLzr+HMGRDB+cvX6fvut8xYu4/r6TpSqLSUJhPcy8uLSpUq5TtO11uyLVoBGBBd1M416H5LbdaN7EzvsEDe2nhAWwNloDSZ4KNHj8bLy0vXW7IjWgEYEF3UznWo6u3JjL+GM3dABBcuX6fPu9/yn7X7uJae4WzRDE9JlS63bdtmqBwRd0QrAAOii9q5Ht1uqc26kZH0Da/H2xsP0Pvtb9l9XFsDJVFcpUtdb8n+6CggA2LEkg2a0rNx7xn+73+7OZd6naGRjXmmayheHmZni2VIoqKiiIuLIywsjNdff52xY8eya9cuIiMjdcx/KdBRQG6IEUs2aEpPdPParB0ZyQNt6/FO7AHuf3srPx/XfuvC0LN856ItAI3GjsTuTeT//rebs6nXeLJzI57r1kRbAxqboS0AjcbARDWvxTcjO/NQu3q8t+kgYWMWsfW3484WS6MBtALQaOyOf+VKTHs4jAH1U0i9ls5jCxJ47au9pN3QkUIa56IVgEbjILYs/ZCTHz2NT+IvfLD5IL3e3spPRy86WyxNBUYrAI1NMVoRO2fKU1i5A7l+hd8/ncCZz8ez98Ah+r6zhfCBE7U1oHEKehG4ApDTJnPOnPdy22Q+8cQwm7fJNFoRO2fLExsbW2xRM+XpTUCPJ6ncsiuNA6owvV8Y7epXs5s8GvdDLwJriiVnENy8eRoTJpxj7VphwoRzbN48jS5dOth0Jmy0InbOlqekcgeVPWDJ6N588o/buHo9g4ff38arX/6mrQGNw9AKwM1x5CBotCJ2RpCnpHIHXbp0oXPTAL4Z2Zm/3lqfD+P+4N63trDziF4b0NgfrQDcHEcOgkYrYmcUeYord5CDr6USrz7YmoX/vI1rNzJ5+INtvPzFHm0NaOyKVgBujiMHQaMVsTOKPGVpfH9XkwC+HnEXf7utPnO2HOLeN7ew88gFh8ipqXhoBeDmOHIQNFIRu9TUVJo2vYV583C6PGUtd+BrqcTLD7Tm08G3cy09k4c/+I6pa/Zw9bq2BjS2RUcBuTmTJ09g8+ZpjBuX3w0kAlOmWFDqNn7/fY9NooOMUsQuR44qVQ5w/Pg1goPh0UfJFwV06ZJrFNVLvZbOa1/9xn+3HyWkZhWmP9yGiIbVnS2WxiBYGwVklQJQSh0GUoAMIF1EIpRS1YElQEPgMPAXESl2RUspJUFBNe0SmljRKWpQXrTIwk8/CW3awGOPXbNZiGROyOncue/nKpXBg4c69HvNq/TS0mDpUvjqK0hMBB8fiIjozMqVX7jU/9m2A+d4YfnPnEi6yuN3hDCmZzMqe+qaQhUdIyiACBE5l2fbNOCCiLymlHoRqCYiY4s7T7NmSsaM0U3P7UVhg3KTJi1IT/+eiROv3WQZTJ1qITLyBcaPn+Q8oa0gODiACRPOERp68779+2HKlACOHk10vGBWcvlaOq99tZeF24/QsIY30x4O47YQbQ1UZIyoAPYBXUTklFKqLrBJRJoVd55mzZR8+KF7DD6uQkmD5OTJNTl27KzjBbMBZrOJtWsFcyET5PR0uPtuE+ku3LFr28FzjF3+M8cvXmXQHQ0Z07MZ3p4ezhZL4wScnQgmwFql1E6l1JDsbbVF5BRA9nOtwg5USg1RSsUrpeL/3KabnjuKkqKDTpw457TyDdZilOgfe3FH45p8/VxnBnRowLxvD3PPm1v4/g/X7BOdnJzMAw88QHKy7p7mDKxVAJ1EpB1wD/C0UqpzaQ8UkdkiElFQe+mm546hpEHS1xeHZ+7aCiNFI9mLKl4eTOrTikVPdEAE/jp7OxNX/cqV6+nOFq1MrFq1ipiYGFavXu1sUSokVikAETmZ/ZwIrABuA85ku37Ifi6Ts9UdZmiuwBNPDCsyRPLTTyEqCpe1xEaNGkNycmOmTrWwf3+W22f//iz3YnJyY0aNGuNsEW1Gx8Y1+HrEXQy6oyHztx3m7llb2F5Ga8CZs/CcXAjd6N05lFsBKKWqKKV8c/4GegC/AKuAgdlvGwisLO053WmGZnRGjRrDjz/CpEnkGyQnTYIzZ+Cf/3RdS6yitdT09vRgYu+WLB7SAYD+s7czYeUvXL5WOmvAkbPwwiqkAnz77bf5tnfr1s3usmisWARWSjUia9YP4AF8JiIvK6VqAJ8D9YGjQD8RKTaVsWnTrCgg3fTcsdSrV5Nbbz3P999nhUjWqgX33AP9+sHx464bLVORuXI9nWlf72P+tsMEV6/MtIfC6Ni4eIs6KiqKTZs2ERUVZfdG7CVVSAXw9vbmiy++oEuXLnaVxR2wdhEYEXH6A5Dg4ACZNGm8pKSkiK1ISUmRSZPGS1BQTTGZlAQF1bT5NVyZSZPGS3S0RTZuRGJj/3x88QXSuLFZqlf31vfNRdl+8Jzc+ep6aTB2jbywZKekpt3I3de1a1chK4BDAPH09Mz3nPPo2rWrXWTbuHGjeHt757tWzsPb21tiY2Ptcl13BIgXa8Zeaw621aN9+/Y2vzEpKSnSvn1LiY62yJw5yPr1yJw5SHS0Rdq3b6kHM8l/j2bPRtatQ956C6lRQ0mnTkrft3JgpEnH3PmfSLXowdJw7Grp9NoG+fbAWREpfgB21EC8evVqsVgs+a5psVhk9erVdrumO2KtAnDbWkDOrgXvChTmKx8/3puWLc1MmSL6vpURR/ZeKA3/nf8xFzfOpe6eJXiYFH+b8z3jYnZz2x13FdunwBEumNJUSNXYH7dVAEaoBe8K+Pj4MH78JI4eTSQ9PQMfH28eeyxd37dy4OxJR1ELrDu/+Zy4f93DpR0xLPzuMGEvfo5XcOsS+xTYk7JUSHVFXCW/wW0VgFFqwbsSqampnDp1jnHjoGtX6N8fPvkErl7N2q/vW/E4e9Lx0ksv5ZvVX79+PfdZ0q9xceNckpaNp2a1qvxt7vd8suc6HpV9nDILL2uFVFtj7wHaVfIb3FYBuHs2qK3JcV/cfjtMnQpr12Y9//EHjBqVpQT0fSseZ086SmpB6e3tzcqPZrLp/3ryxF0h/HDeE/+/vs4tUQ84fBYeExPDqFGjMJmyhiCz2czo0aOJiYmx+7XB/gO0q+Q3uK0CqAjZoLYkx30xdSr53BcTJkDt2lkVNfV9Kx4jTDpK04LSUsnMS/fdQpOjq6hZvRopEY+zMaUOG7d8V+ZZuKu4Ogpi6wHaVfMb3FYBVKRsUFtQnPvi0Udh+XL0fSsBo0w6SrvAum7RbLZP7M2Qzo1YsuMo9739Lbf1HlCmWbiruDrsPUAX537Lwdvbm3HjxlnxKeyANSFEtnrYIwxU5M+QvODgADGbTXbJNXAXTCYl69fnzwfIeaxbh5hMSt+3EigsrHb2bMeH0Hbp0kVMJpO0bdtW1q5dK23bthWTySRRUVFFHhN/+IJEvRErDcaukReX75JLV6+X+lpAsec2Ao4IfXVGfgM6DyALI8VfuyJBQTVlzpzCFcDs2VmJepqSMcKko0+fPvKf//xHMjIyREQkPT1d3njjDenTp0+xx129ni6vfLlHQl5cIx1fWS+b9iXe9B5nJ5FZgyMGaEfnN7iFAqhUycOqQVsnfVlPUVnBGzdm3cdJk8Y7W0SNg/jxyAWJzrYGXli6S5LzWAP2nkknJSVJ3759JSkpyUafJj9FDdCLFy+2yXUXLlwoPj4+YjKZpHLlymIymcTHx0cWLlxoo0+QH2sVgCHWAAID00uVNJOamsrkyRMIDg7AbDYRHBzA5MkTePXVl3XSl5XoNRNNDm3rV+OLZ+/iqcjGLN15jJ4z49i0L6smVGkijaxJIrP3mkJR6yOxsbE2ua7L5TdYoz1s9WjatOQZZ3GzfB8fs7z9tnZfWIsR3BcaY/HT0YvS9T+bpMHYNTJmaYIkXcmyBuzl6rD3mkJR6yNVq1a1yXXL634rL7iDCyivAihq0C7ORdGxIzJoUNELmGazyUa3W6O5GXdff7p6PV1e++o3CXlxjdz+8nrZuPdMqV0dJd0bR68p5AzQ0dHR+c6vlHKZtYy8WKsArOoJbCtyegLnUFjf1pJ62L70Enz+eeH7dFlj9yWn4f2cOe/lNrx/4olhjBo1xiElxXMS6Pz9D/LII2mEhGTF/C9a5H6lzXcdS+L5pbvYn5iKT+Ju9i5+hTbNQ3n99dcZO3Ysu3btIjIyMrekdGnuzY4dO5xSHtpdylI7uyewXSgsaaakLMtz5wrvbqWTl9wXIxRfc3b9H0cSFlyVNc/eydNRjUkNaEmzEZ8w/dMviyzlUJp7Y+81haJw1nWNhuEUQFGDdklZllWqmPUCZgXDCRIy3gAADcNJREFUCIOvs+v/OBovDzNjejZn1TN3ERRQnX8u2Mnoz3eRei3zplIOpb03pcletgfOuq6RMIQCuHat5EG7pCzL554bU2FaAGqyMMLg6+z6PwUpKlLO1tZQm6CqrHqmE89EhxKTcIIeszazce+ZfO8py71xVnnoil6W2hAK4ORJjxIH7ZLCFF988aV8ZY2PHk1k/PhJevB3Y5w1+OYdZEXkpqqpOTi6eJ6jXWJeHmZG92hGzLBOVPP25B/z4xn1eQLJV24AZauN5KzwSZcL27QxhlAAbdqElThoV7RG35qScUbxtYKD7Lp18Oqr+aumgnPWn5zlEmsd5M+q4XfybHQoKxNO0n3mZtbvOVOm2kjOKg/t7LLUzsYQUUARERESHx/vbDE0LsbkyRPYvHka48bldwOJZFmGkZEvMH78JIddc+LELMujU6esAc7RUUAlRco5IhrulxPJPL90F3tPp9CrVS22vTOMqt6/5IsCmj8fjh8P4Pvvf6ZOnTp2lcfdsTYKSCsAjcuSN8ywf/8/Bxh7Dr4lDbLPPgsBAQEMHjzUYaGoOZjNJtauFczmm/cVFlptL66nZ/JO7AHeiz2Av8VM4pdvcOm39aSmQq1acPvtcPGiF5cvh2rr3UqsVQAethRGo3EkOW7BGTOmM2XK+7l5APYcfEtad7hxw+S0nJMsl1jhysmR6xGeHiZGdW9Kj1tqM+CdbzB3GcE9j4Tx9xaz8fFMAUDkGlOnZrmlbG2laUqP1WsASimzUuonpdSa7NchSqnvlVL7lVJLlFKe1oup0RROwZ7G9l78N0LTl6IwSj+CHFrV8+fsZ8/Sufqn7Dh9F//a+h47z3QA3DdM1tWwxSLwc8BveV6/DswUkSbAReCfNriGxk1wVJiivTDaIJsXIxb0O3k8kYHtFzG+40j8vS7y9k/j+GDX86Re99U9pg2AVQpAKRUE3AfMzX6tgGhgWfZbFgB9rbmGxn0wQuautRhxkM3BiJFyORZTA79DTOg4kgdC/8uO03fyr63v8dXuji7XY9rVJzAFsWoRWCm1DHgV8AWeBwYB20UkNHt/MPCViLQq5NghwBCA+vXrtz9y5Ei55dC4Bs6I2rEHOfWH5s51zLqDK1PYd370Ughzdz/H0ZRQQsznWf6v/lSvYnxPsRHrPjmtFpBSqheQKCI7824u5K2FahgRmS0iESISERAQUF4xNC6EETJ3bYGj1x1cmcIspmtnDuER+xLeB9dyTGrSY+Zmvv7llLNFLZHy5lkY2WootwWglHoVeAxIByyAH7AC6AnUEZF0pVRHYKKI9CzuXDoMtGJglDBFjWMpzmI6lpLJmGW7+OXEJXq1qcuk3i2p4ePlbJELpTx5Fva2GpxmAYjI/4lIkIg0BPoDG0XkUSAWeDj7bQOBleW9hsa9MHIEjcZ+FGcxtajrx4phnXi+R1O++fU0PWbG8eVuY1oD5Sk9YoSChcVhj1IQY4FRSqkDQA3gIztcQ+OCGDmCRuM8KplNDI9uwupn7iSwamWGffojT3/6I+dTrzlbtHyUZwJjdLenTRSAiGwSkV7Zf/8hIreJSKiI9BMRY32LGqdh5AgajfNpXsePFcPuYEzPZqzbc4buM+P44mfjWAPlmcAYrVpsQQxRDE5TMTBimKLGWHiYTTwdFcrqZ+4kqFplnv7sR4Z9upNzBrAGyjOBMbrbU9cC0mg0hiQ9I5PZW/5g1rr9VPEyM7lPK3q1qYsq6E9xIGUNAbZ36LMuBqfRaNya/WdSeH7pLnYdT+bulnWY0rcVAb7GjBQqiL0LFrplT2CN+2DkGGiNa9Ckti/Lh97B2Lubs3FvIj1mbmbVrpMYYfJaEkZ3e2oLQGM3jJg5qXFt9p9J4fllP7PrWBI9W9ZmSt9W1PK1lHygm6ItAI1hMXoMtMb1aFLbl+VPdeT/7mlO7L6z9JgZx8qEEy5hDRgRrQA0dsPoMdAa18TDbOLJyMZ8+eydNKxRhecWJ/Dkwp0kpqQ5WzSXQysAjd0wegy0xrUJrZW1NvCve5uz6fezdJ8RR8xP2hooC1oBaOyG0WOgNa6P2aQY0rkxXz57F40DqjBiSQJPfLKTxEvaGigNWgFo7IYu/aBxFKG1fFj61B28dG8Ltuw/S/eZcaz46bi2BkpARwFp7IYzmrZrNAfPpvLCsp/ZeeQi3VrU4uUHWlPbzz0jhXQUkMawGD0GWuOeNA7w4fMnOzLuvhZs2X+O7jM2s3yntgYKQ1sAGo3GbTl07jJjlu4i/shFopvX4pUHWlPH332sAW0BaDQaTRGE1KzCkic7Mr7XLWw7eI7uMzezNP6Ytgay0QpAo9G4NWaT4h93hvDVc51pXseXMct+5h/zd3A6WUcKaQWg0WgqBCE1q7BkSEcm3H8L3/1xnu4zN/N5BbcGtALQaDQVBpNJ8XinEL5+rjMt6vrxwrKfGTRvB6eSrzpbNKegFYBGo6lwNKxZhcVPdGDi/bfww6EL9JgRx+c7Kp41oBWARqOpkJhMikGdQvh6xF3cEujHC8t/ZuC8HZxMqjjWgFYAGo2boXswlI0GNaqw6IkOTO7Tkh2HLtBjZhyLfzhaIawBnQeg0bgRugeDdRw9f4UXlu9i+x8XuKtJTV57qA31qlZ2tlhFovMANBpNLroHg3XUr+HNZ4M7MKVPS3YeuUjPmXEscmNroNwKQCllUUr9oJTapZT6VSk1KXt7iFLqe6XUfqXUEqWUp+3E1Wg0xaF7MFiPyaR4rGNDvhnRmdb1/Pm//+1mwMc/cPziFWeLZnOssQCuAdEiEgaEA3crpToArwMzRaQJcBH4p/ViajSa0qB7MNiO4OrefDr4dqb0bcXOIxe5e9YWPvvevayBcisAySJnValS9kOAaGBZ9vYFQF+rJNRoNKVG92CwLSaT4rEODfhmRGfaBPnzrxW7eeyjHzh2wT2sAasWgZVSZmAnEAq8C0wHtotIaPb+YOArEWlVyLFDgCHZL1sBv5RbEOdTEzjnbCGsQMvvPGwte2CVKtSpVw9VcMeJE8jly5wGTtrweq5878H15W8mIr7lPdjDmiuLSAYQrpSqCqwAWhT2tiKOnQ3MBlBKxVuzku1stPzOxZXld2XZQcvvbJRSVoVP2iQKSESSgE1AB6CqUipHsQRh29mGRqPRaGyENVFAAdkzf5RSlYFuwG9ALPBw9tsGAiutFVKj0Wg0tscaF1BdYEH2OoAJ+FxE1iil9gCLlVJTgZ+Aj0pxrtlWyGEEtPzOxZXld2XZQcvvbKyS3xCZwBqNRqNxPDoTWKPRaCooWgFoNBpNBcXhCsAdSkgopcxKqZ+UUmuyX7uS7IeVUruVUgk5IWRKqepKqXXZ8q9TSlVztpxFoZSqqpRappTaq5T6TSnV0VXkV0o1y77vOY9LSqkRriI//H875xNiVRXH8c+XBGGGjJxQJqcwQWoRNU1h/oGhNCpDDIJACdpEbYKsTRRR0L6FChGCVtDCQImQWVhim2hRpDT2rAYNRacmnyi5qI3mt8U5Dy+Pee81q/tO7/eBy73ncOfxeef+7vvNOffcA5Jey/dtQ9L+fD8XEf+SdmTvk5JezXV93faSPpTUlNSo1M3rrMRuSaclnZA00evz6+gB/B+WkNhBmvHUoiR3gEdtj1fmP78BHM3+R3O5X9kFHLZ9D3A/6ToU4W97Jrf7OPAg8Dfp/Zki/CWtAF4BHsovd94EbKOA+Jd0L/AisIYUN1skrab/2/5j4Mm2uk7Om4HVeXsJ6L3wk+3aNmAIOA48THobb1GuXwd8UadbF+ex3OgbgSlApbhnv7PAbW11M8BoPh4FZur27OC+BDhDnrxQmn+b8+PANyX5AyuA88BS0gzCKeCJEuIfeBbYWym/DbxeQtsDK4FGpTyvM7AH2D7feZ22Wp4B5CGUH4AmcAT4FfjT9rV8yiwp2PqRnaTAuZ7LI5TjDunN7C8lHcvLcQAstz0HkPfLarPrzirgIvBRHoLbK2mYcvyrbAP25+Mi/G3/BrwHnAPmgCukpWBKiP8GMClpRNIQ8BRwB4W0fRudnFsJukXPa1FLArD9j1M3eIzUJfvPS0jUiaQtQNP2sWr1PKf2nXuFDbYnSN3FlyVN1i20ABYBE8AHth8A/qL/uuw9yWPkW4EDdbsshDzW/DRwF3A7MEyKo3b6Lv5t/0waqjoCHAamgWtd/6g8FvxbVOssIJe3hMQGYKuks8CnpGGgnZThDoDt3/O+SRp/XgNckDQKkPfN+gy7MgvM2v42lw+SEkIp/i02A8dtX8jlUvwfA87Yvmj7KvAZsJ5C4t/2PtsTtieBy8Apymn7Kp2cZ0m9mhY9r0Uds4CKXULC9pu2x2yvJHXhv7L9HAW4A0galnRz65g0Dt0ADpG8oY/9bf8BnJd0d67aBPxEIf4VtnNj+AfK8T8HrJU0JEncaP9S4n9Z3t8JPEO6BqW0fZVOzoeA5/NsoLXAldZQUUdqeKBxH2mJiBOkH593cv0q4DvgNKlrvLjuhy89vscjwFRJ7tlzOm8ngbdy/QjpwfapvF9at2uX7zAOfJ/j53Pg1sL8h4BLwC2VupL83wV+yffuJ8DiguL/a1LCmgY2ldD2pCQ1B1wl/Yf/Qidn0hDQ+6Rnqj+SZmt1/fxYCiIIgmBAiTeBgyAIBpRIAEEQBANKJIAgCIIBJRJAEATBgBIJIAiCYECJBBAEQTCgRAIIgiAYUP4FKMs2FGsuVGcAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "# Plot Boundary\n", "utils.plotDecisionBoundary(plotData, theta, X, y)" @@ -530,7 +694,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 57, "metadata": {}, "outputs": [], "source": [ @@ -566,8 +730,10 @@ " p = np.zeros(m)\n", "\n", " # ====================== YOUR CODE HERE ======================\n", - "\n", " \n", + " # p = [1 if sigmoid(np.transpose(theta)@X[i])>=0.5 else 0 for i in range(0, len(p))]\n", + " \n", + " p = [1 if i>=0.5 else 0 for i in sigmoid(X@theta)]\n", " \n", " # ============================================================\n", " return p" @@ -582,9 +748,21 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 58, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "For a student with scores 45 and 85,we predict an admission probability of 0.776\n", + "Expected value: 0.775 +/- 0.002\n", + "\n", + "Train Accuracy: 89.00 %\n", + "Expected accuracy (approx): 89.00 %\n" + ] + } + ], "source": [ "# Predict probability for a student with score 45 on exam 1 \n", "# and score 85 on exam 2 \n", @@ -608,9 +786,43 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 59, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Submitting Solutions | Programming Exercise logistic-regression\n", + "\n" + ] + }, + { + "name": "stdin", + "output_type": "stream", + "text": [ + "Use token from last successful submission (raade@uwindsor.ca)? (Y/n): y\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Part Name | Score | Feedback\n", + " --------- | ----- | --------\n", + " Sigmoid Function | 5 / 5 | Nice work!\n", + " Logistic Regression Cost | 30 / 30 | Nice work!\n", + " Logistic Regression Gradient | 30 / 30 | Nice work!\n", + " Predict | 5 / 5 | Nice work!\n", + " Regularized Logistic Regression Cost | 0 / 15 | \n", + " Regularized Logistic Regression Gradient | 0 / 15 | \n", + " --------------------------------\n", + " | 70 / 100 | \n", + "\n" + ] + } + ], "source": [ "grader[4] = predict\n", "grader.grade()" @@ -630,7 +842,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 60, "metadata": {}, "outputs": [], "source": [ @@ -654,9 +866,22 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 61, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEGCAYAAABLgMOSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO2dfZgU5ZXof6cHZ8YRHRHGRDMYiLhrNBtBUGP2xmEAleSygrlqIGsiUdfE5NnokvVrYSGA2fUTMYlxLxBFyQ1wIYkiXiPggBqNWccofj4GhIQQjQI6ZJAMn+f+UdXQ03T3VHfXZ/f5Pc/7dHXVW1Wnq7vr1HnPec8RVcUwDMMwiiUVtQCGYRhGMjEFYhiGYZSEKRDDMAyjJEyBGIZhGCVhCsQwDMMoiV5RCxAm/fr10wEDBkQthmEYRqJ44YUXtqpqU/b6qlIgAwYMoL29PWoxDMMwEoWI/CHXehvCMgzDMErCFIhhGIZREqZADMMwjJKoKh+IYRiGF/bs2cPmzZvp6uqKWpRQqa+vp7m5mcMOO8xTf1MgRtWyY8cOZs26nblzf8Tbb2/j+OP78k//9E0mTbqO3r17Ry2eESGbN2/myCOPZMCAAYhI1OKEgqqybds2Nm/ezMCBAz3tYwrEqEp27NjB8OGfobHxLaZN62LgQNi4cSsLF97GsmU/Y82a50yJVDFdXV1VpTwARIS+ffuyZcsWz/uYD8SoSmbNup3GxreYMqWLQYOgpgYGDYIpU7pobHyLWbNuj1pEI2KqSXmkKfYzmwIxqpK5c3/EhAldZP9fRGD8+C7mzbs3GsECYseOHcyYMY3+/ZuoqUnRv38TM2ZMY8eOHVGLVjFs376dCy+8kO3bt0ctSmiYAjGqkrff3ka+Yd6BA53tlUJ6uO7JJ29j2rStrFihTJu2lSefvI3hwz9jSsQnli1bxkMPPcQjjzwStSg5eeqppzj99NPp1asXS5cu9eWYpkCMquT44/uycWPubRs3OtsrBRuuC4f77ruv22vcOOGEE5g/fz5f/vKXfTumKRCjKvmnf/omCxfWk12QUxUWLarnyiuvjkawAKi24bqwGDVqFCJyoD377LMAPPPMM93Wjxo1quhj//u//zt33333gfeTJ0/m+9//flnyDhgwgE9/+tOkUv7d9k2BGFXJpEnXsX37idx8cz3r1sHevbBuHdx8cz3bt5/IpEnXRS2ib1TTcF2YTJ48mYaGhgPvd+/e3e0VoKGhgSlTphR97CuuuIIHHngAgP3797No0SL+8R//8ZB+n/vc5xg8ePAhbdWqVUWfsxQsjNeoSnr37s2aNc8xa9btzJx574F5IFdeeXXFzQNxhuu2MmjQodsqbbguTFpbW1m+fDljxoxh586dh2xvaGjg0UcfZfjw4UUfe8CAAfTt25cXX3yRd999lyFDhtC376Hf09NPP12K6L5hCsSoWnr37s3UqdOZOnV61KIEijNcdxtTpnQfxqrE4bqwaW1tZfHixVx88cXdZq3X19ezePHikpRHmiuvvJL58+fz5z//mcsvvzxnn8997nN0dnYesv6OO+4oaeisWEyBGEaFM2nSdSxb9jNuvvktxo9PT5p0lEelDddFQUdHB7169SKVSlFXV8euXbvo1asXHR0dZR33wgsvZOrUqezZs4ef/vSnOftEbYGYD8QwKpz0cF1Ly/XMnNnE6NEpZs5soqXleptx7wM//vGP2blzJ6eddhoPP/wwp512Gjt37iw7Gqu2tpbW1lYuueQSampqypbz+eefp7m5mSVLlvD1r3+dU089texjmgKpUmxiWfEk+Zqlh+s2bXqPvXv3sWnTe0ydOt2Uhw80NjZy++23097ezrnnnsvzzz/PbbfdxlFHHVXWcffv389zzz3HFVdc4YucZ5xxBps3b+bDDz9k27ZtvPbaa+UfVFUja8B9wHvAq3m2C/B9YD3wMnB6xrbLgHVuu8zL+YYOHaqGamdnpw4deqqOGFGvc+eiq1ahc+eiI0bU69Chp2pnZ2fUIgZCZ2enTp8+VZub+2kqJdrc3E+nT5/q6fNW6zWrVl5//fVIz//aa6/pwIEDddKkSaGfO9dnB9o1xz01agtkPjC6wPbPAye57SrgXgAROQaYBpwFnAlME5E+gUpaQVTjxLJyZ2NX4zUzouOUU05hw4YN3HnnnVGLUpBIFYiqPgW8X6DLWOBBVwk+BxwtIscB5wMrVfV9Vf0AWElhRWRkENeJZUHmEipXAcT1mhlGlERtgfTEx4A/Zrzf7K7Lt/4QROQqEWkXkfZi0hRXMnGdWBZkLqFyFUBcr5lhREncFUiu3MJaYP2hK1XnqOowVR3W1NTkq3BJJa55oILMJVSuAojrNTOMKIm7AtkM9M943wy8XWC94YG45IEKMpdQNuUqgLhcM8OIE3FXIMuAr4rDZ4DtqvoO8Dhwnoj0cZ3n57nrDA/EJQ9UkLmEsilXAUR5zZIcPlwNJOX72bVrF1/60pcYNGgQZ511Fr///e/LP2iu0KywGrAQeAfYg2NVXAF8A/iGHgzjvQd4C3gFGJax7+U44b3rga95OZ+F8R4kHdLav3+T1tSktH//Js8hrdnHKCUsNk1bW5s2NDQozhBkt9bQ0KCrV68u4dPlljUdhjtnDrpyJTpnTnFhuF6vmR/XJZfcFj4cHl7DeJP0/dxzzz369a9/XVVVFy5cqJdccknOfsWE8UaqQMJupkD8w88/ziOPPKL19fXdlEd9fb0+8sgjvstcrtL0cg4/byjTp0/VESPqta0NXb36YGtrc445ffpU32Q3DuJVgQT1/UyZMkVnz5594P2//du/6d13313SsdKcd955+uyzz6qq6p49e7Rv3766f//+Q/olaR6IESJ+mtp+zovIzCV0+OGHk0qlfMkllE0Ys7H9ni9i4cPxJqjvJ4h07n/605/o399xHffq1YvGxka2bSsvetAUSJXgd1lTP/84QeUSigK/bygWPuyNqPwQQX0/mencV6xYUTCd+0svvXRIyxV4otkOQECyf6hFYgqkSvD7ydjPP05QuYSiwO8bioUP90yUNd+D/H7S6dzvv//+guncvVogzc3N/PGPzvS5vXv3sn37do455piS5QNTIFWD30/Gfv5xHnroISZNmnSg1GZNTQ3f+c53eOihh4qSKQ74fUOx8OGeiTLNTJDfz4UXXsgvf/lLnn/+ec4///ycfYqxQC644IIDw2JLly5lxIgRZoEY3vD7ydhubLnx+7rEJeQ6zkTpJwry+/E7nfsVV1zBtm3bGDRoELNmzeKWW24p+5iSa1ysUhk2bJi2t7dHLUYk9O/fxLRpucuarlsHM2c2sWnTe56Plx42aGzMXaSoWutMBHFdduzYwaxZtzNvXmWX3i2VmpoUK1Youe6xe/fC6NEp9u7dV9Qx33jjDT75yU966hvU97N//35OP/10lixZwkknnVTycYol12cXkRdUdVh2X7NAqgS/n4ytSFFugrguVsujMFH7iYL4fl5//XUGDRrEyJEjQ1UexWIWSJVgFoNRqcyYMY0nn8xd8/3mm+tpabm+6Lr3xVgglYZZIMYhmMVQHEGmlk8qcU3ZEZQfopoertMU+5nNAjGMHCxYsICvfvWrLFiwgEsvvTRqcSIn04KdMOGgBbtwYTwsWL/9EBs3buTII4+kb9++ZUcqJQVVZdu2bXR2djIwK+ImnwViCsSoKLZv387EiROZP38+jY2NJR+ntbWVNWvW0NraSltbm48SJpMghonizJ49e9i8eTNdXV1RixIq9fX1NDc3c9hhh3VbbwoEUyDVQKmWw6hRo3jiiScOvK+trWX37t0HXtOMHDky5yStSsfvKD4jWZgPxIgdQfgZSi1KFWZq+SRiKVWMXJgCMSLDjxK2fhWlam1tZfny5d2USCYNDQ08+uijDB8+vGRZwX9HdFiO7ahDZY14YgrEiAw/Stj6aTm0trayePFi6uvru62vr69n8eLFvigPP3M2hZkDyjIPGLkwBWKERhAlbP22HIJMLe93zqYwc0D5GSob13BgowRyFQmp1GYFpaKlUPVByqxC6FdRquHDh2sqldIhQ4boihUrdMiQIZpKpbS1tbVombJpbu6nc+d2LzyUbnPmoP37N0V6vJ7wq4plUir4GQchjgWlRGS0iLwpIutF5MYc2+8SkZfc9jsR6cjYti9j27JwJTdKIUg/g1+WQ5Cp5f12RIft2PYjZUeUmXMN/4lMgYhIDU69888DpwATROSUzD6q+i+qOlhVBwM/AH6esfmv6W2qekFoghtlEZSfwa+iVEGmlvfbEZ1Ex7afmXNtKCx6orRAzgTWq+oGVd0NLALGFug/AVgYimRGoAThZ0hCUSq/HdFJdGz7ZTVFWUTKOEiUCuRjwB8z3m921x2CiHwcGAhkTgmuF5F2EXlORMblO4mIXOX2a9+yZYsfchtlEkQJ2wceeICnn36azs5OIPqiVLnmuPidsymJtUL8sppsKCweRKlAciWYyTctfjywVFUzk/qfoM7MyC8Ds0XkxFw7quocVR2mqsOamprKkzgBBGnW+3XscqyFfJMP/ZhT4ie55PE7oaWfxwsreaRfVlOURaSMDHJ51sNowNnA4xnvbwJuytP3ReCzBY41H7iop3NWehRWkBEucYmeefDBBxXQBQsWdFs/fPhwBYqKluro6NBx48ZpR0eH32KWJE+U5LuufpP5O5ozB1250okYK/Z3lEqJrlqVOwJt5Uq0piYV6OeoNohhFNbzwEkiMlBEanGsjEOiqUTkb4E+wK8z1vURkTp3uR/w98DroUhdJkFaCEGa9XEZMkgPc337298ue06Jn1ZLEHNcwsSPSZ1pClkzfllNSQwgqEhyaZWwGvAF4HfAW8Bkd90M4IKMPt8Fbsna77PAK8Ba9/UKL+eL2gIJ+ik+yHkBYc85SDNy5Mhucztqa2sV0F69ehWcT4KHOSV+WglBznEJgnzXNf2abiNHjiz62GFYM9OnT9URI+q1ra37b7Gtzfk/TZ8+NbBzVyPksUAiVSBht6gVSNA/+iDN+qiGDLzcmL3erIO8afYka5yUh2qwCi+M4Tu/hsL8kGP69Kna3NxPUynR5uZ+RU+uTAL5FIilMgmRoB1/QZr1UQ0Z9DT5sK6ujtra2m7r8s0pCTrjbtC5tPzEz0mdUQzfxaHCpoUSWy6sUAl65nCpES5eInCinHNQ6Mb8rW99i9ra2gNV40Qk75ySMDLuBplLy2/8UnhRpcL3MjM+qT7HpGAKJESCfoovdV6AF2dy1HMO8t2YH3vsMXbu3MkRRxwBwBFHHFFwTknQVkIQc1yCxA+FF1Yq/GIJ2kKwUGJTIKES9FN8qWa9lwicqIcMsm/MDQ0N7NixgzfeeIP9+/d3e+rdv38/q1evzjtsEqSVkIQZ8Zn4pfDiOHwXtIVgRbYwJ3qYxMXxF7QzOQjGjh2rd955p+7bt09VVVeuXKmHHXZYSU7gIDPuxp1sp+9RR9Xq6NHn6vbt21VVde/evXrHHXfo2LFjiz72ggULtHfv3ppKpfTwww/XVCqlvXv3DnxuST6CjhyMKjIxCrAorOgViKo/KbHLnQCXtJDTfJQa9ZStjMq5aSaJoMPI46aYg44crKZQYlMgMVEgfuBHnH2SQk4L4VcdkGog6BteWIrZa+hs0BZCXEYUwiCfAjEfSALxY9ZwHMesSyFJUU9eCDInVU9O31mzbinrvEGmwk9TjGM8rj7HSsIUSAIIKs6+Em6+SYt66okgk0L25PT9y192xyYZZT6KcYyHETnoR5GtJGMKJAEEFWdfCTffpEU99YSfOamy6SmMvK4umPP6STGhs2YhhECuca1KbUn2gQThs6gGZ3KhgIMgs/F6JcyIuEI+kLPPRlOpeEfiqVoW3qjAfCDJJgifRRhj1lFTaEgoDjVEvFiXhx9+OF1dXWX7RfIN6UyeDC++CPv3Bz97vFwsC2+8MAUSAn6lU6gEn0XYFBoSCnK4yCteZnFfe+21PPPMM2UruuwhnfPPF665Bn7zG+jqOvS8Ucwe74kklvGtaHKZJZXaohjC8jP2Pm5x9nHE65BQoW1RDNsUCkf2kt221OG4pIVBV1PobJzAhrCiwc90CpXmMA4CL0NChbZFNWyTaV2mhxS7urr4h3/4B09Rd6UOxyXNqjXHeMzIpVUqtUVhgVRLuoM4OKTTFAo4qKur07q6uthNoMy0Lm+77TYVkaIyBZRag8OsWsMLmAUSDdWScC0ODuk0hQIOli5dytKlS2M3gTLTurzuuutYsWIFhx12WM6+DQ0NnHzyybS2tpY9N8is2vwEmQq+UsirQETkVBH5lYhsFJEfiUhjxrZf59uvGERktIi8KSLrReTGHNsnisgWEXnJbVdmbLtMRNa57TI/5AmCIKJG4vjDjoNDOpNCQzNxHLbJjogbNWoUP//5z/MqujvuuMOXuUFxjMQLcja+V6xYlDcKWSD/BdwCnAFsAn4lIuln6fq8e3lERGqAe4DPA6cAE0TklBxdF6vqYLfNc/c9BpgGnAWcCUwTkT7lyhQEfkeNxOWH7efs+CBuGIUmSSZlAmUhRRfXGhx+EAdr1opFeaOQAjlSVZer6lZVvQX4F2CFiJyBMw5bLmcC61V1g6ruBhYBYz3uez6wUlXfV9UPgJXAaB9k8h2/0ymU+8P262bt5+z4IG4YhYZmkjJs05Oiq5R8ZtnEwZq1YlEeyeUYcXwmvAwclbVuMLAO2JpvP68NuAiYl/H+K8APs/pMBN5xZVkK9HfX/yswJaPfvwP/muc8VwHtQPsJJ5zgq2PJK36kcE9TrlPej0y+afyaHV+qA7jS8ZIpIG41OEohjvVpbMZ7dyg2nbt7Qz87x/oBwP359vPagItzKJAfZPXpC9S5y98A2tzl63IokO/0dM4kpzJJU+4P2++bdSnzCOJ4w0gqlRBFFYf6NNlRhNUSPemVfAok7xCWqi5Q1UOc5ar6e1X9Wr79imAz0D/jfTPwdta5tqnqLvftXGCo130rlWKd8kFl8k1TikM6qOSQ1UhShuMKEQd/TvYwqs1490gurRJGA3oBG4CBQC2wFjg1q89xGcsXAs+5y8cAG4E+btsIHNPTOSvBAim2KFDQT3elPgFXSkErwz+inBWfbZnbjPfuEMeKhMAXgN8BbwGT3XUzgAvc5f8EXnOVy2rg5Ix9LwfWu+1rXs5XCQqklB92kDfrcjL6Ji2NhhEsYfpzvA6jnnjiQF98l0mnZAUCfMbLuiS0SlAgqqU55eN4s64EB7DhH2H6c+Lgd0kS+RSIl5noP8qx7h4P+xkBUUoVtDhOnkvKfIxs4jDRrRIJ058TB79LRZBLqzgKhzOBa4A/At/OaFOAl/PtF+dWKRZIKcQxWiepBa38DIU2oiWOlnkcoQQL5AigH46zuymj7cYJwTUSRByjdeKYRsMLcZjoZvhDHC3zRJFLq2Q24BMZywIc0dM+cW3VbIEYpWPzViqXOFrmcYQyfCDfFZGjRKQBJyJqo4hM8l+VGYY3wvZB2LyVyiWOlnmiyKVVMhvwovv6ZWA2zpwN84EYkRGFD8LmrRhBkI6obG7up6mUaHNzv1iGClOGBVIrIr1wEh0+pE7iw/1+KzLD8EoUPohKTVxoREdcMmuXgxcFMg8nnXsf4EkROQGI/yerIKo9bDTodCxeMYer4SeVkDK+RwWiqnep6vGqep5rymwGRgQvmpEmDvURoiQuPoikzlsx4kklpIzvUYGISJOI/G8RWe6uOhnHH2KERJLCRoOwluIy6cscroafVEK5ay9DWPOBJzmY/XYd8J2gBIoTUZWOjcuQTSkEZS3FwQeR1HkrRjwJotx12HhRIMeq6k9xHeequgfYF6hUMSBKB1dchmxKIUhryXwQRiVRCSnjvSiQD90a5M5MQqekbWegUsWAUhxcflkscRmy8UKY1pL5IIxKwu9y15GQK7Y3swHDgGeADpyhrPXA4J72i2MrZh5IsRXJMtOsz52LrlqFzp1bXv2AJOTpCTOraVJzZxlGPvwsdx0kFDsPREQ+4yqYdqAVaMFJrniKqr4UhDKLE8U6uIIIyUvCkE2Y1pL5IKqXuIaylzvqUEpm7ThRaAjrQBp3Vd2tqmtV9SV1JhJWPMU6uIIIyUvKkE0cHNxGZRPHUPZKmAhYLl58IFVJsQ6uIELykhQ2mgRryUgucQxlr4SJgOUimn2HTG8Q6QCeyrejql5Q9slFRgN3AzXAPFW9JWv7JOBKYC+wBbhcVf/gbtsHvOJ23eRFnmHDhml7e7sn2dJPF42NbzF+fBcDBzqWx6JFjoNrzZrnupmZ/fs3MW3aVgYNOvRY69bBzJlNbNr0nqdzJ5HW1laeeuopTjvtNG699VZuuOEG1q5dS0tLC21tbVGLZySMUaNG8cQTTxx4X1tby+7duw+8phk5ciSrVq2KQsSq+s+LyAuqOix7fSELZAtwZ4FWrkA1OJUNPw+cAkwQkVOyur0IDFPVTwNLgdsytv1VVQe7rWxllk3v3r1Zs+Y5WlquZ+bMJkaPTjFzZhMtLdcfojygMkLyyiFJ1pIRf5IQyl4JEwHLpZAF8ltVPT2wE4ucDXxXVc93398EoKr/maf/EOCHqvr37vsdqlqUp6kYC6RYirVYksL27duZOHEi8+fPp7GxMWpxjCpi9erVjBkzhp07dx6yLQ6h7GaBFLZAfh+cOAB8DKdcbprN7rp8XAE8lvG+XkTaReQ5ERkXhIDFUKzFEjalRrHE0XlpVAdxD86o9lEHKKBAVPWLAZ9bcqzLaQ6JyKU481EyvVInuBrxy8BsETkxz75XuYqmfcuWLeXKXJA4h+SVqgji6Lw0qoc4B2dUxETAMokyCmszB/NrATQDb2d3EpFRwGTgAlXdlV6vqm+7rxuANcCQXCdR1TmqOkxVhzU1NfknfcLwqgiSnIfLqDziHMoe91GHUMg1uzCMBvQCNgADcaocrgVOzeozBHgLOClrfR+gzl3uh5Pg8ZSezllNFQlLreMd5sxyw+gJyz4QD8gzE93rzf6LwCyc6KsLvezj8bhfAH7nKonJ7roZONYGwCrgXeAlty1z138WJ4R3rft6hZfzVZMCKUcRxL18a0dHh44bN047OjoilcMwqoWSFQjOjPQVwNfc9kvgnp72i2OrJgWiWp4iiHMerihqohvxxh4qgiWfAvHiA2kBzlfV+1X1ftdqGO5hPyNiyoliibPz0hz7RjYWLRgNXhTIm8AJGe/7Ay8HI47hN6Uqgjg5L82xb/SEPVREgxcF0hd4Q0TWiMga4HWgSUSWiciyQKUzyqZURRCnmeVJmJVshIs9VMSDvDPRD3QQaSm0XVWf9FWiAAlyJnpcGTduHOeccw7XXnstqVSKffv2MXv2bJ5++ulEpUGP+6xkI1wK/R7S2O/CP/LNRO9RgVQS1ahAKonly5dz8cUX09XVdWBdfX09S5YsYcyYMRFKZkSBPVSER9GpTETkV+5rp4j8JaN1ishfghTWMHIRZ8e+ET5xT3VSDRRKZfI/3NcjVfWojHakqlqKVSN04uTYN+KBPVTkp9xqiV7wlMpERGpE5HgROSHdfJPAMDwSJ8e+EQ/soSI3YVVL7FGBiMg/48wGXwk86rblvpzdMIrAaqIb2VTqQ0W51kNY1RK9RGGtB85S1cRXRzEnumEYcSezttCECQdrCy1c6L22kN+1SkqpB5Lmj0BxRSQMwzCMkvDDegirWmKhKKxJbk3yDcAaEbkpvc5dbxiGYfjM3Lk/YsKELiSrYpIIjB/fxbx59/Z4jOOP78vGjbm3bdzobPeDQhbIkW7bhOP/qM1Yd6QvZzcSS6kVDg3DKIwf1kNY1RILhfFOL9R8OXsVEkZoXRiUm7zOFJBh5MYP6yGsaoleorBWisjRGe/7iMjjvpy9yggrtC4Myk1eZ9lTDSM3flgPYVVL9OJEb1LVA7NyVPUD4Fhfzl5l+B1aF+ZTvN/J6yx7anVglmbx+GU99O7dm6lTp7Np03vs3buPTZveY+rU6b6W2vWiQPZlThwUkY/jFBgyisQP51gmYT7Fl5sR17KnVidmaXojc2i7sfEo/vznPwNnMn16v1jXWveiQCYDvxKRBSKyAHgKuClYsSoTv0PrwnyKb21tZfny5d2USCY9Ja+zlOzViVmaPZNraPu7390G/Dcf/ehH6OjYHoj14Ac9KhBV/SVwOrDYbUNV1RcfiIiMFpE3RWS9iNyYY3udiCx2t/9GRAZkbLvJXf+miJzvhzxBU65zLOqn+HKS15WrgMCGQ5JA1L/RJBLWrPEg8JQLC/gsThnb4cBn/DixiNQA9wCfB04BJojIKVndrgA+UNVBwF3Are6+pwDjgVOB0cCP3OPFmnKdY3F4ii8neV252VNtOCT+xOE3mjT8HtoOEy9RWLcA1+BUInwduEZE/tOHc58JrFfVDaq6G1gEjM3qMxZ4wF1eCowUEXHXL1LVXaq6EVjvHi/WlOsc8+MpvlzKTV5XjgKy4ZD4E8VvNOmh8WHNGg8EVS3YcOqfpzLe1wAv97Sfh+NeBMzLeP8V4IdZfV4FmjPevwX0A34IXJqx/sfARXnOcxXQDrSfcMIJGjWdnZ06ffpU7d+/SWtqUtq/f5NOnz5VOzs7PR/jkUce0fr6esUJZlBA6+vr9ZFHHglQcoexY8fqnXfeqfv27VNV1b179+odd9yhY8eO9bT/8OHDNZVK6ZAhQ3TFihU6ZMgQTaVS2traekjfkSNHdvuMtbW13V7TbeTIkb5+RqN8wvqNdnZ26tChp+qIEfU6dy66ahU6dy46YkS9Dh16alH/q6hobu6nc+eiq1cf2ubMQfv3b4paRAXaNcf91esQ1tEZy41F6KdCSI512dFd+fp42ddZqTpHVYep6rCmpqYiRfQfP0LroqyBUG5G3GKyp9pwSHIJ6zeaZP9BmrBmjQdCLq2i3Z/gJwB/AObjDCdtBMb3tJ+H454NPJ7x/ibgpqw+jwNnu8u9gK04yqNb38x+hdrQoUP9V80RUMxTfFxJW2LNzf00lRJtbu6X0xJra2vThoaGbk+y6dbQ0KCrV6+O5gMYBQnrN5qEp/eeyLSi5sxBV650ZI+TFUUpFojrb/gVjp22LbEAABs0SURBVOP85247W1UX+aC7ngdOEpGBIlKL4xRfltVnGXCZu3wR0OZ+mGXAeDdKayBwEvDfPsgUWzLHeZ98cg19+hzO2LFjOPvssxNXA6GYGflWtjSZhFWnI9H+A5ewZo0HgZd6IC+o6tBATi7yBWA2jl/lPlX9nojMwNF2y0SkHlgADAHex7F8Nrj7TgYuB/YC16rqYz2dL6n1QPyoDxAnZsyYxpNP3saUKd0jT1SdgIKWluuZOvVgurWf/OQnXH311ezcuZO6ujp27dpFQ0MD9957L5deemkEn8CIC37XvTByU049kOdE5IwAZEJV/5+q/o2qnqiq33PXTVXVZe5yl6perKqDVPXMtPJwt33P3e9vvSiPqPAjQqQSxnkzKTZs0cqWGvmIq/8g6ZFhXvFigbwO/A2OH+RDHB+EquqngxfPX8K2QPyyHCrtKaumJsWKFUpNjpk7e/fC6NEp9u7dd2DduHHjOOecc7j22mtJpVLs27eP2bNn8/TTT1s52yon8z82fvzB/9iiRdFZ55U2YgD5LRAvCuTjudar6h98ki00wlYgxQ7V5KPYG27cqTSFaETLjh07mDXrdubNu5e3397G8cf35corr2bSpOsiuVH79b+PE+UMYR0HvK+qf3CVxvvAR/0WsBLxa4ZpWNXFwiKuww5GMgkj62wxJHlmebF4USD3ApkDdx+664we8CtCpNJuuGEVuzGMKKiEyDCveFEgohnjXKq6H2dOhtEDflkOQd9ww3b4JTls0Yg/USfdrLQRg0J4USAbROTbInKY264BNvS4l+Gb5RDkDTeqKolxG3YwKoeok25W2ohBIbw40Y8Fvg+MwJkB/ATOvIvEeTmjjMKKS4RINpXo8IsT27dvZ+LEicyfP5/GRr+yABmFaG1tZc2aNbS2ttLW1hb6+ZPwvy+WfE70stKRJK1FkcrEj+SJQVIJqSDizIMPPqiALliwIGpRKpY4Jt2M+/++WMiTyiSvBSIi16vqbSLyA3IkKlTVb/ul3cIiqTPRg6TSQoTLxW+LIeqn4TgRlDW2evVqxowZw86dO/P28ZpG3izG3JQSxvuG+9oOvJCjGRVAFA6/qJ2chSh3/Nwq8uUnKN+EnzVIovafJI28CkRVH3FfH8jVwhPRCJIoHH5x/pOWW7TKUtDnJ8iCYH4l3bSiZcWRV4GIyLJCLUwhjeCIYk5GMX/SoK0Vvy2GOFSNjAthW2Ol1CAxi7FMcjlGXL/IFuC3wHXAOUBLZsu3X5xbnOuBeK2PEeS5g3L4lePkDNoJXajeSLqVUnckyqqRcSGoa5uPUmqQhC1jlP/zciCPE72QAqkBRuMUkXoRuBk4NV//JLS4KpBKKMtZiHL+pMOHD1cg0GJZQRStWrBggfbu3VtTqZQefvjhmkqltHfv3rGIxuro6NBx48ZpR0dH4OcKsyBYqeWWw5Ixyf/zohVIt05QB0x0rZJ/9rJPHFtcFcj06VN1xIh6bWvrHkbb1ub8uKZPnxq1iGXj9U8aVUim3xZDnKtGhh1anARrLAwZk/w/z6dAeqpIWCciXwR+AnwLZ0LhzwvtYxRPNSRf8+rkjMoJ7XcN77Aq8pVC2I7isOqjQ+k+szBkrMT/eSEn+gPAs8DpwHRVPUNVZ6rqn0KTrkqoluRrXv6kUTmh/S5a9dBDDzFp0iRSKecvVlNTw3e+851I6pdE7SgOsyBYqRF+YchYif/zQhbIV3AKSV0DPCsif3Fbp4j8pZyTisgxIrJSRNa5r31y9BksIr8WkddE5GUR+VLGtvkislFEXnLb4HLk8ZtikxMmLflaqckXvf5Jo6iDHmeLoVyiDi0O89qWal2FIWPS/ueeyDWuFXQDbgNudJdvBG7N0edvgJPc5eOBd4Cj3ffzgYuKPW8YPpBSHGVJGRvt6OjQMWPG6JAhnyzJEViMk9MvJ3SYDuM4E6YzO0zimMYkH0n5n+eCcpzofjfgTeA4d/k44E0P+6zNUCixVSCl/Egylc6cOejKlU4eqrhFZzz44IOaSqEtLYcF/ifwywltuagOkgRndrGEHYZbDkn5n+cinwLxks49CD6iqu8AuK/HFuosImcCtcBbGau/5w5t3SUidQX2vUpE2kWkfcuWLX7IXpBSHGVJqY9x3333UVsLl166J3BHoF9DCjaz+CBhOrPDIkkTN5PyPy+GHtO5l3xgkVXkLn07GXhAVY/O6PuBqh7iB3G3HQesAS5T1ecy1v0ZR6nMAd5S1Rk9yRRGMsVKSk44atQonnjiiQPva2tr2bNnNytXEtvPl0vm3bt3H3hNM3LkSFatWhWFiJHR2trKU089xWmnncatt97KDTfcwNq1a2lpaUl8osfly5dz8cUX09XVdWBdfX09S5YsYcyYMRFKVhmUUxO9JFR1lKp+Kkd7GHjXVQJpZZCztoiIHAU8CkxJKw/32O+4ltUu4H7gzKA+R7EkwVHm1Qmey/laV0esP1/UDuM4U8mBApVoXSWBqIawlgGXucuXAQ9ndxCRWuAXwIOquiRrW1r5CDAOeDVQaYsg7tXIiqlAmGt4YPduuO8+Yvv5kjSkETZxCi32mzBDhY2DRKVAbgHOFZF1wLnue0RkmIjMc/tcgpODa2KOcN3/IyKvAK8A/XDSrMSCKJITFsOsWbfT2PgWU6Z0MWiQMxQ1aBBMmdJFY+NbzJp1e7f+2SG1+/fDiy/C5MnE8vNBNGHARrRUsnUVa3J51iu1hZXKJM7VyEqpQJgdUisiWl9/mB577JGx+3xp4pyLyjCSBjGLwqpoevfuzdSp09m06T327t3Hpk3vMXXq9FhEWZQyGzZ7eGDw4MHs3r2PU08dFrvPl8aGNAwjeEyBVBmlOPmTODyQRJkNI2kEFsYbR6wmOsyYMY0nn7yNKVO6z1VRdfwYLS3XM3Xq9OgENAwjdoQexmvEk7g7+cul1DxdhuEH1fb7MwukCtmxYwezZt3OvHn38vbb2zj++L5ceeXVTJp0Xaz8GMWSDlFubHyLCRO6GDjQGZZbuNBRjkmd7Wskg0r+/ZkFYhwgzk7+cugpRPk//uPmQOqrB1233UgGxYbIVwKmQIyKoec8ZD8qqVZET5Rag8JvTJFFSyUWjOoJUyCGJ5IwtttTiPLWrZ2A/4kV45KwMS6KrFqpxIJRPWEKJGFEcSMvJv1JlPQUolzn5mwutxJf1BX+8hEXRZYmCQ8dfpKEPHh+YwokQUR1I0/K2G6hPGT33+/k8YLyEyvGJWFjXBUZJOehw0/ingcvCEyBJIiobuRJGdvNF6I8ebKTv2v//u79S02sGJeEjXFRZLlIykOHn1R6iHwuLIw3QfTv38S0aVsZNOjQbevWwcyZTWzalDMzflkkqcZJ9xDlrRx99OHs3r2Xzs7d1Nc7Vsj+/f7UiohDDYrVq1czZswYdu7ceci2KDMPR/VbjZpKDZG3MN4KIConXZLGdtMhyq+/voHBg0/htNP2M2vWblatgh/8AM46C+rrnVTm5daKiEMNirhmHq5GhzJUboh8PkyBJIiobuRJHNvNN4Tyve/B6acLXV0flu1sjkvCxjgosmyS9NBhlI4pkAQR1Y08iWO7hfw2EycqffocUXZixbgkbIyLIsskiQ8dRvGYDyRBZKZKGD/+YKqERYuCT5WQtLHdJPltymXcuHGcc845XHvttaRSKfbt28fs2bN5+umnI6s2GOVv1fCffD4QUyAJI2k38qioVidunLDfauUQKwUiIscAi4EBwO+BS1T1gxz99uGUrQXYpKoXuOsHAouAY4DfAl9R1d3Z+2dTCQrE8EYS09Zv376diRMnMn/+fBobG6MWxzAOELcorBuBJ1T1JOAJ930u/qqqg912Qcb6W4G73P0/AK4IVlwjaSTRb1PtqUgsl1fyiEqBjAUecJcfAMZ53VFEBBgBLC1lf6M66N27N2vWPEdLy/XMnNnE6NEpZs5soqXl+tiOv8ctFYlfeFUMQSrQIJVTtaVs6UauQulBN6Aj6/0HefrtBdqB54Bx7rp+wPqMPv2BV72cd+jQoaXWlDcM3xk5cqQCB1ptbW2313QbOXJk1KKWxYMPPqiALliwoGC/4cOHK6Ctra2RyVAsnZ2dOnToqTpiRL3OnYuuWoXOnYuOGFGvQ4eeqp2dnb6eLyqAds1xTw3MAhGRVSLyao42tojDnKDOuNuXgdkiciIgOfrldeSIyFUi0i4i7Vu2bCnyUxhGcMQ5FYmf5LOswszlFZR1V40pW7qRS6sE3YA3gePc5eOANz3sMx+4CEeBbAV6uevPBh73cl6zQIy40dbWpg0NDd0sjnRraGjQ1atXRy1iNzo6OnTcuHHa0dGRt49Xy+r000/P+9nLvQZhWXfNzf107lx09epD25w5aP/+TWUdPy4QtgXSA8uAy9zly4CHszuISB8RqXOX+wF/D7zufpjVOMok7/6GkQTimookH178FF4tqzvvvDOwpJRBWHe5fB3vvLOVj340d/9KTtmSJioFcgtwroisA8513yMiw0Rkntvnk0C7iKzFURi3qOrr7rYbgEkish7oC/w4VOkNw0fimIokH16GgorJVhyUAvU7Y3K+9PRnnQXXXAN//euh+1RDypZIFIiqblPVkap6kvv6vru+XVWvdJefVdW/U9XT3NcfZ+y/QVXPVNVBqnqxqu6K4nMYlUcUETWZqUgWLVrERz96LHv37uCrX/1K6BE92Z//qKNqqakp3k9RjGIISoH6qZzy+TpuvhmOOw6WLOnev1pStlguLMNwiaoIUjqn1po1a5gx4984+eQOfvADWLmSvOcPIiw11+efNWvPgQzGUNxQUE+KIa2svvnNy/nwwx00NAgXX/xFPvWpT/mWy8sv5VQot9pll8HPfkZi5hv5iSkQw3CJKqLmoYceYtKkScyefafn8wcxZ6JQBuMhQyCV425RaCioUJLHTGU1a9YeVq6Eu+7ax+bNP+Oww/Yxc+ZMX5JS+pVosqf09Dt2SGLmG/mJKRDDcIm68mIx5w8iLLXQ+b/2tYM15dP0NBRUKFtxT8p6795dviSC9Ctjck/p6T/2sX5VUwMkE0umaBguUWfw7en8553HgfTotbW17N69+8BrmpEjR7Jq1arAzi+Soq6ujl27dtHQ0MC9997LpZdeWvS5kpbsMom51fwkbrmwDCN2RF0EqafzZ/qCg5h02NP56+rwreZI0ioWJjG3WhiYAjFiSRTRUFEXQerp/OPHfyWQORNezv/AAymGDz/Xt+JZUSvrYklibrUwsCEsI3ZkFiOaMOFgMaKFC4MtRhR1ESQv51+zZg0XX3wxXV1dB/arr69nyZIljBkzJvDz+/X5q31IKGnYEJaRGKKKhor6KdPL+YOcdBjm57chocrALBAjdiTNwRomra2tPPXUU5x22mnceuut3HDDDaxdu5aWlhba2tqiFq8orGJhcohVRcKoMAWSDKKOhoozcax/blQ+pkAwBZIUzAIxjHhhPhAjMUQdDWUYhjdMgRixwxyshpEMTIEYsSPqaCjDMLxhPhDDMAyjIOYDMQzDMHzFFIhhGIkgivQ2RmFMgRhGCNjNrzyiKvZlFCYSBSIix4jIShFZ5772ydGnVUReymhdIjLO3TZfRDZmbBsc/qcwDG/Yza98okpvYxQmKgvkRuAJVT0JeMJ93w1VXa2qg1V1MDAC2AmsyOhyXXq7qr4UitSGUQJxuPkl3QKKutiXkZuoFMhY4AF3+QFgXA/9LwIeU9WdgUplGAEQ9c2vEiygpNUPqRaiUiAfUdV3ANzXY3voPx5YmLXueyLysojcJSJ1uXYCEJGrRKRdRNq3bNlSntSGUQJR3/ziYAGVS9Lqh1QLgSkQEVklIq/maGOLPM5xwN8Bj2esvgk4GTgDOAa4Id/+qjpHVYep6rCmpqYSPolhlEfUN7+oLSA/sPQ28SQwBaKqo1T1Uznaw8C7rmJIK4hCmfEuAX6hqnsyjv2OOuwC7gfODOpzGEa5RH3zi9oC8gNLbxNPohrCWgZc5i5fBjxcoO8EsoavMpSP4PhPXg1ARsPwhahvflFbQH5g6W3iSSSpTESkL/B/gROATcDFqvq+iAwDvqGqV7r9BgDPAP1VdX/G/m1AEyDAS+4+PXoCLZWJERVRFk+y8rFGuVg9EEyBGNVJ1LXejeRjubAMo0qx4R8jKMwCMQzDMApiFohhGIbhK6ZADMMwjJIwBWIYhmGUhCkQwzAMoySqyokuIluAP4R4yn7A1hDPVywmX3mYfOVh8pVHmPJ9XFUPyQVVVQokbESkPVfkQlww+crD5CsPk6884iCfDWEZhmEYJWEKxDAMwygJUyDBMidqAXrA5CsPk688TL7yiFw+84EYhmEYJWEWiGEYhlESpkAMwzCMkjAFUiYicoyIrBSRde5rnxx9WkXkpYzWJSLj3G3zRWRjxrbBYcvn9tuXIcOyjPUDReQ37v6LRaQ2bPlEZLCI/FpEXhORl0XkSxnbArl+IjJaRN4UkfUicmOO7XXu9VjvXp8BGdtucte/KSLn+yFPkbJNEpHX3Wv1hIh8PGNbzu85AhknisiWDFmuzNh2mft7WCcil2XvG5J8d2XI9jsR6cjYFug1FJH7ROQ9EclZKE8cvu/K/rKInJ6xLfBr1w1VtVZGA24DbnSXbwRu7aH/McD7QIP7fj5wUdTyATvyrP+/wHh3+b+Aq8OWD/gb4CR3+XjgHeDooK4fUAO8BXwCqAXWAqdk9fkm8F/u8nhgsbt8itu/DhjoHqcmZNlaM35fV6dlK/Q9R3D9JgI/zLHvMcAG97WPu9wnbPmy+v8zcF9Y1xA4BzgdeDXP9i8Aj+EU1PsM8Juwrl12MwukfMYCD7jLD+CU2C3ERcBjqrozUKkOUqx8BxARAUYAS0vZ3yM9yqeqv1PVde7y28B7OBUpg+JMYL2qblDV3cAiV85MMuVeCox0r9dYYJGq7lLVjcB693ihyaaqqzN+X88BzT6e3xcZC3A+sFJV31fVD4CVwOiI5TukrHaQqOpTOA+Z+RgLPKgOzwFHi1PmO4xr1w1TIOXzEVV9B8B9PbaH/uM59Mf4PdcUvUtE6iKSr15E2kXkufTwGtAX6FDVve77zcDHIpIPABE5E+ep8a2M1X5fv48Bf8x4n+tzH+jjXp/tONfLy75By5bJFThPq2lyfc9+41XG/+V+b0tFpH+R+4YhH+7w30CgLWN1GNewEPnkD+PadaNXkAevFERkFfDRHJsmF3mc44C/Ax7PWH0T8Gecm+Ic4AZgRgTynaCqb4vIJ4A2EXkF+EuOfkXHfft8/RYAl6nqfnd12dcv16lyrMv+3Pn6eNm3HDwfX0QuBYYBLRmrD/meVfWtXPsHLOMjwEJV3SUi38Cx5kZ43DcM+dKMB5aq6r6MdWFcw0JE9ds7BFMgHlDVUfm2ici7InKcqr7j3uDeK3CoS4BfqOqejGO/4y7uEpH7gX+NQj53aAhV3SAia4AhwM9wzONe7lN2M/B2FPKJyFHAo8AU12xPH7vs65eDzUD/jPe5Pne6z2YR6QU04gw7eNk3aNkQkVE4CrpFVXel1+f5nv2++fUoo6puy3g7F7g1Y9/hWfuuCVu+DMYD38pcEdI1LEQ++cO4dt2wIazyWQakox0uAx4u0PeQsVT3ppn2N4wDckZeBCmfiPRJD/2ISD/g74HX1fHMrcbx2+TdPwT5aoFf4Iz7LsnaFsT1ex44SZwItFqcm0h2tE2m3BcBbe71WgaMFydKayBwEvDfPsjkWTYRGQL8b+ACVX0vY33O79lH2YqR8biMtxcAb7jLjwPnubL2Ac6ju8UeinyujH+L44z+dca6sK5hIZYBX3WjsT4DbHcfpMK4dt0J0kNfDQ1n3PsJYJ37eoy7fhgwL6PfAOBPQCpr/zbgFZwb30+A3mHLB3zWlWGt+3pFxv6fwLkBrgeWAHURyHcpsAd4KaMNDvL64US6/A7nyXKyu24Gzk0ZoN69Huvd6/OJjH0nu/u9CXw+gN9cT7KtAt7NuFbLevqeI5DxP4HXXFlWAydn7Hu5e13XA1+LQj73/XeBW7L2C/wa4jxkvuP+5jfj+LG+AXzD3S7APa7srwDDwrx2mc1SmRiGYRglYUNYhmEYRkmYAjEMwzBKwhSIYRiGURKmQAzDMIySMAViGIZhlIQpEKMqEBEVkQUZ73uJkw12ufv+AsmRldXH839XRHJOchSRZ4s4zi/cLLDrRWS7HMwK+9ki5RnhziHIte1UcbIf7xKRa4s5rlFd2Ex0o1r4EPiUiByuqn8FzsWZlwOAqi4jx2SyXLiTFkUPplMpC1X1fPNX1QtdGYYD/6qqY0o87QhgK06yxWy24mSgvSjHNsM4gFkgRjXxGPA/3eVuWQHEqU/xQ3f5I+6T/lq3fVZEBojIGyLyI+C3QH8RmSAir4jIqyJya8axRovIb919n8g4/ykiskZENojItzP673Bfh4vIU+65XxeR/xIRz/9RETlDRJ4UkRdE5DER+Yi7/l/c460VkZ+IyInAlcB1uawXVX1XVduBvTlOYxgHMAvEqCYWAVPdYatPA/cBn8vR7/vAk6p6oYjUAL1xUlr8Lc7s3m+KyPE4+ZuGAh8AK8TJzPoMTm6nc1R1o4gck3Hck3FqdRwJvCki92pGXjSXM3FqivwB+CXwRQ6m08+Lm17jbpyZ1FtF5B+BmcBVwPXAx1V1t4gcraodIjIP2Kqqs3s6tmHkwxSIUTWo6sviVA6cAPy/Al1HAF9199kHbHdzC/1BDyZyPANYo6pbAETk/+AUAtoHPKVOLRBUNbOuw6PqJDbcJSLvAR/BSVWRyX+r6gb3mAuB/4EHBQJ8EjgVWOWMsFGTcezXgJ+IyMPAQx6OZRieMAViVBvLgDtwspb2LXLfDzOWc6XOTq/Plx9oV8byPnL//7L39ZprSICXVTWXRXU+Tkr3scAUEfmUx2MaRkHMB2JUG/cBM1T1lQJ9nsApBYuI1IiTSj6b3wAtItLPHeaaADyJk7m1xc3ES9YQlhfOdLPEpoAvAb/yuN/rwMfEKbiFiNS60VQ1QLOqtgHX4VRybAA6cYbSDKNkTIEYVYWqblbVu3vodg3QKk5RrRdwhoayj/MOTjGr1TiZWX+rqg+7Q1pXAT8XkbXA4iJF/DVwC0524Y04aex7xB0auwiY5Z73ReAsHCvnpyLyMo7z/1ZV7cRJm3+JiLyY7UQXkWYR2Qx8G/iuiGwWkYYiP4dRBVg2XsOICT6E5hpGqJgFYhiGYZSEWSCGYRhGSZgFYhiGYZSEKRDDMAyjJEyBGIZhGCVhCsQwDMMoCVMghmEYRkn8f2A5NCLw2QTLAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "plotData(X, y)\n", "# Labels and Legend\n", @@ -686,7 +911,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 62, "metadata": {}, "outputs": [], "source": [ @@ -718,7 +943,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 77, "metadata": {}, "outputs": [], "source": [ @@ -768,7 +993,27 @@ "\n", " # ===================== YOUR CODE HERE ======================\n", "\n", + " inner_sum = 0\n", + " for i in range(0, m):\n", + " x_row = X[i]\n", + " y_row = y[i]\n", + " hypothesis = sigmoid(np.transpose(theta)@x_row)\n", + " \n", + " inner_sum += (-1*y_row*np.log(hypothesis)) - (1-y_row)*np.log(1-hypothesis)\n", + " \n", + " for j in range(len(theta)):\n", + " xj = x_row[j]\n", + " grad[j] += (hypothesis - y_row) * xj\n", + " \n", + " inner_sum2 = 0\n", + " for j in range(0, len(theta)):\n", + " if j >= 1:\n", + " inner_sum2 += theta[j]**2\n", + " grad[j] += lambda_ * theta[j]\n", + "\n", " \n", + " J = (1/m) * (inner_sum + (lambda_/2)*inner_sum2)\n", + " grad *= (1/m)\n", " \n", " # =============================================================\n", " return J, grad" @@ -783,9 +1028,33 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 78, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Cost at initial theta (zeros): 0.693\n", + "Expected cost (approx) : 0.693\n", + "\n", + "Gradient at initial theta (zeros) - first five values only:\n", + "\t[0.0085, 0.0188, 0.0001, 0.0503, 0.0115]\n", + "Expected gradients (approx) - first five values only:\n", + "\t[0.0085, 0.0188, 0.0001, 0.0503, 0.0115]\n", + "\n", + "------------------------------\n", + "\n", + "Cost at test theta : 3.16\n", + "Expected cost (approx): 3.16\n", + "\n", + "Gradient at initial theta (zeros) - first five values only:\n", + "\t[0.3460, 0.1614, 0.1948, 0.2269, 0.0922]\n", + "Expected gradients (approx) - first five values only:\n", + "\t[0.3460, 0.1614, 0.1948, 0.2269, 0.0922]\n" + ] + } + ], "source": [ "# Initialize fitting parameters\n", "initial_theta = np.zeros(X.shape[1])\n", @@ -832,9 +1101,43 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 79, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Submitting Solutions | Programming Exercise logistic-regression\n", + "\n" + ] + }, + { + "name": "stdin", + "output_type": "stream", + "text": [ + "Use token from last successful submission (raade@uwindsor.ca)? (Y/n): y\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Part Name | Score | Feedback\n", + " --------- | ----- | --------\n", + " Sigmoid Function | 5 / 5 | Nice work!\n", + " Logistic Regression Cost | 30 / 30 | Nice work!\n", + " Logistic Regression Gradient | 30 / 30 | Nice work!\n", + " Predict | 5 / 5 | Nice work!\n", + " Regularized Logistic Regression Cost | 15 / 15 | Nice work!\n", + " Regularized Logistic Regression Gradient | 15 / 15 | Nice work!\n", + " --------------------------------\n", + " | 100 / 100 | \n", + "\n" + ] + } + ], "source": [ "grader[5] = costFunctionReg\n", "grader[6] = costFunctionReg\n", @@ -892,9 +1195,31 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 92, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Train Accuracy: 83.1 %\n", + "Expected accuracy (with lambda = 1): 83.1 % (approx)\n", + "\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAEWCAYAAABMoxE0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOydd3yT1f7H3yfpSKGlpWVTpoiCgiLLPcGFCldcLAW5F1EUB9cFQguIqFxUnKg/GbIcF0WGXgE3IiqogOxRRhkFCt1NmzTn90eSkpbsPFnteb9eeaXJs85T6PM95zs+XyGlRKFQKBQKf9GFewAKhUKhiG6UIVEoFApFQChDolAoFIqAUIZEoVAoFAGhDIlCoVAoAkIZEoVCoVAEhDIkiqhGCLFPCNErCOe9WgiR7cP+Q4UQa7Qeh0IRDShDolBEKUKIu4QQa4UQJUKI773Yf6AQYr8QolgIsUQIkeqwLVUI8blt234hxMCgDl5Ro1CGRKGIXk4CrwEvetpRCHEe8C4wBGgMlABvO+zyFlBu2zYIeMd2jELhEWVIFDUGIUQPIcQvQog8IcQRIcSbQog4h+1SCPGQEGKXEKJQCDFZCHGW7ZgCIcQnjvvbjhkrhDhhc6ENcvg+TQix1Hbcb8BZ1Y6bIYQ4aNu+QQhxhdb3K6VcLaX8BDjsxe6DgGVSyh+llEXAeOB2IUSSEKIu0B8YL6UsklKuAZZiNToKhUeUIVHUJCqAx4EGwCXAdcBD1fa5EegKXAw8BbyH9SHbAjgfGOCwbxPbuZoD9wHvCSHOsW17CzACTYH7bS9HfgcuBFKBhcCnQgiDs0ELIZ6xGT+nLx9/B644D9ho/yCl3IN1BdLe9qqQUu502H+j7RiFwiPKkChqDFLKDVLKdVJKs5RyH1ZXzlXVdntJSlkgpdwC/A2slFLulVLmA18BXartP15KWSal/AFYAdwlhNBjncFPkFIWSyn/BuZWG8t8KWWubSzTgXjgHJwgpXxRSpni6hXYb6WSRCC/2nf5QJKHbQqFR5QhUdQYhBDthRDLhRBHhRAFwAtYVxSO5Dj8XOrkc6LD51NSymKHz/uBZkBDIAY4WG2b41jGCCG2CSHybauKZCdjCSVFQL1q39UDCj1sUyg8ogyJoibxDrAdOFtKWQ8YC4gAzlffFj+w0xJrPOI4YMbqDnPcBoAtHvI0cBdQ37aqyHc1FlscpsjVK4DxO7IFuMDhmm2xrpJ22l4xQoizHfa/wHaMQuERZUgUNYkkoAAoEkKcCzyowTknCiHibMbhFuBTKWUF8BmQKYSoI4ToiDWG4jgOM1aDEyOEmMCZM/5KpJQvSCkTXb1cHSeE0NviLjGATghhEELEuth9AXCrEOIKm3GcBHwmpSy0rbo+AyYJIeoKIS4D+gLzvPsVKWo7ypAoahL/BgZidcm8D3wc4PmOAqewrkIWACOllNtt2x7G6gY7CswBZjsc9zXWeMtOrC4vI1XdYFoxBKs77h3gCtvP79s32lY0VwDYYkIjbfdxDKuxc0xEeAhIsG1bBDxoO0ah8IhQja0UCoVCEQhqRaJQKBSKgAirIRFCzBJCHBNC/O1i+9W2rJe/bK8JoR6jQqFQKNwTE+brzwHeBD50s89PUspbQjMchUKhUPhKWFckUsofseoFKRQKhSJKCfeKxBsuEUJsxJo5829nmSRCiBHACICEOgldW7VrFeIhKhQKRXSzfdP2E1LKhv4cG+mG5A+glZSySAhxM7AEOLv6TlLK97BqJtHhgg5y7sq51XdRKBQKhRt6Num53/NezonorC2bJlKR7ecvgVghRDhlJhQKhUJRjYg2JEKIJkIIYfu5B9bx5oZ3VAqFQqFwJKyuLSHEIuBqoIGtrWkGEAsgpZwJ3AE8KIQwY63avUeqCkqFQqGIKMJqSKSUAzxsfxNrerBCoVBoSwXEFsQizIHoekYfMkZiqmcCvXbnjPRgu0KhUASF2IJYGqY0JCU1BZsHvcYjpSTvZB7H845jqm/S7LwRHSNRKBSKYCHMolYZEQAhbPes8SpMGRKFQlFrqU1GxE4w7lkZEoVCofCS/Px87rnjHvLzq3cmrt0oQ6JQKBRe8uWyL1m+dDlfLf8q3ENxypqf1nBZj8tITkjm88Wfh+y6ypAoFAqFl3w4x6ov++Fcdzqz4aNFixa8+3/vctc9d4X0usqQKBQKhQtuufEWEuMSK1+/rvsVgHVr11X5/pYbfRcon5QxibfeeKvyc+b4TN5+8+2AxtuqdSvO73w+Ol1oH+0q/VehUChc8OQzT/Lrul8pLSkFoLy8vMo7QEKdBJ569imfz33fsPsYeNdARj0yCovFwuJPF/P9z9+fsV/va3pTVFh0xvcvvPQC11x3jc/XDQbKkCgUCoULrrr6Kv675L/c0e+OSmPiSEKdBBZ/sZgrr7rS53O3at2K1LRUNv65kWPHjtH5gs6kpaWdsd+q71b5NfZQogyJQqFQuOGqq6/iwwUfMmTAEIxGY+X3BoOBDxd86JcRsXPfsPuYP28+OUdzuHfovU73USsShUKhqAHk5+Wjj9Gj0+mIj4+nrKwMfYye/LzA0oBv63cbUyZOwWQ2MXvebKf7RMOKRAXbFQqFwgNzZ8+lpLiETp068fHij+nUqRMlxSUBZ2/FxcVxxdVXcHv/29HrAxe/2rB+A+3btOfzxZ/z6KhH6XZBt4DP6Q1qRaJQKBQeqJdcjxdeeoFRo0eh0+m46pqreOv1t/h5zc8BnddisfD7r78zb9E8TcbZtVtXdmbt1ORcvqAMiUKhUHjg48UfV/ms1+sZ/fhoRj8+2u9zbtu6jTv/cSe39r2Vdme3C3SIYUUZEoVCoQgDHTp24O8df4d7GJqgYiQKhUKhCAhlSBQKhUIREMqQKBQKhSIglCFRKBQKRUAoQ6JQKBQeKCoqYurzUzi3bSvqGZI4t20rpj4/haKiMyvOw0lZWRn3DryXzh06c/VlV7N/3/6QXFcZEoVCoXBDUVERN/W6hl/WvEpGRi4rV0oyMnJZ+9Or3NTrmogyJnNnzyWlfgqbtm1i1OhRjB87PiTXVYZEoVAo3PDGazOon5LFc88ZadcO9Hpo1w7GjzeSkpzFG6/N8Ou8wZCRX7FsBYOGDALgH/3/wffffY+UMqBzeoMyJAqFQuGGubPeY8AAI9VbnQsBAwYYmTv7fb/Oe9+w+1g4byFApYz83QPuPmO/3tf05pJul5zx+u6b787Y9/Chw6SnpwMQExNDcnIyubm5fo3PF1RBokKhULjh8OGTtGnjfFubNnDksH8P6mDIyDtbfYjqFjAIKEOiiCpKiktYNHM+Sxcu5tiRfBo1Tea2gf0ZMHIwderWCffwFDWQZs1SycrKpZ0TFZOsLGja7MyHv7doLSPfPL052dnZNE9vjtlsJj8/n9TUVL/H5y3KkCiihpLiEkbdPpzGadlMziynTRvIyspjwcJ5jLr9O9767ANlTBSac9/9I1i48FXGj6/q3pISFi0ycN+wf/l9bq1l5G++5WYWzFtAz4t78vniz7nq6qtCsiJRMRJF1LBo5nwap2Uz/rnyKkHPCePLaZSazaKZ88M9RK8pKS7hg+nv0bfrDVzS7GL6dr2BD6a/R0lxSbiHpqjGI489Sl5+GyZPNrBrF5jNsGsXTJ5sIC+/DY889qjf59ZaRv6+YfdxMvcknTt05s0ZbzJpyqSAz+kNIhQR/VDS4YIOcu7KueEehiII9O16A5Mz85y6GHbtgoyJKSzZ8HXoB+YjjiurgQPsKytYsDCOYyfT1coqRMQdj+Psc872at+ioiLeeG0Gc2e/z5HDuTRtlsZ9w/7FI489SmJiot9jsFgsXNbjMuYtmhdSBeBdO3ZR3rC8ync9m/TcIKX0q4GJWpEoooZjR/LdBj2PHQ2sW12oqEkrq9pCYmIizz43ju179pFfWsj2Pft49rlxARmRbVu3WQsHr7066mXklSFRRA2NmiaTleV8W1YWNGqSHNoB+cnShYsZOKDcaTrpwAHlLFu4ODwDU4QUu4z81JenhnsoAaMMiSJquG1gfxYsjKO6N1ZKWLgojlsH9g/PwHykpqysagI1zbXvDcG4Z2VIFFHDgJGDOXYynUmT46oEPSdNtsYWBowcHO4hekVNWVlFOzJGkncyr1YZEylt9xyj7T2r9F9F1FCnbh3e+uwDFs2cT8bExRw7mk+jJsncOrA/GVFUR2JdWc1jwvjyM9JJo2llFe2Y6pk4nnecEydOhHsoIUXGSEz1TJqeU2VtKRQhxp611Si1atbWwkUqa0sRPlTWluIMVJ1C5P4O7Cur9t2GkDExhRtvFGRMTKF9tyHKiCiikrCuSIQQs4BbgGNSyvOdbBfADOBmoAQYKqX8w9051Yqk5tUp+COLUtN+BwpFsInmFckc4EY3228Czra9RgDvhGBMUU8k1CkUFRTx1NCnKCoIrFeD3SDs2jCPyZl5rFwpmZyZx8718xh1+3CXq4tI+B0oFLWFsBoSKeWPwEk3u/QFPpRW1gEpQoimoRld9BIJdQo/fv0jP/zvB35a+VNA5/HXIETC70ChqC2Ee0XiiebAQYfP2bbvqiCEGCGEWC+EWJ93Mi9kg4tUIqFOYdmiZVXe/cVfgxAJvwOForYQ6em/zmQrzwjqSCnfA94Da4wk2IOKdKx1Cs41qYJVp/DwnQ/z+0+/V36OjY0FYNNvm+jZpGfl992v6M6bn77p9Xn9NQjh+B0oFLWVSF+RZAMtHD6nA4fDNJaoIRwV4EMfHYohwVD52WQyVXkHMCQYGPbYMJ/O62/xXqh+B5GaGaZQhJJINyRLgXuFlYuBfCnlkXAPKtIJpALc3wdjt8u7MX3e9CrGxBFDgoFX5r9C18u6+nQv/hoEb34HgRoBfxMBFIqaRrjTfxcBVwMNgBwgA4gFkFLOtKX/vok1s6sEGCalXO/unLU5/dcxTTbncB5J9eLR6QUF+WU0tlWABztlds3KNTz7r2cpLzstUR0XH8fU96dy+fWX+3VP/hbv2X8fyxZWrYK3G9JA7/WD6e+xa8M8xj93ZoX6pMlxtO82hOFjRvh8zwpFOAgk/VdVttcQtDACWjwYv/rvV7z09EuUlZYRGxeLqdxEfEI8T7/0NDfdcZPf9+bKIPhbC6LFvdaU/ii+otod10yiuY5EoRFa1E1okTK7dOFSjCVG2nVsx7S502jXsR3GEmNA2Vt16tZh+JgRLNnwNWsPrWPJhq8ZPmZEQA8tLe61NmaGKXeewhnKkNQQIuXBmJiUyOiM0cxdOZeeV/VkztdzeGTCI9RNrOvNbYQMLe61Nqr4qkJPhTOUIakhRMqDcdrcaQwcORCdzvpfS6/XM+jBQUybO83jsaFEi3utKf1RfEEVeiqcoQxJDUE9GH1Di3utKf1RfKE2uvMUnlGGpIagHoy+ocW91kYV39rozlN4RmVt1RC06nERjAwpT1ikBVOFiQpZgdlipsJSQYXF9rOsQCDQCR1CWN8dX/H6eOJi4tAJHUUFRUwaPYkJr08gsV5iRN6rFoQza+qD6e+xc73zplwq5Tm6Uem/DtRWQwLhfTBapIVTpafILcklz5hnfZVWfS8qL6LUVEqJucT6biqhxFRCmbns9ImMwBKgH+C8ttEpcfo4xCZB2adlpAxMIbVnKnXj6pIYl0jduLqVr8S4RJLikkg2JJNiSKl8TzGkYIj14YJhItzy+KopV81FGRIHarMhCQV5pXnsObmHA/kHOJh/sPL9cMFhyivKPZ/ABTEiBr3QY9koMS0ux3BnAgkXJqATekBiQSKlBQsWpJRYsGCRFswWEyZpk2GZA+wDWgNDfR9DfEw8Des0pElSExonNqZpYlOaJDWhSWKTyvdYfazf96gFkVAEGa0rOYV7lCFxQBkS7ThRfILtJ7az48QOdhzfwY4TOzhadNT5zkbQf6Gn4d2NSU5KITEmkcTYeiTGJJEUk0RiTBIJMXUw6BKI18dj0BmI1xuI18UTq7O6pgCmPzOFnZu3cU7njjwxdazb8b06birb/9pS+Vkfo6fCXFH5bqdZx3SuebI3pRWllFaUUmIuoshcRHFFEUWmQorMhRSZizBL932sBYKmSU1pkdyC9OR0WtSzvqcnp5NeLz0kRqa2FkEqgk8ghiTS1X8VIUJKSdapLP44/Ad/HP6DjUc3cqLkxBn7xYpY0uu0oomhKY0MTWhsaEIjQxP2rd3L/G0fcFPhbVzc3XsplDONgfW/5O6tO3mgz+mA97kXnsfjU56tcuzNd/Vl77ZdlXIsduPhaETi4uO4Z8i9nNOoo8f7L7MYySs/xZGCw6xb9gN7f9pCYW45dVL10CWO4u6lHOYwhwsP82v2r1WO16GjZUpLWtdvTbohncMrs9n85QZyc4o0jWGorClFJKIMSS1FSsmB/AOsP7SePw7/wYbDGzhVeqrKPgZ9Ai3rtLa+6lrfGxuaVq4eHPlktbUQbe2qH7n4Wu8NyZnGwFzlHazG4Oa7+55x7DkXdOThjH/z5sT/VNH2cjzu4cx/c05n90YEQAiBQZ9ACoK5L75Oi2Y5TJ9qssUAKpg338zBxc0ZMH4kBbo8cow5HC/L4ZjxKMfKjnKi7AT78vaxL2cfhvnQpQ28MAnb8XnMmTebQUs/4+GZT3J+i/NpVLcRonoxhhcoeXxFJKJcW7WMvSf3smLHCr7P+p7sguwq2+rFJnNOUgfaJ3WkfdK5NDI0cWo0wPlKosJsrny342wlUZ0dG7cGZAw2/fYn7019HVP5addUbFwsI54dTeceXdxeuzorFi0mP3s5GRNMZ8QgMifGktLiFvoMODOVutxSTo7xCF8t+pyE3D+YlGE54/hxGfBrDFiugnrx9WjfoD0dG3WkS9MuXNDkAurGea7+DyRrSmlkKdyhXFsKtxjNRr7d8y2fb/ucTUc3VX5fNyaRDvXOtxmPDjQ2NPV6lhzISqI651zQkX8984hTY/CvZx7xuKIoKSpGp9MjdGZiYmIxm03odDpKioq9uhdH1q5czdQpJqeV24MHmRg3frVTQxKni6NFnVbsX7ODqVMsTo8fNgQ2jdUjrzVQUFbA+kPrWX9oPR/++SECHR0bdeCiZhdxUbOLXBqWASMHM+r275g02XnWVIaL+hfHbK/JmeWVK6UFC+cx6vbvVLaVIiCUIanBHC08ysJNC1my5QvKLEYA4nTxXJx2Gd3TLuWsxLPRC71f59bSrQSBGYOfV/5AeVkZ6W1acvv99/DZrI/Izjrgs5sNIPdEodsYRO7xooCOLz1p4e0uMzlVfpIDJfvYW7SLnYXb2Ve8ly3HtrDl2Bbm/TUPHTo6N+3MxekX07NFT85teC46oassglw0cz4ZE6tmTWW4WVk4amTZjZxdI2vSZKtGlrtsL7WaUbhDGZIayMH8g3z454cs374cCxYAWtdtyxUNr6Vb6sUY9NrUSwS6knAkEGOQUDeB/sMHcF3fG9HpdJz72nl888VX7Nqy0+d7SmuQRFZWocsYRFpD94WO3hwvhCA1Po3U+DQurG9t9GWsMLKnaCc7C7axo3Ar+4qz+OvIX/x15C9m/j6TZEMyPdJ70DO9J5e0uIThY0b4lOa7dOFiJme61sjKmLjYrUtMrWYU7lCGJEpxNkO84h/XcqpLAd8c/AaJRCDokXopvZvcTMu6rV2ey1hq5JslK1i7cjW5JwpJa5DEpdf34rp+fVx2PKwch0Zupbj4OJq2aM7jLzxL3aREn4zBQ+OfqPJZp9fR+/Y+9L69j8djS4tLmPPKuwx94gES6tbh0ut7MW/+cjIzzoyRzF8QyyW9e7k9n7/HG/QGzkvuzHnJnQEoMRezvWArWws2sTV/M7nGE6zavYpVu1cB0LFhR65ofQVXtr6Ss1LP8uiSDCTbK9DVjKLmo7S2ohBXPSGyN37GmszVUAaXNriSiZ2mMfyshzwakRljM8nPXs7UKYWsWglTpxSSd3A5M8ZmYiw1uh1L5UqidUsemvA46a1bUl5WztpVP7o8prS4hHcmv0qpQ++K7lddwuED2Wz+/S/gtDF4aPzjXh3vLxt//YO/1m1g469/AHBdvz5kH2lM5sTYKhpcmRNjyT7SmOv6uTdOgR5vvzdRJrgotTuDWw9nSudXmdRpGve0vJdOyRcSI2LYenwr7/7+LoM+HcTdH9/N7A2zOVLougt1IBpZSvFX4QllSEJEoP3BHXHVE2LKROjaRsd1Wb25r80IGhuaeDzXN0tW0KJZDhkTTFXOlZlhIr1pDt8sWeH2eLtbaeyMyXTs0omxr02m//33YKiT4PKY6g9vsBokwK0Bcne8v1S/riHBwKMvZJLS4hbGjU/ihhsE48YnkdLiFh59IdPjCi3Q453dmxCCxoamXNP4eh5u/29e7fIuD7V7nMsaXEVSTD325+1n5u8z6begH6OWjWL17tWYKqoWVwYi6qlqVxSeUOm/IUBrfSRP1c3jxifx/Kx3vDrXuGEPMnWKc5++r+fyFnv1uiO+pA/7Uv1eHS3TloOBr/dWYTGzteBvfs1dw5+n1mOW5kqVgTueu4M7u91Ji+QWAWlkqWr62oFK/41wtPYxe5ohesosciTQLCVvcFW97oi79OFAqt+ro2XashYEem96XQydUi6kU8qFlJiL+TV3LV9/vYxT207y8X8/5uNdH9OjeQ/6dezHjE/f5dP3P/Ip2wvsqxnntSvB6lOjssSiC+XaCgFa+pi3HdtGfApu/d2eMoscsWYZaXMuV9x8V1/i4uMqPzs+tF3hmD7s6nh/a1Yezvh3lfO5um4o0PLe6sTU5ZrGvWm4tTEA9f5OJkbE8tuh3xi7aiwDvxhInV5JfPzrUtYeWseSDV8zfMwIjw/mUPepUX3how+XhkQIcZ4QYo0QIksI8bYQItlh2y+hGV7NQCsf8+aczTyw5AHKLpDM/lA49Xc7ywxyF5y2ZhnFen0uf/D08K5O9fRhrR/+9rTl2LiqIov+pC0Hihb39uq4qTzQZ3Dla8+2XQAUZxVjzjBBJpAJx98+zmu/vMYdi+7gi21fYLZ4NujgXQOvUMQAVV/4yMXdimQm8CLQHTgArBFC2B+Hkd+4IYLQoqvc5pzNPPTFKMosZVxwc3eO5DTzOjPIXXA60Cwjb3H18HaGqdzEWxOn80Cfwbw6bqrb4/19+J9OWxbExsUhdMLvavhACfTevF3V9B14J+kJLTlWfIwXfniBAR8PYPXu1VikxeMY69Stw/AxI1iy4eszVjNaryBUllj04c6QJEkpl0spT0gpXwQeB1YKIboDNStCH2QCbYO779Q+Rn3xMOWWMrqnXsy/OjzMYy9M9DozyF1GVKBZRr7g+PB2FiepTnWXjpYPf3/SlrXGWGpkxaLFjBv2IG9Pmo5eZ0Kvh5jYWJ/uzdtVzc2X9mXcec8zvO1DNIxvxIH8A4xbPY6hi4ey4dAGv+9D6xWEyhKLPlxmbQkhNgGXSykLHL67EPgUqC+lbBCaIfpGJGdt+ZMxcyjnEAMHDcR4i5ELmnTlgXajPcqaRGpm0vRnprDr7+2V1esL35rD8SM5TvcVOh2PT3mmymy8+vH26vf2nTr4nL319uRXOPv8cyur4S0VlsoCSGe1K1pjr99p0SyHwYNMlf8nZs8W7MtOQ+gSOLw/26d780W8ssJi5ucTP7Di8BLyTFbV515n9WL0JaNpnNjYp3vROqtLZYmFh0CyttytSKYB5zl+IaX8C+gNLPPnYrUVb3zMzpBS8uTrT2L820javgYMb/ugV9pYWgZwtaR6zcmkd6dxae8rz6jKjo2L5aHxj5/h0vGnZsUVD41/gt7/uBmdzvon4K4AMhi4qt95/nlJ6xa5dO7e2ed782XFptfFcGWj65jceTq3Ne9PjIhl9Z7V3LHgDpZuW4p9gulN7EPrFUSgK3hF6FF1JBHM17u+ZsKQCbAP2p5/Nk+/lOH1sYFKs4eKdd+uYeFbcygvL6uUWImLi2PgqGE+Cy6GguqSKv7iqX7nqWcMvDTv/3w6ZyArtpNlJ/j4wHz+ylsPwBWtruCxbo8xfvCTHuuftF5BqL7w4SFYKxJFGHj4zofp2aQnPZv0ZMIVE+Cg9fv927OqZObYg9CuiKTMJHdEQqzCF7SqqvdUv5N/yr00jTMCWbGlxjdgZLtHGd72IeJ1Bn7a/xMDHrubBvUPeIx9aL2C8HcFrwgfypBEGEMfHVo1wG3rGuuPWyqSMpNc4e7h5yptWUutLV/xRcrFHZ7qd+Lj8WniAIG764QQ9Ei7lImdXqJDvfPR/WlmyCCzx+ypYNSZuMsSU0QeHg2JEOJib75TaEO3y7vx8OsPg4ssWV/cUtEw23f38HM1+9dSa8sTrmo07JXn9td/nn7ep/O6q9+ZPRvKHTySoY5n1Y9LY3T7pyjLw6vYh1pBKLxZkbzt5Lu3tB5ITcTfIq2fdT/DHaCLrfrP46tbSsvgdDhwNfvXalXgDd4kLgCc1fHsM451t3JyVb8zbhz8+SdYbKUd4Ypn6YTO46rJsf5JrSBqN+7Sf3sAlwD/xprBZacecJeUsnPwh+c7kRJs91eocX/efu766C50m3TEfBmLqbw8KoLQWuAqbfkMhAApQ5bO7C5xQQiBlNKpyOK6b9cwe/pMho0Z6fTfzN4H5pdVq8k9XkhcnHUlYjci/vad14oVixaTd9B5bxVP/eEV0Uewgu11gQZYhR0bOrzKgTv9uVhtwt8irU82fwJA4uZ6mMrKw+qWCnUswmtNLtvkJ1TpzO6q8u2py9VdXa+Om+px5WRIMNBnQH+en/UO9z0+EokBSeTEs1yumjJg/7E0zTW2FNGLS0MipfxOSjkeuExKOd728wTgLSnljpCNMErxR+ahsKyQL7YuBaBpctOwu6VCGYsA3zW57ITC/VOZuFDtH9RiWz5UN3rb/9riMp7iLHAeCfGs6hMHZ6oHT4yN4dcY2N83h1+O+i+5p6U2lyL8eBMjyRRC1BNC1AG2AFlCiCc8HeQNQogbhRA7hBC7hRDPONk+VAhxXAjxl+31Ty2uGwr8KdJauXslJlnOOUkdeWLiOHr/42bKy8pZsWgx4/85isWzF3Fo705WLFrssXOhFoQyFmHHXdpynwH9wpbO7NhTvv+wAeC+sy3gW9LIPT0AACAASURBVCFoJMSznE0cHFdN7yybx7Q5s7jyzt5Y4iyMWzWO37J/8/k6St235uGNIelkk0npB6wE0oGhgV5YCKHHGrS/CegIDBBCOHsafCylvND28q1CK4z4I9S47uA6AHqkXQr43wbXX5eUtxlKrlJRtXKFuUpbLswrCFs6s+OD/vo7+vDgc49XZprZiY2Lpe+9d/ql5BvuSnvwbuKgEzruaXkv1ze5BYnkyS+fIjs/26frKHXfmoc3hiROCBED9AWWSCnLAc9yoZ7pAeyWUu61nfMj2zVqBL4WaUkp2Xh0IwDn1rM+aPxtg+uvSypQaRWtXGGu3Dy//7gubO6f6g96Y0lppTFzNGqpDdOiohAU/J84CCH4R/pddErugtFSypP/e5Licu+NuVL3rXl4Y0j+D6uMfH3gByFESyDwtnnQnMq6bQCybd9Vp78QYpMQ4r9CiBbOTiSEGCGEWC+EWJ93Mk+DoQWOr0Va+/P2k2/MJyW2PmlxDQFYu3I1gweZnP7BDR5k4pdVq51e21+XVKC9MbRyhbly88TGxYbd/WPHXUwjGgpBIbCJg07oGN72QZoYmrH31F4mfTfJrRx9UUERTw19iqKCIqXuWwPxWWtLCKEDYmyrCP8vLMSdwA1Syn/aPg8BekgpH3HYJw0oklKWCSFGYk07vtbdeSMl/RdOtwtdtrBqa1Nn7UK/2PYFL/zwAl3r92BEu9EAjLx1MKtWWlci1TGb4YYbBO8sm6e52q+3KrKRqjIcCtypB5cWl2imUhxsAtVkyzEeYcqW8ZRZjDzQ/QHu73q/0/2+/PRLJj4ykcw3M5k59TWl7huBBFVrSwjRUAjxrhBiue2rc4GB/lysGtmA4wojHTjsuIOUMldKWWb7+D7QVYPrhgxfirT2ntwLQKu6bSu/87YNrtZqv97OqCNVZTgUuItpRELg3FsC1WRrbGjKiLOsc7/3fn+fv3P+drrfskXLKt+Vum/NwxvX1hzgB04/9HcBYzS49u/A2UKINkKIOOAeYKnjDkKIpg4fbwO2aXDdiORo0VEA0uJPt3nxtg2u1q1ovU1FjbT+55FCJATOfSFQV9z5KRfQq/FNSCxkfptJqam0ivhozyY92fz7ZgA2/baJ96Z9wLpfyhk3jpD0gFcEH28MSSMp5UJsAXYppYlKKUH/kVKagYeBr7EaiE+klFuEEJOEELfZdhsthNgihNgIjEaDbLFIxW5IUuNOGxJf2uBqqfbry4w6GlSGwynyGA1oUcPSL/1Omie04GD+QWb8MuMM8VGTyVTl3WiEDRv0jHsuUWlz1QA89zuFYiFEKrb2urZWu4VaXFxK+SXwZbXvJjj8/CxQs5zrLsgptHYKTItLq/zOXhD2zZIVjBu/mtzjRaQ1TOSS3r3o/0ifM9rgnp5ZmitlVfwJ8j40vmqZkH1G3ft25/3btbpusHDMJqup8jKBYJ842OM95752XmW8x1tidXHc3/ZBXtg6ns+3fs7lN13O9HnTGTNkjNM0dUOCgVfmv0LXy6LKW61wgTcrkn9j7YjYVgjxA7AIeMT9IQpfMFWYOGU8hUBHUmzV+pLqBWHPz3qHPgP6O+2lHq7q6EioynZHOAorowmtXHHpdVrSt7lVPenln16m8yWdmfLulDNcn3HxcUx5d4oyIjUIlysSIcTFUsp1Usr1QohrgA5Y63m3BpqxpahKeYX11xmni0Mn/G8Ro8XMMpqu6wpn2WRwuj7CTk3MJgs3vZvczK+5P3Oo6CDLdywnoSABfYwenUlHbFwspnIT+hg9hQWaODUUEYK7p1alfLyUslxKuVFK+ZcyItpjtliznLzpx+6OcAV5/bluMOMWtTmbLNzohI4+zfoBMPePuXyx4AuMJUbadWzHtLnTaNexHcYSY2UWl5Yo/a7woTokRgBaGZJoIpiCkCqbLLx0qd+dpobmHC06SpEoYnTGaOaunEvPq3oy5+s5PDLhEeom1tX0mkq/K7y4MyRthRBLXb1CNsJaQHVDUhuyjIIdt4iGbLKaiuOqpKh/EXeNuKtytarX6xn04CCmzZ3m7hQ+o/S7wou7rK3jwPRQDaQ2E6Oz/jNUSGtWdU3MMgpH3CLSs8lqMl1Te7L00H85UniEtQfWcmXrK4N6vaULFzM507V+V8bExaoJVxBxtyIplFL+4OoVshHWAhLjrBXqpRUlSCkjLstIixVSOOIWkZ5NVpPRCR1XNroOgM+2fBb06yn9rvDibkWyL1SDiGTsellLFy7m2JF8GjVN5jYXeln+MmbAGPgJzJgZyZCIyzLSYoVkj1sEouvkK5GWTVbbuKTBFXye/Qm/HFzHoYJDNK/nTJNVG6xtG5zrd7lq26DQDncdEm8P5UAikVAF8IY+OhQcXPmRlmWk1Qop1HGLaJMqqWkkxiTRPfViQLJk65KgXkvpd4UXlbXlBl8CeIGkHna7vBuNH2hcxZg4Euoso0AbXLkjWiTWaztaJXzY3Vsrdq6gwhKwspJLfG3boNAWZUjc4G0DHi1WLm27tIU7QB9bNQU4HFlGwYxnqLhFdKBVenbbuu1Ii2tIbkkum3I2eX2crxOzOnXr8NZnH9C+2xAyJqYo/a4Q45UhEULcLoR4RQgxXQjxj2APKlLwNoCnReph83rNwQhCJ8I+Ww9mHUY0SazXZrRyZwoh6JraA4Bv93zr1TH+Tsx8adug0BZv+pG8DYwENgN/Aw8IId4K9sAiAW/7rmvROrR5vebwJ5jLzRExWw9WPEPFLSKTYLozL6pvNSTf7f3ObRdFO6omJPrwZkVyFdZOhrOllLOBm4GrgzqqCMHbAJ4WqYfN6zWHeGh8W9OIma2reEbtIZjuzNZ125Ial8bxkuMuG185onq6Rx/eGJIdQEuHzy0A752dUYy3ATxvVy7uaFO/DQyAsh7GkM3WPQVUVTyj9hBMd6YQgs4pFwHwW/ZvHvdXNSHRhzeGJA3YJoT4XgjxPbAVaFgbpFK8DeBpkXqYnpxOndg65JlOkW/K82u8vmbaeAqoqnhG7SKY6dnn1rMeu+HQBo/7ajExU4QWbxpbTfC8S83FHsBzJ68wYORgRt3+HZMmZzNwQDlt2lj/wy9cZF25ZHiReqgTOs5pcA5/HvmTA8VZdErp4vNYfS0cdAyoOtvf1wZXiugnWLIy7ZOsXSg2Ht2I0WzEEHNmPx071onZPCaMr+reUjUhkYtHQ6LkUDxjX7ksmjmfjImLOXY0n0ZNkrl1YH8yfKiAP7/x+fx55E/2FO3yy5B4MgyqT4fCE5XuzDYtuf3+e/hs1kdkZx1w+X/KW+rGJNKyTisOlOxj89HNdE/v7nJfLSZmitDirrHVGinl5UKIQmxtdu2bACmlrBf00UUR3qxcPHFBkwuYxzy2F2z1an9fDcPNd/Vl77ZdlRIl4aygLy0uYc4r7zL0iQdIUOmZEUMwZWXOTjqXAyX72Hh0o1tDotXETBE6XBoSKeXltvek0A2ndtO1eVf0Qk9W8R6KTIUkxrr/1ftqGMKhd+WKmqhwXBPwxp3p7ySgZZ3WAOzK3eVxXy0mZorQ4W1Bol4I0UwI0dL+CvbAaiN1YuvQtXlXQPJ3/kaP+/uTaRMpfToiTeFY4T3+Vr03r9MCgKxTLiLpiqjFY4xECPEIkAHkAPZqIgl0DuK4ai2XtryU37J/4+/8jVzcwPNM3W4Y3pv6OqZyU+X37gxDOPp0qPhMzcFTLM4VjQ1NAcHBvIOYK8zE6L3J9VFEA978Sz4KnCOlzA32YBRwWcvLeG3ta2zO+wuzxVzZ9ModvhqGYAVU3RFJ8RmFb2g1CYjTxdEgvgEnyo6TXZBN6/qtgzZmRWjxxrV1EFAVQCGiZUpL2tZvi9FSyraCzV4d42vhYDjqQ1Qf9ehFy6r31LgGABwrPqbxKBXhxF3Wlj3qthf4XgixAiizb5dSvhLksdVarm93PTN/n8lvub94lQbsa6ZNuOpD/HHDKcKPlkkaKbH1AThRckLzcSrCh7sVSZLtdQBYBcQ5fKcyuYJI73a9Afjz1HrKK8o87B1dQohKvys60SpJIzk2BYATxZFvSALpMVTbcJf+OzGUA1GcJj05nfManceWY1vYlP8n3VIvDveQNCMc8RmFNmiRpJEcZzUkx4uPB2uYVfC3VbZdyr5xWjaTM+1FkXksWDiPUbd/p3qcVMMbGflVQogUh8/1hRBfB3dYihvOvgGAtSdqVnqs0u+KXrQQ8UyKsdYx5xn905PzhUAazikpe9/wJtjeUEpZ+a8upTwFNArekBQAN559I3oRw5b8zZwoC83sLRREkxtOURUtJgEGvXXfUnNpsIZZSSDGQEnZ+4Y3hqTCsQBRCNGKqpIpiiCQbEimd7tegOTn49+HezgKhSaTgHh9PAClpuAbkkCMgZKy9w1vDMk4YI0QYp4QYh7wI6AqxnzEn8Bdvw79APj5xA9UyIqQjNNXKXp/j1HUTgw6q+pvKAxJIMZASdn7hkdDIqX8H3AR8LHt1VVKqWIkPuCvr/bCphfSKqUV+aY8Np7y3MdBC/yRv/BXMkNR+4jTWVckJabgTzoCMQZa9BiqTXiltQVcirW97tVAzUkhChH++mqFENxx3h0AfL1vRUhm/f5oYCndrMgkEleKwuZnkiHwjgdiDLztjqqw4o3W1otAd2CB7atHhRCXSSmVe8tLli5czORM177ajImLXaqc3nLuLbz5y1vs+2MPrENztVx/5C+UblZ0EIkKy9L2VBcID3v6jz3l94sF/+XYkXL6rodrr4Xhw+HoUe/6migpe9/wZkVyM9BbSjlLSjkLuBFQLfJ8IBBfbZ3YOtzZ6Q740/pZ61m/P/IXgUhmROIsuaYSySvFYBkSRzfy8xPzWbUKXnkFjh+Hu+6C8RnJZ7TKdoVdyn7Jhq9Ze2gdSzZ8zfAxI5QRcYK38pspwEnbz5pFmYQQNwIzAD3wf1LKF6ttjwc+BLoCucDdUsp9Wl0/VFh9tXm0a3fmNle+2ofvfJjff/r99Bd669vurTs0nfX7I38RiGRGJM6SawrRsFK0u7RE9eW5Rji6ke2XaNcOnn/e6pZq3+0O1eMkCHizIpkK/CmEmCOEmAtsAF4I9MJCCD3wFnAT0BEYIISo/uQZDpySUrYDXgVeCvS64cAfX+3QR4diSHDoa21L2qown87e0kot1x/5C38lMyJ5lhztaCmu6ApjqZEVixYzbtiDjLx1MOOGPciKRYsxlhq9Ot5ssWqseaNq7Q+q/iM8uP3XFNZpwxqsAfbuWNvsPi2lPKrBtXsAu6WUe23X+gjoCzj2me0LZNp+/i/wphBCSFn9kRzZ+NODutvl3Zg+bzpjhoxx+keqtVquP/IX3hwTDbPkmkKwO2AaS43MGJtJi2Y5TJ1isv0/LmTe/OXMGPs7j76QWXXy44RSizXtNzEu0a8xeELVf4QHtysS2wN7iZTyiJRyqZTyC42MCEBzrBL1drJt3zndR0ppxipnn1b9REKIEUKI9UKI9Xkngy+94Cv2wF37bkPImJjCjTcKMiamePTVdru8G1PenXKG9LqIEfzz6VGaquX6I3/hzTGhmCUrThPMDpjfLFlBi2Y5ZEwwVck+zMwwkd40h2+WrPB4DntFe924un6Pwx2q/iM8eOPaWieE6B6EaztzklZfaXizD1LK96SU3aSU3VJSU5wcEn78DdwVFhSij9Gj0+mIN8SDAKmTbD76l6bj80f+wn7MEy+OI2v7TkqLTgKSQ3t3Vro7VB+S0BMsheW1K1czeJDJqdto8CATv6xa7fEcxiCvSFT9R3jwxpBcA/wihNgjhNgkhNgshNikwbWzgRYOn9OBw672EULEYA30n6QWYK+E/88zkzGWlJKQAL1uu4ZGbRtBOfy86kdKzdplPvkjf/HQ+Ce44sZreeO5SeRnL2fqlEJWrYJXXzWTd3A5M8ZmVhqTSOgTX1vQQlzRGbknCt26jXKPF3k8R4nZasyCtSJR9R/hwZuI101BuvbvwNlCiDbAIeAeYGC1fZYC9wG/AHcA30ZLfMRf+Wr7sXYJ61dfrbD5oi0sWPgtaYnNoW8jjm0/xtLDi7m75ZAQ3ZFzHN0djlkymRkmMida3R19BvQPS5/42oqvjc68Ja1BEllZhS6zD9Mael5l5JlOAdCgTgOfr+/N35Sq/wgP3qxImgInpZT7pZT7sa4ImgR6YVvM42Hga2Ab8ImUcosQYpIQ4jbbbh8AaUKI3cATwDOBXjcUBCJfDe4r4RunHuKK9EsRAwTf5azkQPG+0NyUC7x1dwRrlqw4k2ApLF96fS/mzY916jaavyCWS3r38niOvHKrIWlU1zcBcV/+plT9R+jxxpC8AziuWYtt3wWMlPJLKWV7KeVZUsoptu8mSCmX2n42SinvlFK2k1L2sGd4RTqB9jLwlMK4dsn33N3pbiSShftnY5GWIN6Ne7x1d6g+JNHPdf36kH2kMZkTY6u4jTInxpJ9pDHX9fNcp2xfkTRK9M2QqP4gkY03hqRKuq2U0oL3hYy1kkBz2b1JYfxX93+RqE8iq3gPPx3/TqOR+47V3eF8m6O7Q/UhiX4MCQYefSGTlBa3MG58EjfcIBg3PomUFrd4lfoLcKrcGuJsWLehT9dW9SGRjTcGYa8QYjSnVyEPAVGxMggXgeaye1MJnxiXyNhrn2XsqrH89+BCOiVfQGq8c7+zsdTIN0tWsHblanJPFJLWIIlLr+/Fdf36ePXH7w6ru2M5mRlV3Vu+uDsU0YMhwUCfAf3pM8Ca/VRaXMKcV95FWjyvis0WM7llJwBB48TGPl1X1YdENt6sSEZiVf89hDWLqiegNAbcEGguu7cpjNe2vZar21xNuaWMefs+cOrisheRVWZVrYSpUwqrZFUFghbuDkX04ksLgWNlOUgsNEtqiiHGtwmMqg+JbLzpR3JMSnmPlLKRlLKxlHKglPJYKAYXrQSay+5tCqMQgqeueAqDLoGtBZtZefTMgjAtisjcoYW7IxJQYpL+4YvkzaESa/1x29S2Pl9H1YdENsJVNq0Q4ikp5ctCiDdwXgQ4OtiD84cOF3SQc1fODesY7BkmjVKdS6J4ozxqT3VctrBqCqOz9OE1+9cw5qsxCHSMOXcsZyedW7lt3LAHmTrFecrmrl0wbnwSz8/SJHciqln37RpmT5/JsDEjlZikG5xJ3lSYzZXvdpxJ3iw++BErjy5neNfhjOjum1NDi78phXt6Num5QUrZzZ9j3a1Ittne12MVaqz+UrjAX0mU6ufwNoXx8laXM+TCIUgsvLPrNU6V51Zu06KILNLRYjVR08UktVpxBSJ5k1W8G4ywbto6igp8+3+nxd+UIni4DLZLKZfZ3sM7vY9S7IYgVJLVI3uMZNvxbaw/tJ6Zu2fw73OfI1YXp0kRmTvswdahTzxAQpj+mP2Rpq9tYpJayff7KwxZVmFkT+Eu2AFbftzCTyt/4qY7fKt1DvXflMJ7XK5IhBBL3b1COUiFZ2J0MUzpNYWmSU3ZV7yXBftmI6XUpIjMHd4GW4MZg/BnNVHbxCS1XHH5I3mzu2gnFiqo87d1srFs0bKAx6GIHNyl/16CVXl3EfArzgUUFQEQiIyKM1ISUnj5hpe5f/H9/JL7Ey3rtua6fn2YMfZ3MifmMHiQqdK3PH+BNauq/yOBZVU5PqDczXS1bGilxWoi2JLr4SbYKy5vJW+qj8MYY80S3PTbJno26Vn5ffcruvPmp2/6Pg6N/4YU/uEuRtIEGAucj7WLYW/ghJTyBynlD6EYXE0mUBkVV7Rv0J7M6zIB+OTAAvaU79Q0q+rVcVN5oM/gyteebbuA0w8o++vVcVOrHKfljFir1USkiEkGY7UW7BWXt5I31cdhMVtT1E0mU+V3hgQDwx4b5vMYgvU3pPAdl4ZESlkhpfyflPI+rI2tdgPfCyEeCdnoajDBlHzo1a4Xwy4ahsTCzN0zOCGP0WdAf56f9Q7vLJvH87Peoc+A/n6l5nr7gCopLPbL4HiDltL0wZJc9wVfajG8Jdjy/Ql1E7htcH9SG6bRpv1ZLiVvzrmgI4OfHQ6xzs9jSDDwyvxX6HpZV5/HoGRTIge3dSRCiHghxO3AfGAU8DrwWSgGVtMJtuTDiO4j6HVWL8otZbyy/QVyjEcCOp8dbx9QdwwfGNQZsVariUgQkwxWxlgwV1wPjX+C1EYN2PjrH2z89Q+3kjd56afgDtDFVn3cxMXHMeXdKX4ZEVCyKZGEyxiJrT/7+cBXwEQp5d8hG1UU463PNtiSDzqhY8I1E8gz5rH+0HqmbZvM0x0yaGhwLU3hrZSK/QH13tTXMZWfdlFUf0AFOwahhTR9sCTX3RHKjLFgyvd7Gx/749RvYISYmBjMFWZi42IxlZvQx+gpLCj0+/pKNiVycLciGQK0Bx4F1gohCmyvQiFEQWiGF1344rMNheRDfEw8/7nxP3Rp2oVCcwEvb5vEcWPOGfuVFpfwZuZ/ePXZCV5LqXjjEgp0RuwpdqDFaiIcYpKhzBjTcsXlT3zsRNlx9hXvRfwpMBlNtOvYjmlzp9GuYzuMJcaAsreUbErk4C5GopNSJtle9RxeSVLKeqEcZLTgi882VJIPCbEJvHLzK3Ru0pkCcz4vbsvkaGnVRpQbf/2DLRv+okVT76VUvH1ABRKD8BQ7iFZp+lC2H9byd+SPAfzlxE8ANEhtwOiM0cxdOZeeV/VkztdzeGTCI9RN9L9TopJNiRxcSqREK+GUSOnb9QYmZzpX7d21CzImprBkw9dA6CUfisuL+fdX/+aPI39QR1+XJ84dS4s6rQCY/swUDuzaxhtv4LWUytuTX+Hs88+tdAlZKiyVLiHH2fz0Z6aw6+/tpLdpye3338Nnsz4iO+sA7Tt14ImpY92OefozU9i5eRvndO7ocd9oZNNvfzp1D454djSde3QJ48hcs2PjVq/dlRWygrEbHyPPdIq3bn2Lbs39Ut9wiZJN0ZZAJFJUXxEN8cVnG+yWoM5iNTff0xddGx3rp6/n+axxlfvqY2KwVOCTlMpD45+o8tnuEup9e9W6FF9iELWt2jwa2w97Gx8D+DvvL/JMp2iZ3JKuzfwLqLtDtdWNHJQh0RBv+og4EizJB8ee75Mz7TO1PBYsXETx6uac1+88try5BWzPgQqzGYPBOkatpVS8NThgdZ3s3barcrZbG6rNy8vKzliteQpehxtvDeCPx78FoF/HfojqqVUaoWRTIgNv+pEovCRSfLaeer5foutB1ye7VsntLy+HWbMImpSKN4QydhAJRGuMx5v4WI7xCH/nb0IvYujTXvWkqekoQ6Ih3vYRCTae8utXfPQ5bzz8Blc9eVXlmtRigT//hHHjCGuDqkipNg8F0dp+2BsD+L8jywBJn3NuJiUhJXyDVYQE5drSkEjx2XoTq9Hr9FzT7Bp+if2F8opy0IPRCOs36Nm2I5aCvDLSGiZySe9e9H8k8Ja8vhCNsYPahCd35Ymy46w7sQaB4L4u94VjiIoQowyJxkSCz9bbWM3ShUsxGU20OqcVhVcWcnLpSUw5FSQ2SeeleVNCPOrTRGvsQGHl6yPLsWDhxrNvJD05PdzDUYQA5dqqgXgbq0lMSmR0xmg++vYjPhr7ET0n94TekF2xn/8dWeq0B3wwMZYaWbFoMYezdgKS0qKTZG3fyRNTx0VF7EABOcaj/Hzie9BwNVJSXMIH09+jb9cbuKTZxfTtegMfTH9PiTJGEKqOpAbib359haWC935/jzl/zgGgXeI53NvmXzQ2NAn6mI2lRmaMzaRFs6py9/PmW2M0Dzz3FIvenhvWBloK91RYzLy8fRL7ivfSp30fJlw7IeBzOmYgOv5fXrBQ1YpoTbBa7SqiFH/bkup1eh7s+SDTb5pOXX0iu4t2MOnvZ1l19Mugr06+WbKCFs1cV9Z//O5cTRRyg9lgq7az7PBn7CveS5PEJjx+mTYJA0rhNzpQhqSG4kvP9+pc3upyPh/yGTeefSNmaeK/BxcybdvkM6RVtGTtytUMHmRymmk2eJCJHRv/su4XoEJuMCTb3VFbDNfOwu18dWQZAkHmdZkkxSdpcl6l8BsdqGB7BBOq7m+urvP0yKfp3a43Gasy2Vu8i0lbxnJb8/70bnwTep22/3VyTxS6zTQrKa4AAq9y91axViu07AzpC94qOWtBibmYWXvfASRDLxpGl6baybsohd/oQBmSCMV1dfo8Rt3+nWa+YW+us2TI57y29jWW71jO59kf81vuWu5oMZCOyZ00uFMraQ2SyMoqdJlpFh9vTU/2tco93LIroTZcUDXeNHWKPd5UyLz5y5kx9ne/OmO6wiItfLD3bU6V59KxYUf+2fWfmpzXjq9qEYrwoFxbEUqofMPeXCcpPonx14xnRp8ZNK/XnEOlB5mx8yVm7HiJgyX7NRnHpdf3Yt78WKeZZrNnWyvvHfG2yj2Uku3gfytiLfEUb6qu5BwIiw8u4u/8jSTo6/B87+eJ0Ws7N40UtQiFe5QhiVBC5Rv25ToXt7iYRXct4uGeDxOvM7C1YDPPb3mOOXvf5VR5bkDjuK5fH7KPNCZzYmyVyvpx46wV97GxYCsA96nKPdSyK6E2XM7wFG/6ZdVqTa7z8/EfWJ3zFTp0vNJnOs3rNdfkvI5EilqEwj3KkEQoofIN+3qd+Jh4hnQZwrJ7l3JPp3vQoeOX3J94btMYPs/+mFKzf0FlQ4KBR1/IJKXFLYx9Lonrr4cxY6BRI/j0U3jzTejZEwwGEEL4VOUeStmVSNAL8xRvqq7k7A+7C3cwf98sAJ6+8mkuanZRwOd0hr8ZiIrQogxJhBKq7m/+XifZkMzjlz3OpwM+oddZvTBLM/87soxnNj7KkuxPyTfl+TwWQ4KBPgP6c+n1vbjyqli++AIeewwSE62umSlT4KKLBBVm3zv8BdJgy1fCrRdmjTc53xaIkrOdbQV/8/rOaVio4O5Od9OvY7+AzueJQDIQo+awwwAAFGNJREFUFaFBGZIIJVS+4UCvk56czpTeU/jgHx/QpWkXjJZSvjryBc9ufJQPs97ncGm2z2Ny55oZOlSSmBTvc5W7li1nvSGUhqs67uJNgSg5Syn5NmclM3a8TJnFyNVtrmb0JaM1GLEi2lGGJEIJlW9Yq+uc3/h8Zvadyfv93ufqNldTIS38fOIHJv79DG/snMb2gi14q6LgyTVTWFDus0JuqCXbQ224HHEVbwpEydlsMTN//yw+PvAhEgv3dbmPF3q/QIzGaeCK6CQsEilCiFTgY6A1sA+4S0p5ysl+FcBm28cDUsrbPJ27Jkmk2Os7li2sqiQcrDoSLa9zMP8gizYt4outSzFLawet9ISWXNnoWnqkXUqC3vV5xw17kKlTnKcCO2v7GypKi0uY88q7Xsm0eNuKOFjY60h+WbWa3ONFlUrO1etIvLmnAlM+7+6ewe6incSIGCZcO4Ebzr4h6PegCC2BSKSEy5C8DJyUUr4ohHgGqC+lfNrJfkVSSp8cujXJkNQE8o35LN6ymPl/LKC4whrkjRVx9GxwGZc2uJK2ddud0T1vxaLF5B1cTmZGVfeWlNZZdUqLW+gzIPRpn+u+XcPs6TMZNmZk1KgQezIUnu7pQHEW7+x+jZPluSTGJPHGba/TsZHrGE9RQRGTRk9iwusTSKznfywmVMW4itNEo9ZWX8D+tJ8LBDdapwgbyYZk7u96P/+7/ysm95rMRc0uwiTLWXP8O17eNpEJm59kxeElnCg7VnlMMFwzWuBYXBgteJKEcXVPZRVGlh36jKlbMzlZnst5jc7j4wEfuTUiAD9+/SM//O8Hflr5k99jthfJ7towj8mZeaxcKZmcmcfO9fMYdftwpfobgYRrRZInpUxx+HxKSlnfyX5m4C/ADLwopVzi4nwjgBEATdKbdP1i/RfBGbhCE/ad2sfS7Uv5367/kVtyuv6kZZ3WdE3twUX1e1BPpnjlmgkmzqriK8zmync7waqK14Lpz0xh5+ZtnNO5I09MHev1Penb6qm41ypL0/+8/jx6yaPEx8R7vN6Dtz/IH2v/oOtlXXl78dt+jfmD6e+xa8M8xj9XfsaKdNLkONp3G6J6tAeBiHRtCSFWA870x8cBc700JM2klIeFEG2Bb4HrpJR73F1XubaiB7PFzG/Zv/HVzq/4fs/3lMvT5est6rTiovo9uKh+d5okNAvL+HZs3MqbE/9DeVm5y33C0UfenbvKW0PhllhgIHTo0YHRl4x2WyPy8J0P8/tPv58+NDYWk8lU+W6n+xXdefPTN12ex9GVlXM4j7Q0uPVWuPNOSHDIh9i1CzImprBkw9fe3YvCawIxJEFLuZBSuswxFELkCCGaSimPCCGaAsec7SelPGx73yuE+B7oArg1JIroIUYXw6UtL+XSlpdivNrIrwd/5du93/Ltnu84WLKfgyX7+eLQpzQ2NOX85AvolHIh7RLPIVYX6/nkGmAvLnRlTMJhRMC9EOTNd/Vl77ZdleN1VlkfE2v9szebnBiWWEgdnspjgx6jd7ve6IR77/fQR4eyef1mjKVGgErj4WhEDAkGhj02zOU5nOu9wfz58MQT8Morp42JEmqMTMLl2poG5DoE21OllE9V26c+UCKlLBNCNAB+AfpKKbe6O7dakUQ/5RXl/Jb9G9/s+YZvdn9LmcVYuS1GxNI+6VzOrXceHeqdR3qdVpQby4OqdLvptz95b+rrmMpN6HQQFwdlZZBcP4Erb74xKO42d+q9b02cXsVdVR13Kym78SssKWDWi+9QYao4vTEGbhl/C08Nf8orN5ad9WvWM2bImEpj4oghwcAr81+h62VdXR7vzpU1cSK0bQv33mv9Tq1IgkdEurbcXlSINOAToCVwALhTSnlSCNENGCml/KcQ4lLgXcCCNSngNSnlB57OrQxJzcJsMbM5ZzNrD6xl7f617D65u8r22PJYEhbq6NzKxH2DLWd0VtRC6Xbdt2tY8OZsdKKMiy6CYcNweR1fUoRd4apb5KxZVt2xcpMeS0WF21iNo/Gr/F3FxXLj6NvIaXmEDd//SsXyCjABehAWgcFg4OmXn+amO27yecxrVq7h2X89W8V4xcXHMfX9qVx+vfsMt75db2BypnOF3127YMIEWLRIxUiCTdRlbUkpc6WU10kpz7a9n7R9v15K+U/bz2ullJ2klBfY3j0aEUXNI0YXQ5emXRjVcxQL7lrAl/d+yaTrJnHrubfSLKkZFb+YOK9lGZMyLGco3TZrcoTPPlmA2eJlbMAFP6/8gQpzGRd1FTz/PG4VdbVonOVKvXfKFOjSBZDWVYQ7IUjHyvqYuBgQYMLEsj2L+e3IWuT3FRh0IIC0+nVo0Kg+pSWlLFu0zK8xFxYUoo/Ro9PpiDfEo9Pp0MfoKSwo9HisR723Y0qoMdJRle2KqCKtTho3nH0Dz139HJ8P+pwGO+px/xCcyqncO7iCX7/5jtF/DGfKlvHM2/cBPxz7hr1Fu30Sl0yom0BiUjzDhkqPirpapAi7k4gZNszqWnPEMVZjkRYOFO9j2fLPKCszIhtJzHeboTFQDnEb42i6uD6XdBS88QasWgUvvlBCxw5FNGuRisHg3+pt6cKlGEuMtOvYjmlzp9GuYzuMJUavDJMnvbe4OJRQY4Sj9A0UUc2Jo+7lVMpOgZQVHCjJ4kBJ1adVSmx9miQ0o3F8ExoZmtLY0Ji0+IakxqVh0J9OFXpo/BOMvHWw2+ucOFbIA30Ga9I4y5NETFnZ6c8xsTFc9VAvdqRt5dtdK9lVtJ1is03dtzdwMbRr2I5ut3WjYm0F65f/Suv0o4x/7rRRbNcOMsaXM2lyEe0vOterMVYnMSmR0RmjuWfEPeh0Orpd3o2P3vuIv9b95fFYq97bPCaMPzNGsnBRHPc+olxZkY4yJIqgEuwKZU8d9Jo0TWH+/YvZdWIX209sZ/vx7ew5uYesk1nkmU6RZzrFdraccWyCvg7141JtrzSSUuPIyir3uoNjIP1HvOoWWQGYwSzMrNr3JTiINDdJbEKPiT3ont6dbs27kZqQat1wBfT95Aa3/WcyJi7266E9be60Kp/1ej2DHhzEoAcHeTx2wMjBjLr9OyZNzmbggNNZWwsXWV1ZGcqVFfEoQ6IIGqFoF+xpNnvrwP4kxiXSpVkXujQ73Uu8wlLB0aKjZJ3K4mD+QQ7mH+RwwWEOFRwipziHUnMJpaUllerFuk4w60OYMpEzrjP7Qyh3SH5yRBer46wH2rM28UfW7v0RwemDLVgoqyijzGKk3FJW+XNxp3LX15oN5XFYtSFWATmQsj2FfkP70bp+a85rdB4tklucITtjJxJ7oNt7jiyaOZ+MiVX13jKUJEpUEJasrWCisrYih1BUKNuNVaNU57NZf4yVlJKCsgJyinI4VnyMnKL/b+/Og6QozziOf38cSsilSERREjXBC03FC4QkBskhigXBaBIq5VVYliZojtKUKS8ifyRWxSRaxoOIkUBEE4yKESOKB0kEDYpcEgUxVlYpFKNEUZfDJ390Lzsss7u9Ozs9x/4+VVPTM939zjvv9O7T/Xb3866n4fUGHrrsPg4cuGmHq8N+NwOW/BveHwbcQ5KDoUkv4DTgoA5+qUboMxOO2A/OPr35CrHbpsO/1vblgukXc8igQxj44YHMnjabZxc9u9MRQWvau0LKl9Z2XzV3+W85OZBUj7z+aVUyS/KYCeM5+axxPPrAo9x85c00vt9Ir9692LplK7137c2YH43h8K8dDrBTGv0e6kGf3n3o27svfXrt+NxjSw/unja7y7/TtGum8sLi4kdwvrS2e3MgKeBAUj2GDzyWefOCnj13nrd1K4weLZ54ZVH+FSuD8085nyULlzB4yGAmXT6J66dcz+qVqzlyxJGdzjlVDuU4grP6UJUpUszaOxHeVcMFV4NSrlrKk89HWDn4iMTKxt0oZrWj5u5st+4hr+GCzayy3LVlZeNuFLPuwV1bZlaUh7vtXnyy3cy6VB43k1r98DkSs9S7m95l2jVTGXfUCQwfeCzjjjqBaddM7ZZjhM+6aSYD9mjg8ss275CB+IrLN7NnvwZm3TSz0lW0KuJAYkbzHvjqp2cwZfJbzJsXTJn8Fi8snsH3TpnY5cGk2oPWnNvvajMn132331WZillVciAxI9898LyDVmdUY04uq14OJGbkuwdeC91G7Y0RUk83k1rpHEjMyHcPvBa6jZKsyrvQ8qLOwqzKZk0cSMzIdw+8FrqNfDOpdYQDiRn57oHXQrdR082kBx59Olf+dDdGj5aHu7VW+YZEM/LNiuscZFaNnGvLrER57oG728jqjY9IzCogr8G4zLLywFYFHEjMzDrOXVtmZlYxDiRmZlYSBxIzMyuJA4mZmZXEgcTMzEriQGJmZiVxIDEzs5I4kJiZWUkcSMzMrCQOJGZmVhIHEjMzK0lFAomk0yStlPSBpFZzu0gaLel5SWskXZJnHc3MLJtKHZGsAE4BFrS2gKSewG+AE4FDgQmSDs2nemZmllWvSnxoRKwCUMtBq3c0FFgTEWvTZe8AxgHPlb2CZmaWWUUCSUb7AP8peN0ADCu2oKRzgaYh5RqH7TVsRZnrViv6AxsqXYkq4bZo5rZo5rZodlBnVyxbIJH0MLBXkVmXRsS9WYoo8l7RwVMiYiowNf3cxZ3NqV9v3BbN3BbN3BbN3BbNJC3u7LplCyQR8ZUSi2gABhW83hd4tcQyzcysi1Xz5b//BAZL2l/SLsC3gTkVrpOZmbVQqct/x0tqAIYD90t6MH1/oKS5ABGxFZgEPAisAv4YESszFD+1TNWuRW6LZm6LZm6LZm6LZp1ui7obs93MzPJVzV1bZmZWAxxIzMysJDUfSJxupZmkfpIekrQ6fd69leW2SXo2fdTVBQzt/c6SdpV0Zzr/SUn75V/LfGRoi7MkvV6wLZxTiXqWm6RbJb0mqej9ZUpcl7bTMklH5l3HvGRoi5GSNhZsE1dkKbfmAwlOt1LoEmB+RAwG5qevi3kvIj6XPsbmV73yyvg7TwTejIjPAL8Crs63lvnowDZ/Z8G2cEuulczPbcDoNuafCAxOH+cCN+ZQp0q5jbbbAuBvBdvEVVkKrflAEhGrIuL5dhbbnm4lIjYDTelW6s04YHo6PR34egXrUglZfufCNpoNfFnt5OqpUd1lm29XRCwA/tvGIuOA30diEbCbpL3zqV2+MrRFp9R8IMmoWLqVfSpUl3IaEBHrANLnPVtZro+kxZIWSaqnYJPld96+THqJ+UZgj1xql6+s2/w30u6c2ZIGFZnfHXSX/w9ZDZe0VNIDkoZkWaGac21tl2e6lWrXVlt0oJhPRsSrkg4AHpG0PCJe7JoaVlSW37lutoV2ZPme9wGzIqJR0nkkR2qjyl6z6tNdtoksngE+FRHvSDoJuIeky69NNRFInG6lWVttIWm9pL0jYl16aP5aK2W8mj6vlfQYcARQD4Eky+/ctEyDpF7AxynDoX4VaLctIuKNgpe/pU7PF2VQN/8fShUR/yuYnivpBkn9I6LNxJbdpWuru6RbmQOcmU6fCex0tCZpd0m7ptP9gc9TP6n5s/zOhW10KvBI1Oddue22RYvzAGNJMkh0R3OAM9Krt44FNjZ1EXc3kvZqOmcoaShJjHij7bWAiKjpBzCeZI+iEVgPPJi+PxCYW7DcScALJHvel1a63mVqiz1IrtZanT73S98/GrglnR4BLAeWps8TK13vLm6DnX5n4CpgbDrdB/gTsAZ4Cjig0nWuYFv8DFiZbguPAgdXus5laodZwDpgS/q/YiJwHnBeOl8kV7i9mP5NHF3pOlewLSYVbBOLgBFZynWKFDMzK0l36doyM7MycSAxM7OSOJCYmVlJHEjMzKwkDiRmZlYSBxKrK5JC0oyC173SDLd/SV+PLWf2Z0mTJV3UyrwnOlDO3Wn21TUtsrGO6GB9RqX3RhSbN0TSQkmNkn7QkXLNCtXEne1mHbAJOEzShyLiPeCrwCtNMyNiDhlvRk1vzFJEfNAVFYuIzEEgIsandRgJXBQRJ3fyY0cBG0juCWhpA3AByY2ZZp3mIxKrRw8AY9LpCSQ3YQHbx+C4Pp0ekO75L00fIyTtJ2mVpBtI8g4NkjRB0nJJKyRdXVDWaEnPpOvOL/j8QyU9JmmtpAsLln8nfR4paUH62c9JuklS5r9FScdIelzS02livQHp+z9My1sqaaakTwPnABcXO5qJiPURsRjYmvWzzYrxEYnVozuAK9LurM8CtwJfLLLcdcDjETE+Hb/jI8DuwEHA2RHxXUkDSXJQHQW8CcxLMyb/gyQ/1XER8ZKkfgXlHgwcD3wUeF7SjRGxpcVnDyUZJ+Rl4K8kY+rMbu+LpeltriW5O32DpO8AU0jG0fgxScK9zZJ2i4i3JN0CbIiIX7dXtllnOZBY3YmIZUpGPpwAzG1j0VHAGek624CNSkaVfDmScSkAjgEei4jXAST9ATgO2AYsiIiX0vULEz/eHxGNQKOk14ABJOkoCj0VEWvTMmcBXyBDIAEOAYYAD6cpkXoWlL0SmCnpXpKsrWa5cCCxejUH+AUwko6PN7KpYLq1Qa9E66nGGwumt1H876zlullzFQlYFhHFjrBOAL5EMlDTZZIOy1imWUl8jsTq1a3AVRGxvI1l5gPnQzI0raSPFVnmSeBLkvqn3V8TgMeBhen7+6fr9yuybluGppl5ewDfAv6ecb3ngH3SzKxI2iW9+qonsG9EPAJcDHwC6Au8TdLFZlY2DiRWlyKiISKubWex7wPHS1oOPE3SZdSynHXAT0iy4y4FnomIe9OurnOBP0taCtzZwSouBH4OrABeAu7OslLaZXYq8Mv0c5cAw0iOem6XtIzkIoGrI+JtkqEEvilpScuT7ZL2ldQAXAhMltQgqW8Hv4eZs/+a5a0LLuk1qyo+IjEzs5L4iMTMzEriIxIzMyuJA4mZmZXEgcTMzEriQGJmZiVxIDEzs5L8H0Z5HxPyThcyAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "# Initialize fitting parameters\n", "initial_theta = np.zeros(X.shape[1])\n", @@ -957,9 +1282,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.4" + "version": "3.7.3" } }, "nbformat": 4, - "nbformat_minor": 2 + "nbformat_minor": 4 } diff --git a/requirements.txt b/requirements.txt index 2890a287..7884ad89 100755 --- a/requirements.txt +++ b/requirements.txt @@ -26,11 +26,11 @@ jupyter==1.0.0 jupyter-client==5.2.3 jupyter-console==5.2.0 jupyter-core==4.4.0 -MarkupSafe==1.0 -matplotlib==2.1.2 +MarkupSafe==1.1.1 +matplotlib>=2.1.2 mistune==0.8.3 -mkl-fft==1.0.4 -mkl-random==1.0.1 +mkl-fft>=1.0.4 +mkl-random>=1.0.1 nbconvert==5.3.1 nbformat==4.4.0 notebook==5.7.8 @@ -65,4 +65,4 @@ twisted==19.7.0 wcwidth==0.1.7 webencodings==0.5.1 widgetsnbextension==3.4.0 -zope.interface==4.5.0 +zope.interface>=4.5.0